ABSTRACT
The present study aimed to investigate the protective effect of S-propargyl-cysteine (SPRC) on atherosclerosis progression in mice. A mouse model of vulnerable atherosclerotic plaque was created in ApoE-/- mice by carotid artery tandem stenosis (TS) combined with a Western diet. Macrophotography, lipid profiles, and inflammatory markers were measured to evaluate the antiatherosclerotic effects of SPRC compared to atorvastatin as a control. Histopathological analysis was performed to assess the plaque stability. To explore the protective mechanism of SPRC, human umbilical vein endothelial cells (HUVECs) were cultured in vitro and challenged with oxidized low-density lipoprotein (ox-LDL). Cell viability was determined with a Cell Counting Kit-8 (CCK-8). Endothelial nitric oxide synthase (eNOS) phosphorylation and mRNA expression were detected by Western blot and RT-qPCR respectively. The results showed that the lesion area quantified by en face photographs of the aortic arch and carotid artery was significantly less, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were reduced, plaque collagen content was increased and matrix metalloproteinase-9 (MMP-9) was decreased in 80 mg/kg per day SPRC-treated mice compared with model mice. These findings support the role of SPRC in plaque stabilization. In vitro studies revealed that 100 μmol/L SPRC increased the cell viability and the phosphorylation level of eNOS after ox-LDL challenge. These results suggest that SPRC delays the progression of atherosclerosis and enhances plaque stability. The protective effect may be at least partially related to the increased phosphorylation of eNOS in endothelial cells.
Subject(s)
Animals , Humans , Mice , Atherosclerosis , Cholesterol/metabolism , Cysteine/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, LDL/pharmacology , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Plaque, Atherosclerotic/pathologyABSTRACT
Atherosclerosis could be induced by multiple factors, including hypertension, hyperlipidemia, and smoking, and its pathogenesis has not been fully elucidated. MicroRNAs have been shown to possess great anti-atherosclerotic potential, but the precise function of miR-92a-3p in atherosclerosis and its potential molecular mechanism have not been well clarified. Flow cytometry assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay were performed to evaluate effects of oxidized low-density lipoprotein (ox-LDL) on proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs), respectively. Malondialdehyde and superoxide dismutase levels in cell lysate were assessed with biochemical kits. The expression levels of miR-92a-3p and Sirtuin6 (SIRT6) in HUVECs exposed to ox-LDL were estimated by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the protein levels of SIRT6, c-Jun N-terminal kinase (JNK), phosphorylation JNK (p-JNK), p38 mitogen activated protein kinase (p38 MAPK), and phosphorylation p38 MAPK (p-p38 MAPK) were measured by western blot assays. The relationship between miR-92a-3p and SIRT6 was confirmed by dual-luciferase reporter assay. Ox-LDL induced apoptosis and oxidative stress in HUVECs in concentration- and time-dependent manners. Conversely, miR-92a-3p silencing inhibited apoptosis and SIRT6 expression in HUVECs. The overexpression of miR-92a-3p enhanced apoptosis and phosphorylation levels of JNK and p38 MAPK as well as inhibited proliferation in ox-LDL-induced HUVECs. In addition, SIRT6 was a target of miR-92a-3p. miR-92a-3p negatively regulated SIRT6 expression in ox-LDL-induced HUVECs to activate MAPK signaling pathway in vitro. In summary, miR-92a-3p promoted HUVECs apoptosis and suppressed proliferation in ox-LDL-induced HUVECs by targeting SIRT6 expression and activating MAPK signaling pathway.
Subject(s)
Humans , MAP Kinase Signaling System , Apoptosis , Sirtuins/genetics , MicroRNAs/genetics , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL/pharmacologyABSTRACT
Adiponectin is a multifunctional adipokine that has several oligomeric forms in the blood stream, which broadly regulates innate and acquired immunity. Therefore, in this study, we aimed to observe the differentiation of T helper (Th) cells and expression of costimulatory signaling molecules affected by adiponectin. The mRNA and protein expression levels of adiponectin and its receptors in oxidized low density lipoprotein cholesterol-treated endothelial cells were assayed by real time PCR and immunofluorescence. The endothelial cells were then treated with adiponectin with or without adipoR1 or adipoR2 siRNA and co-cultured with T lymphocytes. The distribution of Th1, Th2 and Th17 subsets were assayed by flow cytometry. The effects of adiponectin on costimulatory signaling molecules HLA-DR, CD80, CD86 and CD 40 was also assayed by flow cytometry. The results showed that endothelial cells expressed adiponectin and its receptor adipoR1 and adipoR2, but not T-cadherin. Adiponectin suppressed Th1 and Th17 differentiation through adipoR1 receptor, contributed to the inhibition of CD80 and CD40, and inhibited differentiation of Th1 and Th17 by inhibiting antigen presenting action.
Subject(s)
Humans , Infant, Newborn , Adult , Adiponectin/metabolism , B7-1 Antigen/metabolism , CD40 Antigens/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , Adiponectin/genetics , Adiponectin/pharmacology , Cell Differentiation , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , HLA-DR Antigens/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Lipoproteins, LDL/pharmacology , Receptors, Adiponectin/drug effects , Receptors, Adiponectin/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolismABSTRACT
Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10), control (n=10) and thymoquinone (TQ) treatment group (n=10). Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI). Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons). Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model. .
Introdução: Estudos prévios demonstraram que a timoquinona tem efeitos protetores contra a lesão de isquemia/reperfusão em vários órgãos como pulmão, rins e fígado em diferentes modelos experimentais. Objetivo: Determinar se timoquinona tem efeitos positivos em tecidos do pulmão, rim e coração e no estresse oxidativo em lesão de isquemia/perfusão da aorta abdominal. Métodos: Trinta ratos foram divididos em três grupos: sham (n=10), controle (n=10) e tratamento com timoquinona (TQ) (n=10). Os grupos controle e de tratamento com TQ foram submetidos à isquemia da aorta abdominal durante 45 minutos, seguido por um período de 120 minutos de reperfusão. No grupo de tratamento com TQ, a timoquinona foi administrada 5 minutos antes da reperfusão, dose de 20 mg/kg através da via intraperitoneal. A capacidade total antioxidante, estado oxidativo total (TOS) e o índice de estresse oxidativo (OSI) no soro do sangue foram medidos, e a histopatologia dos tecidos do pulmão, rim e coração foram avaliados com microscopia de luz. Resultados: Estado oxidativo e índice de estresse oxidativo total em amostras de sangue foram estatisticamente mais altos no grupo controle em relação aos grupos sham e tratamento com TQ (P<0,001 para TOS e OSI). Escores de lesões no grupo controle foram estatisticamente mais altos em relação aos grupos sham e tratamento com TQ (P<0,001 para todas as comparações). Conclusão: A timoquinona administrada por via intraperitoneal foi eficaz na redução do estresse oxidativo e lesão histopatológica em modelo de rato de isquemia/reperfusão aguda da aorta abdominal. .
Subject(s)
Animals , Humans , Mice , Endothelial Cells/enzymology , Glucagon-Like Peptide 1/pharmacology , Microvessels/cytology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Endothelial Cells/drug effects , Gene Expression/drug effects , Lipoproteins, LDL/pharmacologyABSTRACT
Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression.
Subject(s)
Humans , Apoptosis/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Lipoproteins, LDL/pharmacology , /metabolism , Scavenger Receptors, Class E/metabolism , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Cell Cycle , Cells, Cultured , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Immunoblotting , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/physiology , /genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Vasculitis/physiopathology , Vasculitis/prevention & controlABSTRACT
In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.
Subject(s)
Humans , Interleukin-1beta/biosynthesis , Leukocytes, Mononuclear/metabolism , Lipoproteins, HDL/pharmacology , Serum Amyloid A Protein/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis , Culture Media, Serum-Free , Interleukin-1beta/drug effects , Leukocytes, Mononuclear/drug effects , Lipoproteins, LDL/pharmacology , Lipoproteins, VLDL/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Serum Amyloid A Protein/pharmacologyABSTRACT
PURPOSE: Stimulation of human aortic smooth muscle cells (hAoSMCs) with native low-density lipoprotein (nLDL) induced the production of interleukin-8 (IL-8) that is involved in the pathogenesis of cardiovascular diseases. However, the process of signal transduction of nLDL was currently uncharacterized. Therefore, the aim of this study was to investigate the signal transduction pathway of nLDL-dependent IL-8 production and the effect of IL-8 on hAoSMCs migration. MATERIALS AND METHODS: nLDL was prepared by ultracentrifugation with density-adjusted human serum of normocholesterolemia. In hAoSMCs, IL-8 secreted to medium was measured using ELISA assay, and Western blot analysis was performed to detect p38 MAPK activation as a key regulator of IL-8 production. nLDL-dependent H2O2 generation was determined by microscopic analysis using 2',7'-dichlorofluoroscein diacetate (DCF-DA). IL-8-induced migration of hAoSMCs was evaluated by counting the cell numbers moved to lower chamber using Transwell plates. RESULTS: nLDL-induced IL-8 production was completely blocked by preincubation of hAoSMCs with pertussis toxin (PTX), which inhibited nLDL-dependent p38 MAPK phosphorylation. PTX-sensitive G-protein coupled receptor was responsible for nLDL-dependent H2O2 generation that was abrogated with preincubation of the cells with of polyethylene glycol-conjugated catalase (PEG-Cat). Pretreatment of PEG-Cat prevented nLDL-induced p38 MAPK phosphorylation and IL-8 production, which was partly mimicked by treatment with exogenous H2O2. Finally, IL-8 increased hAoSMCs migration that was completely blocked by incubation with IL-8 neutralizing antibody. CONCLUSION: PTX-sensitive G-protein coupled receptor-dependent H2O2 generation by nLDL plays a critical role in IL-8 production in hAoSMC, and IL-8 may contribute to atherogenesis through increased migration of hAoSMCs.
Subject(s)
Humans , Cell Movement/physiology , Cells, Cultured , Hydrogen Peroxide/metabolism , Interleukin-8/biosynthesis , Lipoproteins, LDL/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Pertussis Toxin/pharmacology , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/physiology , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
O Metotrexato (MTX) é um fármaco utilizado como anti-inflamatório no tratamento da artrite reumatóide (AR). O risco de doença cardiovascular em pacientes com AR é menor quando tratados com MTX. Apesar dessa evidência, há poucos relatos da utilização de MTX para o tratamento da aterosclerose. Foi desenvolvida em nosso laboratório uma nanopartícula rica em colesterol (LDE), a qual é reconhecida pelos receptores da lipoproteína de baixa densidade (LDLr) após injeção na corrente sangüínea. A LDE concentra-se em células com hiperexpressão de LDLr, em processos proliferativos como a aterosclerose. Dessa maneira, a LDE pode ser utilizada como veículo para o direcionamento de fármacos contra essas células. A molécula de MTX foi latenciada e a modificação do fármaco aumentou a sua incorporação à LDE. A proposta desse estudo foi avaliar a eficácia de MTX associado à LDE (LDE-MTX) no tratamento da aterosclerose em coelhos além de investigar o efeito desse complexo na expressão de genes inflamatórios que participam do processo aterogênico. Para realização do estudo foram utilizados quatro grupos de 10 coelhos (raça New Zealand) cada, sendo que todos foram submetidos a uma dieta rica em colesterol por 8 semanas. Após as primeiras 4 semanas de dieta, os grupos foram tratados com LDE-MTX (grupo LDE-MTX), MTX comercial (grupo MTX comercial), LDE (grupo controle LDE) ou solução salina (grupo controle Salina), via endovenosa por 4 semanas. O grupo LDE-MTX não apresentou toxicidade ao longo do tratamento de acordo com os parâmetros utilizados, enquanto que o grupo MTX comercial apresentou uma queda acentuada de eritrócitos ao final do tratamento (p<0,001). A análise morfométrica macroscópica mostrou que os grupos LDE-MTX e MTX comercial reduziram as lesões ateroscleróticas quando comparados ao grupo controle Salina (66 e 76%, respectivamente) (p<0,001). Por microscopia, a camada íntima do arco aórtico e torácico foi reduzida nos grupos LDE-MTX (67% e 75%) e MTX comercial...
Methotrexate (MTX) is the most frequently used drug for rheumatoid arthritis treatment. The incidence of vascular disease in these patients is lower when treated with MTX. However, few studies have been done using MTX for atherosclerosis treatment. In previous studies, we showed that, after injection into blood stream, a cholesterol-rich nanoparticle (LDE) binds to low density lipoprotein receptors (LDLr) and concentrates in tissues with intense cell proliferation such as atherosclerosis. LDE may thus carry drugs directed against those tissues reducing the toxicity of chemotherapeutic agents. For stable association with LDE, a lipophylic methotrexate derivative was used. The purpose of this study was to test MTX associated to LDE (LDE-MTX) in rabbits with atherosclerosis and investigate their anti-inflammatory effects on inflammatory mediators. Atherosclerosis was induced in rabbits by cholesterol rich diet during eight weeks. After 4 weeks from the introduction of the atherogenic diet, 4 groups of 10 animals were treated with LDE-MTX (LDE-MTX group), commercial MTX (commercial MTX Group), LDE (LDE control group) and saline solulion (Saline control group). MTX dose in both preparations was 4mg/kg/week during 4 additional weeks. LDE-MTX group showed superior tolerability with pronouncedly lesser hematologic toxicity in comparison to commercial MTX (p< 0.001). By morphometric analysis, both LDE-MTX and commercial MTX treatment groups showed a pronounced reduction of lesion area compared with Saline control group (66-76% respectively) (p<0001). By microscopy, intimal width at aortic arch and thoracic segments was reduced by 67% and 75% in LDE-MTX group compared to Saline control group, respectively (p<0.05). Commercial MTX group showed a reduction of 81% and 92% at aortic arch and thoracic segments compared to Saline control group, respectively (p<0.05). Presence of macrophages in intima layer at aortic arch was reduced by 59% and 57% (p<0.001) in LDE-MTX and...
Subject(s)
Animals , Male , Adult , Rabbits , Atherosclerosis/drug therapy , Cholesterol , Methotrexate , Nanoparticles/therapeutic use , Lipoproteins, LDL/pharmacology , Data Interpretation, Statistical , Toxicity Tests/statistics & numerical dataABSTRACT
Oxidized LDL (OxLDL), a causal factor in atherosclerosis, induces the expression of heat shock proteins (Hsp) in a variety of cells. In this study, we investigated the role of CD36, an OxLDL receptor, and peroxisome proliferator-activated receptor gamma (PPAR gamma) in OxLDL-induced Hsp70 expression. Overexpression of dominant-negative forms of CD36 or knockdown of CD36 by siRNA transfection increased OxLDL-induced Hsp70 protein expression in human monocytic U937 cells, suggesting that CD36 signaling inhibits Hsp70 expression. Similar results were obtained by the inhibition of PPAR gamma activity or knockdown of PPAR gamma expression. In contrast, overexpression of CD36, which is induced by treatment of MCF-7 cells with troglitazone, decreased Hsp70 protein expression induced by OxLDL. Interestingly, activation of PPAR gamma through a synthetic ligand, ciglitazone or troglitazone, decreased the expression levels of Hsp70 protein in OxLDL-treated U937 cells. However, major changes in Hsp70 mRNA levels were not observed. Cycloheximide studies demonstrate that troglitazone attenuates Hsp70 translation but not Hsp70 protein stability. PPAR gamma siRNA transfection reversed the inhibitory effects of troglitazone on Hsp70 translation. These results suggest that CD36 signaling may inhibit stress- induced gene expression by suppressing translation via activation of PPAR gamma in monocytes. These findings reveal a new molecular basis for the anti-inflammatory effects of PPAR gamma.
Subject(s)
Humans , CD36 Antigens/physiology , Cell Line, Tumor , Chromans/pharmacology , Cycloheximide/pharmacology , HSP70 Heat-Shock Proteins/biosynthesis , Lipoproteins, LDL/pharmacology , Monocytes/drug effects , PPAR gamma/agonists , Protein Synthesis Inhibitors/pharmacology , Signal Transduction , Thiazolidinediones/pharmacologyABSTRACT
Lipoprotein plays a role in the host defense against bacterial infection, and its serum level has been demonstrated to be an important prognosis factor of survival. We have previously demonstrated that LDL directly inactivates the hemolytic activity of Vibrio vulnificus cytolysin (VVC) in vitro. The object of this study was therefore to examine whether the LDL-mediated inactivation of VVC leads to protection against lethal infection of V. vulnificus in vivo, using wild and VVC-deficient V. vulnificus strains. Unexpectedly, we found that LDL protects mouse lethality induced by VVC-deficient as well as wild V. vulnificus strain. We also demonstrated that LDL blocks V. vulnificus LPS-induced lethality in mice. These results suggest that LDL preferentially act on endotoxin rather than exotoxin in the protection against V. vulnificus-induced mice lethality.
Subject(s)
Animals , Female , Humans , Mice , Disease Models, Animal , Lipopolysaccharides/antagonists & inhibitors , Lipoproteins, LDL/pharmacology , Mice, Inbred ICR , Perforin/antagonists & inhibitors , Vibrio Infections/prevention & control , Vibrio vulnificus/drug effects , Virulence/drug effectsABSTRACT
OBJETIVO: Investigar os efeitos de baixas concentrações de LDL oxidada (LDL-ox) sobre a proliferação e a motilidade espontânea de células endoteliais de artérias coronárias humanas (CEACH) em cultura. MÉTODOS: Culturas de CEACH foram tratadas com baixas concentrações de LDL nativa (LDLn), isolada de plasma humano, e com LDL minimamente oxidada por diferentes métodos químicos, e os efeitos, comparados entre si. RESULTADOS: LDLn não apresentou efeitos deletérios sobre o endotélio em proliferação e na motilidade in vitro de CEACH, porém na mais alta concentração e por tempo mais prolongado inibiu a proliferação celular. As LDL-ox, quimicamente, pela espermina nonoato (ENO) e 3-morfolinosidnonimina (SIN-1) expressaram efeitos inibitórios significativos sobre a proliferação e a motilidade in vitro de CEACH proporcionais às maiores concentrações e graus de oxidação das LDL. CONCLUSÃO: LDL-ox apresenta efeito citotóxico, inibindo a proliferação e a motilidade espontânea de células endoteliais de artérias coronárias humanas em cultura, proporcionalmente à concentração e ao grau de oxidação da LDL, enquanto, LDL nativa é relativamente inócua.
Subject(s)
Humans , Endothelial Cells , Endothelium, Vascular/cytology , Lipoproteins, LDL/pharmacology , Cell Movement , Cell Proliferation , Coronary Vessels/cytology , Endothelial Cells/physiology , Coronary Artery Disease/physiopathology , Coronary Artery Disease/metabolism , Lipoproteins, LDL/physiology , Lipoproteins, LDL/metabolism , Cell Movement/physiologyABSTRACT
During chronic inflammatory response, mono- cytes/macrophages produce 92-kDa matrix metalloproteinase-9 (MMP-9), which may contribute to their extravasation, migration and tissue remodeling. Activation of peroxisome proliferator- activated factor receptor-gamma (PPAR-gamma) has been shown to inhibit MMP-9 activity. To evaluate whether ox-LDL, a PPAR-gamma activator, inhibits PMA-induced MMP-9 expression and activity, and if so, whether CD36 and PPAR-gamma are involved in this process, we investigated the effect of ox-LDL on MMP-9 expression and activity in PMA-activated human monocytic cell line U937. PMA-induced MMP-9 expression and activity were suppressed by the treatment with ox-LDL (50 micrigram/ml) or PPAR-gamma activators such as troglitazone (5 micrometer), ciglitazone (5 micrometer), and 15d- PGJ2 (1 micrometer) for 24 h. This ox-LDL or PPAR-gamma activator-mediated inhibition of micrometer P-9 activity was diminished by the pre-treatment of cells with a blocking antibody to CD36, or PGF2a (0.3 micrometer), which is a PPAR-gamma inhibitor, as well as overexpression of a dominant-negative form of CD36. Taken together, these results suggest that ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-gamma.
Subject(s)
Humans , Antibodies, Blocking/pharmacology , CD36 Antigens/immunology , Cells, Cultured , Chromans/pharmacology , Matrix Metalloproteinase 9/antagonists & inhibitors , Lipoproteins, LDL/pharmacology , Monocytes/drug effects , NF-kappa B/antagonists & inhibitors , PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , RNA, Messenger/analysis , Tetradecanoylphorbol Acetate/antagonists & inhibitors , Thiazolidinediones/pharmacology , Transcription, Genetic/drug effectsABSTRACT
To observe the effect of oxidized low density lipoprotein (OxLDL) on arterial endothelial cells apoptosis in vivo, we established a model in which Sprague-Dawley rats were given intraperitoneal and intravenous injection of unmodified LDL (8 mg/kg every day) via the tail vein. Seven days after the injection, the aortic endothelial cells specimens were prepared by an en face preparation of rat aorta. The apoptotic cells were identified and counted by in situ nick and labelling (TUNEL) method and light microscopy. The numbers of the apoptotic cells were 12.52 +/- 4.71/field in the intraperitoneal injection control group, 11.41 +/- 2.94/field in the intravenous injection control group, 22.98 +/- 8.01/field in the intraperitoneal injection LDL group and 103.8 +/- 11.5/field in the intravenous injection LDL group, respectively. The difference was significant between injection LDL group and control (P < 0.01), and the difference was also significant between two LDL injection groups (P < 0.01). These findings suggest that injection of LDL can induce apoptosis in arterial endothelial cells and the effect is especially significant with intravenous injection LDL. After injection, oxidative modification of LDL may occur in local arteries and causes injury to the endothelial cells.
Subject(s)
Aorta , Apoptosis/drug effects , Endothelium, Vascular/pathology , In Situ Nick-End Labeling , Injections, Intraperitoneal , Injections, Intravenous , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Oxidation-Reduction , Random Allocation , Rats, Sprague-DawleyABSTRACT
As modificaçöes oxidativas da lipoproteína de baixa densidade (LDL) säo consideradas um fator importante para o desenvolvimento da aterosclerose. Estas modificaçöes ocorrem in vivo, originando uma sub-traçäo denominada de LDL, eletronegativa (LDL-). O monitoramento clínico da LDL- é de extrema importância, mas estava sendo limitado pela dificuldade para detecçäo desta partícula em fluídos biológicos. Neste estudo desenvolveu-se novas metodologias para detectar a LDL- no plasma, utilizando-se um anticorpo monoclonal anti-LDL- humana (3D1036) e avaliar a resposta imune humoral relacionada à LDL-. A LDL- plasmática foi analisada através de um ELISA com detecçäo por quimioluminescência com boa sensibilidade (<1,0µg/mL) e precisäo (CVintra=6,44 ñ 1,15 porcento e CVinter=8,59 ñ 3,42 porcento). As análises dos auto-anticorpos anti-LDL- evidenciaram a presença de uma resposta imune específica para LDL- em humanos e em coelhos. A determinaçäo da LDL-, abre novas perspectivas para o monitoramento das modificaçöes oxidativas endógenas da LDL em estudos clínicos e de intervençäo que utilizam um elevado número de amostras. Além disto, a detecçäo dos auto-anticorpos anti-LDL- demonstra o potencial imunogênico desta partícula. Portanto, a detecçäo da LDL- e dos auto-anticorpos anti-LDL- abre novas perspectivas para o monitoramento dos fatores de risco para a aterosclerose vinculados às reaçöes oxidativas
Subject(s)
Humans , Rabbits , Antibodies, Monoclonal , Arteriosclerosis , Autoantibodies , Lipoproteins, LDL/pharmacology , Plasma , Enzyme-Linked Immunosorbent Assay , Biomarkers/bloodABSTRACT
Oxidized low-density lipoprotein (oxLDL) induces a wide range of cellular responses to produce atherosclerotic lesion, but key factors determining the response are not understood. In this study, purified LDL was oxidized with copper sulfate, and its physical properties and the related biological responses were investigated. The average hydrodynamic diameter of the lightly oxidized LDL was approximately 25 nm and its Rf value relative to nLDL on agarose gel was between 1.0 and 1.25. The diameter of the extensively oxidized LDL was over 30 nm, the Rf value was over 2.0. A 24 h-exposure of resting RAW264.7 macrophage cells to 100 microg/ml of the lightly oxidized LDL induced proliferation and macrophage activation whereas the extensively oxidized LDL induced cell death at the same concentration. In contrast, 200 microg/ml of oxLDL caused cell death regardless of oxidation degree. Short incubation (4-6 h) of the highly oxidized LDL (100 microg/ml) also resulted in cell proliferation. OxLDL-induced cell death showed mixed characteristics of apoptosis and/or necrosis depending on the strength and duration of the insult. These results suggest that cellular responses induced by oxLDL be dependent on the oxidation degree, the duration of exposure, and the concentration of oxLDL. Copyright 2000 Academic Press.
Subject(s)
Humans , Mice , Animals , Apolipoproteins B/metabolism , Apoptosis/physiology , Apoptosis/drug effects , Cell Death/physiology , Cell Division/physiology , Copper Sulfate/metabolism , Dose-Response Relationship, Drug , Lipid Peroxidation , Lipids/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Macrophages/pathology , Macrophages/drug effects , Macrophages/cytology , Necrosis , Oxidation-Reduction , Thiobarbituric Acid Reactive Substances/metabolismABSTRACT
We have previously shown that oxidized low density lipoproteins (Ox-LDL) at low concentrations (10 micrograms/ml) via activating a UDP-galactose: glucosylceramide, beta 1-->4 galactosyl-transferase (GalT-2) and producing lactosylceramide can stimulate the proliferation of aortic smooth muscle cells. In this report, we present evidence that Ox-LDL and LacCer, both can induce the expression of proliferating cell nuclear antigen (cyclin). Ox-LDL and LacCer both exerted a time-dependent stimulation of cyclin expression. Maximum increase (3-fold) in cyclin expression occurred between 30-120 min after Ox-LDL/LacCer addition and decreased thereafter. D-threo-l-phenyldecanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of GalT-2, inhibited cell proliferation as well as cyclin expression. This inhibitor also abrogated the Ox-LDL mediated expression of proliferating cell nuclear antigen (cyclin). In contrast, the L-enantiomer of PDMP (L-PDMP) stimulated the expression of cyclin and augmented the Ox-LDL mediated expression of cyclin in these cells. Maximum increase in the expression of cyclin occurred with 20 mumole of L-PDMP and 10 micrograms of Ox-LDL. This overall pattern of Ox-LDL and LacCer mediated regulation is similar to that of the c-fos protooncogenes reported previously by us. We hypothesize that the early induction of GalT-2 may serve as an "Immediate early gene" that plays a role in the signalling cascade by LacCer and involves the kinase c-fos induction and subsequent expression of cyclins. Thus, GalT-2 may play a role in the proliferative response in aortic smooth muscle cells by Ox-LDL.
Subject(s)
Animals , Antigens, CD , Cell Division/drug effects , Enzyme Inhibitors/pharmacology , Galactosyltransferases/antagonists & inhibitors , Humans , Lactosylceramides/pharmacology , Lipoproteins, LDL/pharmacology , Morpholines/pharmacology , Muscle, Smooth, Vascular/cytology , Oxidation-Reduction , Proliferating Cell Nuclear Antigen/metabolism , RabbitsABSTRACT
The synthesis and secretion of apoB, the major protein component of very low density lipoprotein (VLDL) and low density lipoprotein (LDL), were studied using rat hepatocytes maintained in primary culture. Supplementation of hepatocytes with rat serum VLDL and LDL increased the production of apoB while delipidated lipoproteins had no significant effect, suggesting a role for lipids in the production of apoB. Addition of cholesterol to the culture medium also increased the production of apoB in a concentration-dependent manner. Pulse labelling followed by chase in presence of cholesterol indicated enhancement in apoB secretion. Mevinolin which inhibits cholesterol synthesis significantly reduced the secretion of apoB. The presence of phosphatidylcholine and phosphatidylethanolamine in the culture medium also increased the secretion of apoB into the medium. These data suggest that availability of lipids, particularly cholesterol, is an important determinant of apoB synthesis and secretion as VLDL.
Subject(s)
Animals , Apolipoproteins B/biosynthesis , Cells, Cultured , Cholesterol/pharmacology , Kinetics , Lipoproteins, LDL/pharmacology , Lipoproteins, VLDL/biosynthesis , Liver/drug effects , Phospholipids/pharmacology , Rats , Rats, Sprague-DawleyABSTRACT
Human serum lipoproteins were purified by ultracentrifuging and their concentrations adjusted as required to be within the normal male/female serum range for all assays. The activities in inhibition of hemagglutination (HAI) for Japanese encephalitis virus were--low density lipoprotein (LDL) greater than very low density lipoprotein (VLDL) greater than high density lipoprotein (HDL). Heating (56 degrees C/30 minutes) caused the LDL titer to fall and freeze-thawing (20 degrees C/room temperature) the VLDL titer to rise slightly, possibly as a result of alteration in lipoprotein structure. The additon of lipoprotein depleted serum appeared to dampen these effects and there was no nett change in titer when it was added to a lipoprotein mixture. Similarly, unfractionated normal serum showed no significant change in titer after these treatments. The lipoproteins lacked significant virus neutralizing (VN) activity and this remained so in spite of fluctuations in HAI titer after heating and freeze-thawing.