Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 758
Filter
1.
Article in Chinese | WPRIM | ID: wpr-879096

ABSTRACT

Prunella vulgaris(PV) is an edible and traditional medicinal herb which has a wide range application in fighting inflammation and oxidative stress, and protecting liver. Now it has been used to treat various types of liver diseases and has significant clinical efficacy. This study aims to investigate the effects of PV on ethanol-induced oxidative stress injury in rats and its metabolic mechanism. The rats were divided into control group, model group, PV group, and VC group. The liver protection of PV was identified by measuring pharmacological indexes such as antioxidant and anti-inflammatory activity. The metabolic mechanism of long-term ethanol exposure and the metabolic regulation mechanism of PV treatment were studied by LS-MS metabonomics. The pharmacological investigation indicated that ethanol could significantly decrease the contents of SOD, GSH-Px, CAT and other antioxidant enzymes in liver and increase the content of MDA. At the same time, PV could significantly reduce the contents of inflammatory factors(TNF-α, IL-6 and IL-1β) and liver function markers(ALT, AST, ALP) in serum. What's more, long-term ethanol exposure could significantly cause liver injury, while PV could protect liver. Metabolomics based on multiple statistical analyses showed that long-term ethanol exposure could cause significant metabolic disorder, and fatty acids, phospholipids, carnitines and sterols were the main biomarkers. Meanwhile, pathway analysis and enrichment analysis showed that the β oxidation of branched fatty acids was the main influencing pathway. Also, PV could improve metabolic disorder of liver injury induced by ethanol, and amino acids, fatty acids, and phospholi-pids were the main biomarkers in PV treatment. Metabolic pathway analysis showed that PV mainly regulated metabolic disorder of ethanol-induced liver injury through phenylalanine, tyrosine and tryptophan biosynthetic pathways. This study could provide a new perspective on the hepatoprotective effect of natural medicines, such as PV.


Subject(s)
Animals , Antioxidants/metabolism , Ethanol/toxicity , Liver/metabolism , Metabolomics , Oxidative Stress , Prunella , Rats
2.
Article in Chinese | WPRIM | ID: wpr-879094

ABSTRACT

This article aims to investigate the ameliorative effect of Linderae Radix ethanol extract on hyperlipidemia rats induced by high-fat diet and to explore its possible mechanism from the perspective of reverse cholesterol transport(RCT). SD rats were divided into normal group, model group, atorvastatin group, Linderae Radix ethanol extract(LREE) of high, medium, low dose groups. Except for the normal group, the other groups were fed with a high-fat diet to establish hyperlipidemia rat models; the normal group and the model group were given pure water, while each administration group was given corresponding drugs by gavage once a day for five weeks. Serum total cholesterol(TC), triglyceride(TG), high density lipoprotein-cholesterol(HDL-c), low density lipoprotein-cholesterol(LDL-c), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) levels were measured by automatic blood biochemistry analyzer; the contents of TC, TG, total bile acid(TBA) in liver and TC and TBA in feces of rats were detected by enzyme colorimetry. HE staining was used to observe the liver tissue lesions; immunohistochemistry was used to detect the expression of ATP-binding cassette G8(ABCG8) in small intestine; Western blot and immunohistochemistry were used to detect the expression of peroxisome proliferator-activated receptor gamma/aerfa(PPARγ/α), liver X receptor-α(LXRα), ATP-binding cassette A1(ABCA1) pathway protein and scavenger receptor class B type Ⅰ(SR-BⅠ) in liver. The results showed that LREE could effectively reduce serum and liver TC, TG levels, serum LDL-c levels and AST activity, and increase HDL-c levels, but did not significant improve ALT activity and liver index; HE staining results showed that LREE could reduce liver lipid deposition and inflammatory cell infiltration. In addition, LREE also increased the contents of fecal TC and TBA, and up-regulated the protein expressions of ABCG8 in small intestine and PPARγ/α, SR-BⅠ, LXRα, and ABCA1 in liver. LREE served as a positive role on hyperlipidemia model rats induced by high-fat diet, which might be related to the regulation of RCT, the promotion of the conversion of cholesterol to the liver and bile acids, and the intestinal excretion of cholesterol and bile acids. RCT regulation might be a potential mechanism of LREE against hyperlipidemia.


Subject(s)
Animals , Biological Transport , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Hyperlipidemias/metabolism , Liver/metabolism , Rats , Rats, Sprague-Dawley , Triglycerides/metabolism
3.
Article in Chinese | WPRIM | ID: wpr-879086

ABSTRACT

Methotrexate(MTX) is a commonly used antimetabolite, which can be used in the treatment of a variety of diseases. However, hepatotoxicity in the use of MTX severely limits its clinical use. Therefore, how to prevent and treat hepatotoxicity of MTX has become an urgent clinical problem. This paper summarizes and analyzes relevant literatures on the prevention and treatment of hepa-totoxicity caused by MTX with traditional Chinese medicines and natural medicines in recent years. MTX-induced hepatotoxicity mechanisms include folate pathway, oxidative stress damage and adenosine pathway, of which oxidative stress theory is the main research direction. A total of 14 kinds of traditional Chinese medicine and natural medicine extracts including white peony root, and 21 kinds of natural monomer compounds, including berberine, play an anti-MTX-induced hepatotoxic effect by resisting oxidative stress, inhibiting inflammation and regulating signal pathways. According to current studies on the prevention and treatment of hepatotoxicity induced by MTX with traditional Chinese medicines and natural medicines, there are insufficiencies, such as partial and superficial mechanism studies, inadequate combination of experimental research and clinical practice, non-standard experimental design and lack of application of advanced technologies and methods. This paper systematically reviewed the effects and mechanisms of traditional Chinese medicines and natural medicines against hepatotoxicity induced by MTX and defined current studies and deficiencies, in the expectation of proposing new study strategies and directions and providing scientific basis for rational clinical use of MTX and development of new drugs against MTX hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Drug-Related Side Effects and Adverse Reactions , Humans , Liver/metabolism , Medicine, Chinese Traditional , Methotrexate/toxicity , Oxidative Stress
4.
Article in Chinese | WPRIM | ID: wpr-878541

ABSTRACT

In recent years, long non-coding RNA (lncRNA) has been proved to be involved in the regulation of biological processes at various levels, attracting research interests in life science. LncRNA possesses the unique capability and exert discrete effects on transcription, translation and post-translational modification of the target genes through interacting with DNA, RNA and protein. Current studies have revealed that lncRNA plays an important role in hepatic metabolism via diverse pathways. This review focuses on the function of lncRNA and its relationship with hepatic energy metabolism and the correlated diseases, to elucidate the underlying mechanisms and prospects of lncRNA researches.


Subject(s)
Glucose/metabolism , Lipid Metabolism/genetics , Liver/metabolism , RNA, Long Noncoding/genetics
5.
Article in English | WPRIM | ID: wpr-878371

ABSTRACT

Objective@#This study aimed to investigate the effects of @*Methods@#In this study, 0.1% DMG was supplemented in 20% casein diets that were either folate-sufficient (20C) or folate-deficient (20CFD). Blood and liver of rats were subjected to assays of Hcy and its metabolites. Hcy and its related metabolite concentrations were determined using a liquid chromatographic system.@*Results@#Folate deprivation significantly increased pHcy concentration in rats fed 20C diet (from 14.19 ± 0.39 μmol/L to 28.49 ± 0.50 μmol/L; @*Conclusion@#DMG supplementation exhibited hypohomocysteinemic effects under folate-sufficient conditions. By contrast, the combination of folate deficiency and DMG supplementation has deleterious effect on pHcy concentration.


Subject(s)
Animals , Biomarkers/metabolism , Chromatography, Liquid , Diet , Dietary Supplements , Folic Acid Deficiency/metabolism , Homocysteine/metabolism , Liver/metabolism , Male , Random Allocation , Rats , Rats, Wistar , Sarcosine/metabolism
6.
Braz. j. med. biol. res ; 54(8): e10782, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249333

ABSTRACT

We explored the cascade effects of a high fat-carbohydrate diet (HFCD) and pioglitazone (an anti-diabetic therapy used to treat type 2 diabetes mellitus (T2DM)) on lipid profiles, oxidative stress/antioxidant, insulin, and inflammatory biomarkers in a rat model of insulin resistance. Sixty albino rats (80-90 g) were randomly divided into three dietary groups; 1) standard diet; 2) HFCD diet for 12 weeks to induce an in vivo model of insulin resistance; and 3) HFCD diet plus pioglitazone. Blood and tissue samples were taken to assess hepatic function, lipid profiles, oxidative biomarkers, malondialdehyde (MDA) levels, antioxidant defense biomarkers, including reduced glutathione (GSH), superoxide dismutase (SOD), and the inflammatory markers interleukin-6 (IL-6) and tumor necrotic factor (TNF-α). HFCD-fed rats had significantly (P≤0.05) increased serum triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein (LDL), alanine transaminase (ALT), and bilirubin levels, but decreased high-density lipoprotein (HDL) levels compared with the normal group. Moreover, serum leptin, resistin, TNF-α, and IL-6 levels were increased significantly in HFCD animals compared with controls. Similarly, HFCD-induced insulin resistance caused antioxidant and cytokine disturbances, which are important therapy targets for pioglitazone. Importantly, administration of this drug ameliorated these changes, normalized leptin and resistin and inflammatory markers by reducing TNF-α levels. Metabolic cascades of elevated lipid profiles, oxidative stress, insulin, and inflammatory biomarkers are implicated in insulin resistance progression. HFCD induced metabolic cascades comprising hypertriglyceridemia, hyperglycemia, insulin resistance, obesity-associated hormones, and inflammatory biomarkers may be alleviated using pioglitazone.


Subject(s)
Animals , Rats , Insulin Resistance , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Carbohydrates/pharmacology , Oxidative Stress , Diet, High-Fat , Pioglitazone/metabolism , Pioglitazone/pharmacology , Insulin/metabolism , Liver/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology
7.
Int. j. morphol ; 38(6): 1767-1778, Dec. 2020. tab, graf
Article in English | LILACS | ID: biblio-1134510

ABSTRACT

SUMMARY: Acrylamide (ACR) is a cytotoxic and carcinogenic material. It is a product of a Maillard reaction during the cooking of many types of fried fast food, e.g. potato chip fries, and chicken nuggets. ACR has a severe toxic effect on different body organs. This study investigates the hepatotoxic effect of ACR, and the protective effect of ascorbic acid and silymarin. For this purpose, forty adult, male, albino rats were divided into four groups and received the following treatments for fourteen days: Group I: (the control) normal saline; Group II: ACR only; Group III: ACR and ascorbic acid; and Group IV: ACR and silymarin. Under a light microscope, the liver from rats treated with ACR only presented disturbed liver architecture, degenerated hepatocytes, reduced glycogen contents, congested central vein, and increased collagen fibres with areas of fibrosis. Immunohistochemical examination revealed an increased mean number of CD68-, and α-SMA-positive cells. This indicates the presence of large numbers of stellate macrophages (Kupffer cells) and Hepatic stellate cells (HSCs). The combination of ACR with either ascorbic acid or silymarin resulted in less hepatic degeneration, less fibrosis and fewer CD68 and α-SMA positive cells compared to the ACR only group. In conclusion, treatment with silymarin or ascorbic acid along with ACR appears to alleviate ACR-induced hepatotoxicity with more protection in silymarin treated rats.


RESUMEN: La acrilamida (ACR) es un material citotóxico y cancerígeno. Es producto de la reacción de Maillard durante la cocción de muchos tipos de comida rápida y frita, por ejemplo: papas fritas y nuggets de pollo. ACR tiene un efecto tóxico severo en diferentes órganos del cuerpo. Este estudio investigó el efecto hepatotóxico del ACR y el efecto protector del ácido ascórbico y la silimarina. Con este fin, cuarenta ratas albinas machos adultas se dividieron en cuatro grupos y recibieron los siguientes tratamientos durante catorce días: Grupo I (control), solución salina normal; Grupo II, solo ACR; Grupo III, ACR y ácido ascórbico; y Grupo IV, ACR y silimarina. Bajo microscopio óptico, el hígado de ratas tratadas con ACR solo presentó alteración de su arquitectura, entre ellos hepatocitos degenerados, contenido reducido de glucógeno, vena central congestionada y aumento de fibras de colágeno con áreas de fibrosis. El examen inmunohistoquímico reveló un aumento del número medio de células CD68 y α-SMA positivas. Esto indica la presencia de un gran número de macrófagos estrellados (células de Kupffer) y células estrelladas hepáticas (HSC). La combinación de ACR con ácido ascórbico o silimarina resultó en menos degeneración hepática, menos fibrosis y menos células positivas para CD68 y α-SMA en comparación con el grupo de ACR solo. En conclusión, el tratamiento con silimarina o ácido ascórbico junto con ACR parece aliviar la hepatotoxicidad inducida por ACR.


Subject(s)
Animals , Male , Rats , Ascorbic Acid/pharmacology , Silymarin/pharmacology , Acrylamide/toxicity , Liver/drug effects , Immunohistochemistry , Antigens, CD/analysis , Actins/analysis , Hepatocytes , Hepatic Stellate Cells , Liver/metabolism , Liver/pathology
8.
Acta Physiologica Sinica ; (6): 804-816, 2020.
Article in Chinese | WPRIM | ID: wpr-878228

ABSTRACT

Disturbance of the energy balance, when the energy intake exceeds its expenditure, is a major risk factor for the development of metabolic syndrome (MS). The peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) functions as a key regulator of energy metabolism and has become a hotspot in current researches. PGC-1α sensitively responds to the environmental stimuli and nutrient signals, and further selectively binds to different transcription factors to regulate various physiological processes, including glucose metabolism, lipid metabolism, and circadian clock. In this review, we described the gene and protein structure of PGC-1α, and reviewed its tissue-specific function in the regulation of energy homeostasis in various mammalian metabolic organs, including liver, skeletal muscle and heart, etc. At the meanwhile, we summarized the application of potential small molecule compounds targeting PGC-1α in the treatment of metabolic diseases. This review will provide theoretical basis and potential drug targets for the treatment of metabolic diseases.


Subject(s)
Animals , Energy Metabolism , Homeostasis , Lipid Metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/metabolism
9.
Braz. j. med. biol. res ; 53(6): e9031, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132523

ABSTRACT

Malnutrition is still considered endemic in many developing countries. Malnutrition-enteric infections may cause lasting deleterious effects on lipid metabolism, especially in children living in poor settings. The regional basic diet (RBD), produced to mimic the Brazilian northeastern dietary characteristics (rich in carbohydrate and low in protein) has been used in experimental malnutrition models, but few studies have explored the effect of chronic RBD on liver function, a central organ involved in cholesterol metabolism. This study aimed to investigate whether RBD leads to liver inflammatory changes and altered reverse cholesterol metabolism in C57BL6/J mice compared to the control group, receiving a standard chow diet. To evaluate liver inflammation, ionized calcium-binding adapter protein-1 (IBA-1) positive cell counting, interleukin (IL)-1β immunohistochemistry, and tumor necrosis factor (TNF)-α and IL-10 transcription levels were analyzed. In addition, we assessed reverse cholesterol transport by measuring liver apolipoprotein (Apo)E, ApoA-I, and lecithin-cholesterol acyltransferase (LCAT) by RT-PCR. Furthermore, serum alanine aminotransferase (ALT) was measured to assess liver function. RBD markedly impaired body weight gain compared with the control group (P<0.05). Higher hepatic TNF-α (P<0.0001) and IL-10 (P=0.001) mRNA levels were found in RBD-challenged mice, although without detectable non-alcoholic fatty liver disease. Marked IBA-1 immunolabeling and increased number of positive-IBA-1 cells were found in the undernourished group. No statistical difference in serum ALT was found. There was also a significant increase in ApoA mRNA expression in the undernourished group, but not ApoE and LCAT, compared with the control. Altogether our findings suggested that chronic RBD-induced malnutrition leads to liver inflammation with increased ApoA-I activity.


Subject(s)
Humans , Animals , Male , Rabbits , Rats , Apolipoprotein A-I/blood , Malnutrition/metabolism , Diet/adverse effects , Inflammation/metabolism , Brazil , Chronic Disease , Apolipoprotein A-I/metabolism , Malnutrition/pathology , Malnutrition/blood , Inflammation/pathology , Inflammation/blood , Liver/metabolism , Mice, Inbred C57BL
10.
Einstein (Säo Paulo) ; 18: eAO4876, 2020. tab, graf
Article in English | LILACS | ID: biblio-1039734

ABSTRACT

ABSTRACT Objective To investigate the effects of sericin extracted from silkworm Bombyx mori cocoon on morphophysiological parameters in mice with obesity induced by high-fat diet. Methods Male C57Bl6 mice aged 9 weeks were allocated to one of two groups - Control and Obese, and fed a standard or high-fat diet for 10 weeks, respectively. Mice were then further subdivided into four groups with seven mice each, as follows: Control, Control-Sericin, Obese, and Obese-Sericin. The standard or high fat diet was given for 4 more weeks; sericin (1,000mg/kg body weight) was given orally to mice in the Control-Sericin and Obese-Sericin Groups during this period. Weight gain, food intake, fecal weight, fecal lipid content, gut motility and glucose tolerance were monitored. At the end of experimental period, plasma was collected for biochemical analysis. Samples of white adipose tissue, liver and jejunum were collected and processed for light microscopy analysis; liver fragments were used for lipid content determination. Results Obese mice experienced significantly greater weight gain and fat accumulation and had higher total cholesterol and glucose levels compared to controls. Retroperitoneal and periepididymal adipocyte hypertrophy, development of hepatic steatosis, increased cholesterol and triglyceride levels and morphometric changes in the jejunal wall were observed. Conclusion Physiological changes induced by obesity were not fully reverted by sericin; however, sericin treatment restored jejunal morphometry and increased lipid excretion in feces in obese mice, suggesting potential anti-obesity effects.


RESUMO Objetivo Investigar os efeitos da sericina extraída de casulos de Bombyx mori na morfofisiologia de camundongos com obesidade induzida por dieta hiperlipídica. Métodos Camundongos machos C57Bl6, com 9 semanas de idade, foram distribuídos em Grupos Controle e Obeso, que receberam ração padrão para roedores ou dieta hiperlipídica por 10 semanas, respectivamente. Posteriormente, os animais foram redistribuídos em quatro grupos, com sete animais cada: Controle, Controle-Sericina, Obeso e Obeso-Sericina. Os animais permaneceram recebendo ração padrão ou hiperlipídica por 4 semanas, período no qual a sericina foi administrada oralmente na dose de 1.000mg/kg de massa corporal aos Grupos Controle-Sericina e Obeso-Sericina. Parâmetros fisiológicos, como ganho de peso, consumo alimentar, peso das fezes em análise de lipídios fecais, motilidade intestinal e tolerância à glicose foram monitorados. Ao término do experimento, o plasma foi coletado para dosagens bioquímicas e fragmentos de tecido adiposo branco; fígado e jejuno foram processados para análises histológicas, e amostras hepáticas foram usadas para determinação lipídica. Resultados Camundongos obesos apresentaram ganho de peso e acúmulo de gordura significativamente maior que os controles, aumento do colesterol total e glicemia. Houve hipertrofia dos adipócitos retroperitoneais e periepididimais, instalação de esteatose e aumento do colesterol e triglicerídeos hepáticos, bem como alteração morfométrica da parede jejunal. Conclusão O tratamento com sericina não reverteu todas as alterações fisiológicas promovidas pela obesidade, mas restaurou a morfometria jejunal e aumentou a quantidade de lipídios eliminados nas fezes dos camundongos obesos, apresentando-se como potencial tratamento para a obesidade.


Subject(s)
Animals , Male , Anti-Obesity Agents/therapeutic use , Sericins/therapeutic use , Obesity/drug therapy , Time Factors , Triglycerides/analysis , Body Weight/drug effects , Gastrointestinal Transit/drug effects , Weight Gain/drug effects , Adipose Tissue/pathology , Cholesterol/analysis , Reproducibility of Results , Treatment Outcome , Anti-Obesity Agents/pharmacology , Sericins/pharmacology , Eating/drug effects , Fatty Liver/pathology , Diet, High-Fat/adverse effects , Glucose Tolerance Test , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/physiopathology
11.
Arq. bras. cardiol ; 113(5): 896-902, Nov. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055036

ABSTRACT

Abstract Background: In view of the increased global prevalence of cardiovascular and hepatic diseases, the diet lipid content and its relationship with the accumulation of fat in hepatocytes have been investigated as key factors in preventing these diseases. Objective: To evaluate the metabolic effects of a high-lard diet supplemented or not with cholesterol on a modified dyslipidemia model. Methods: We divided 24 adult male Wistar rats into three groups: standard diet (STD - 4% lipids), high-lard diet (HLD - 21% lard), and high-lard and high-cholesterol diet (HL/HCD - 20% lard, 1% cholesterol, 0.1% cholic acid). After six weeks of treatment, blood and liver were collected for biochemical (serum lipid profile and liver enzymes) and morphological analyses. Statistical analysis included one-way analysis of variance (ANOVA), followed by Tukey test for mean comparisons, and a 5% probability was considered statistically significant. Results: Animals fed HL/HCD showed increased total cholesterol, triacylglycerol, LDL-c, non-HDL-c, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) serum levels compared to those fed STD. In addition, the HL/HCD animals presented higher relative liver weight, with moderate macrovesicular hepatic steatosis and inflammatory infiltrate. Conclusion: A high-fat diet with lard (20%) and cholesterol (1%) triggered dyslipidemia with severe liver damage in rats in a shorter experimental time than the previously reported models. The high-lard diet without supplementation of cholesterol led to body weight gain, but not to dyslipidemia.


Resumo Fundamento: Tendo em vista o aumento da prevalência global de doenças cardiovasculares e hepáticas, o conteúdo lipídico da dieta e sua relação com o acúmulo de gordura nos hepatócitos têm sido investigados como fatores-chave na prevenção dessas doenças. Objetivo: Avaliar os efeitos metabólicos de uma dieta rica em banha suplementada com colesterol ou não, em um modelo modificado de dislipidemia. Métodos: Foram divididos 24 ratos Wistar machos adultos em três grupos: dieta padrão (DP - 4% de lipídios), dieta rica em banha (DRB - 21% de banha) e dieta rica em banha e colesterol (DRB/RC - 20% de banha, 1% de colesterol e 0,1% de ácido cólico). Após seis semanas de tratamento, o sangue e o fígado foram coletados para análises bioquímicas (perfil lipídico sérico e enzimas hepáticas) e morfológicas. A análise estatística incluiu análise de variância unidirecional (ANOVA), seguida do teste de Tukey para comparações de médias. Uma probabilidade de 5% foi considerada estatisticamente significativa. Resultados: Animais alimentados com DRB/RC apresentaram um aumento nos níveis séricos de colesterol total, triacilglicerol, LDL-c, não-HDL-c, alanina aminotransferase (ALT) e aspartato aminotransferase (AST) em comparação com aqueles alimentados com DP. Além disso, os animais tratados com DRB/RC apresentaram um peso relativo do fígado maior, com esteatose hepática macrovesicular moderada e infiltrado inflamatório. Conclusão: Uma dieta rica em gordura com banha (20%) e colesterol (1%) desencadeou dislipidemia com danos graves ao fígado em ratos em um tempo experimental menor do que os modelos previamente relatados. A dieta rica em banha sem suplementação de colesterol levou ao ganho de peso corporal, mas não à dislipidemia.


Subject(s)
Animals , Male , Dyslipidemias/chemically induced , Diet, High-Fat/adverse effects , Metabolic Diseases/etiology , Organ Size , Aspartate Aminotransferases/blood , Triglycerides/blood , Body Weight , Dietary Fats/adverse effects , Cholesterol/adverse effects , Cholesterol/blood , Rats, Wistar , Alanine Transaminase/blood , Disease Models, Animal , Dyslipidemias/metabolism , Dyslipidemias/blood , Fatty Liver/pathology , Inflammation , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Liver/metabolism , Liver/pathology , Metabolic Diseases/metabolism , Metabolic Diseases/blood
12.
Int. j. morphol ; 37(2): 706-711, June 2019. graf
Article in English | LILACS | ID: biblio-1002281

ABSTRACT

A serous membrane covering the liver and the hepatic parenchyma, consists of hepatocytes, arteries, veins, hepatic sinusoids and biliary ductuli. There are erythrocytes, thrombocytes, melanin particles and Kupffer cell in the hepatic sinusoids and the blood vessels. The gall bladder wall consists of a mucous layer a muscle layer and a serous layer. The bottom of the epithelium abounds with round or oval secretory. In liver, immunohistochemistry results show that AQP1 have intense reaction in hepatic lobule, Kupffer cells (Macrophagocytus stellatus), hepatocytes, portal tract, blood islands, vein and artery, but almost no reaction of AQP2 was detected. In gallbladder, mucous epithelium, endothelial cells from vein and artery all have strong AQP1 expression, AQP2 showed minor diffused positive reaction in gallbladder, which suggesting that AQP1 may have the main role in the absorption and transportation of fluid in hepatobiliary system of Qinghai Lizard.


Una membrana serosa cubre el hígado y el parénquima hepático el cual está formado por hepatocitos, arterias, venas, sinusoides hepáticos y conductos biliares. Se encuentran eritrocitos, trombocitos, partículas de melanina y células de Kupffer en los sinusoides hepáticos y en los vasos sanguíneos. La pared de la vesícula biliar presenta tres capas: mucosa, muscular y serosa. En el hígado, la inmunohistoquímica mostró que AQP1 tiene una reacción intensa en el lóbulo hepático, células de Kupffer, hepatocitos, tracto portal e islotes sanguíneos. En venas y arterias, no se detectó reacción alguna de AQP2. En la vesícula biliar, el epitelio mucoso, las células endoteliales venosas y arteriales tuvieron una importante expresión de AQP1, sin embargo, AQP2 mostró una reacción positiva difusa menor, lo que sugiere que la AQP1 podría tener una función principal en la absorción y transporte de líquido en el sistema hepatobiliar del Lagarto Qinghai.


Subject(s)
Animals , Aquaporins/metabolism , Gallbladder/metabolism , Liver/metabolism , Lizards , Immunohistochemistry , Aquaporin 1/metabolism , Aquaporin 2/metabolism , Gallbladder/ultrastructure , Liver/ultrastructure
13.
Braz. j. med. biol. res ; 52(2): e7637, 2019. tab, graf
Article in English | LILACS | ID: biblio-984028

ABSTRACT

Non-diabetic individuals use hormones like insulin to improve muscle strength and performance. However, as insulin also leads the liver and the adipose tissue to an anabolic state, the purpose of this study was to investigate the effects of insulin on liver metabolism in trained non-diabetic Swiss mice. The mice were divided into four groups: sedentary treated with saline (SS) or insulin (SI) and trained treated with saline (TS) or insulin (TI). Training was made in a vertical stair, at 90% of the maximum load, three times per week. Insulin (0.3 U/kg body weight) or saline were given intraperitoneally five times per week. After eight weeks, tissue and blood were collected and in situ liver perfusion with glycerol+lactate or alanine+glutamine (4 mM each) was carried out. The trained animals increased their muscle strength (+100%) and decreased body weight gain (-11%), subcutaneous fat (-42%), mesenteric fat (-45%), and peritoneal adipocyte size (-33%) compared with the sedentary groups. Insulin prevented the adipose effects of training (TI). The gastrocnemius muscle had greater density of muscle fibers (+60%) and less connective tissue in the trained groups. Liver glycogen was increased by insulin (SI +40% and TI +117%), as well as liver basal glucose release (TI +40%). Lactate and pyruvate release were reduced to a half by training. The greater gluconeogenesis from alanine+glutamine induced by training (TS +50%) was reversed by insulin (TI). Insulin administration had no additional effect on muscle strength and reversed some of the lipolytic and gluconeogenic effects of the resistance training. Therefore, insulin administration does not complement training in improving liver glucose metabolism.


Subject(s)
Animals , Male , Rabbits , Physical Conditioning, Animal/physiology , Muscle Strength , Glucose/administration & dosage , Glucose/adverse effects , Liver/drug effects , Exercise Test , Resistance Training , Glucose/metabolism , Liver/metabolism
14.
Braz. j. med. biol. res ; 52(1): e7715, 2019. tab, graf
Article in English | LILACS | ID: biblio-974276

ABSTRACT

Photodynamic therapy, by reducing pain and inflammation and promoting the proliferation of healthy cells, can be used to treat recurrent lesions, such as diabetic foot ulcers. Studies using the photosensitizer phthalocyanine, together with the nanostructured copolymeric matrix of Pluronic® and Carbopol® for the treatment of diabetic foot ulcers and leishmaniosis lesions, are showing promising outcomes. Despite their topical or subcutaneous administration, these molecules are absorbed and their systemic effects are unknown. Therefore, we investigated the effect of the subcutaneous administration of the hydroxy-aluminum phthalocyanine hydrogel without illumination on systemic parameters, markers of liver injury, and liver energy metabolism in type 1 diabetic Swiss mice. Both the hydrogel and the different doses of phthalocyanine changed the levels of injury markers and the liver glucose release, sometimes aggravating the alterations caused by the diabetic condition itself. However, the dose of 2.23 µg/mL caused less marked plasmatic and metabolic changes and did not change glucose tolerance or insulin sensitivity of the diabetic mice. These results are indicative that the use of hydroxy-aluminum phthalocyanine hydrogel for the treatment of cutaneous ulcers in diabetic patients is systemically safe.


Subject(s)
Animals , Male , Rabbits , Diabetes Mellitus, Experimental , Aluminum Hydroxide/pharmacology , Glucose/analysis , Indoles/pharmacology , Liver/drug effects , Liver/metabolism , Insulin Resistance , Biomarkers/analysis , Nanoparticles
15.
Braz. j. med. biol. res ; 52(1): e8150, 2019. tab, graf
Article in English | LILACS | ID: biblio-974270

ABSTRACT

High caloric intake promotes chronic inflammation, insulin resistance, and chronic diseases such as type-2 diabetes, which may be prevented by food restriction (FR). The effect of FR on expression of pro-inflammatory and anti-inflammatory genes in adipose tissue, liver, muscle, and brain was compared. Male Swiss mice were submitted to FR (FR group) or had free access to food (control group) during 56 days. The liver, gastrocnemius muscle, brain, and epididymal white adipose tissue (WAT) were collected for analysis of gene expressions. FR attenuated inflammation in the liver, brain, and gastrocnemius muscle but did not markedly change inflammatory gene expression in epididymal WAT. We concluded that adipose tissue was less responsive to FR in terms of gene expression of pro-inflammatory and anti-inflammatory genes.


Subject(s)
Animals , Male , Rabbits , Brain/metabolism , Adipose Tissue/metabolism , Muscle, Skeletal/metabolism , Diet, High-Fat , Liver/metabolism , Triglycerides/blood , Blood Glucose/analysis , Gene Expression , Cholesterol/blood
16.
Acta cir. bras ; 33(12): 1043-1051, Dec. 2018. graf
Article in English | LILACS | ID: biblio-973484

ABSTRACT

Abstract Purpose: To analyze the effect of methylene blue (MB) therapy during the liver ischemia-reperfusion injury (I/R) process. Methods: Thirty-five male Wistar rats were used, (70%) submitted to partial ischemia (IR) or not (NIR) (30%) were obtained from the same animal. These animals were divided into six groups: 1) Sham (SH), 2) Sham with MB (SH-MB); 3) I/R, submitted to 60 minutes of partial ischemia and 15 minutes of reperfusion; 4) NI/R, without I/R obtained from the same animal of group I/R; 5) I/R-MB submitted to I/R and MB and 6) NI/R-MB, without I/R. Mitochondrial function was evaluated. Osmotic swelling of mitochondria as well as the determination of malondialdehyde (MDA) was evaluated. Serum (ALT/AST) dosages were also performed. MB was used at the concentration of 15mg/kg, 15 minutes before hepatic reperfusion. Statistical analysis was done by the Mann Whitney test at 5%. Results: State 3 shows inhibition in all ischemic groups. State 4 was increased in all groups, except the I/R-MB and NI/R-MB groups. RCR showed a decrease in all I/R and NI/R groups. Mitochondrial osmotic swelling showed an increase in all I/R NI/R groups in the presence or absence of MB. About MDA, there was a decrease in SH values in the presence of MB and this decrease was maintained in the I/R group. AST levels were increased in all ischemic with or without MB. Conclusions: The methylene blue was not able to restore the mitochondrial parameters studied. Also, it was able to decrease lipid peroxidation, preventing the formation of reactive oxygen species.


Subject(s)
Humans , Animals , Male , Reperfusion Injury/prevention & control , Enzyme Inhibitors/therapeutic use , Liver/blood supply , Methylene Blue/therapeutic use , Oxygen Consumption , Aspartate Aminotransferases/blood , Reference Values , Time Factors , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Lipid Peroxidation/drug effects , Reperfusion Injury/metabolism , Reproducibility of Results , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Rats, Wistar , Cell Respiration , Alanine Transaminase/blood , Enzyme Inhibitors/pharmacology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Liver/metabolism , Malondialdehyde/analysis , Methylene Blue/pharmacology , Mitochondrial Swelling/drug effects
17.
Acta cir. bras ; 33(6): 542-550, June 2018. tab, graf
Article in English | LILACS | ID: biblio-949355

ABSTRACT

Abstract Purpose: To evaluate the effects of 1,25 dihydroxy vitamin D3 (1,25(OH)2D3) on the content of triglyceride (TG), as well as on the gene and protein expressions of adiponectin receptor 2 (AdipoR2), p38 mitogen-activated protein kinase (P38MAPK), and lipoprotein lipase (LPL) in the liver of rats with type 2 diabetes mellitus (T2DM) so as to provide theoretical basis for exploring the mechanism by which 1,25(OH)2D3 regulates TG. Methods: Wistar rats were divided into four groups (n=25), with different treatments and detected the gene and protein expressions of AdipoR2, p38MAPK, and LPL in the liver tissue by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Meanwhile, the content of TG in the liver tissue was detected by the Enzyme-linked immunosorbent assay. Results: The expression of AdipoR2, p38MAPK, LPL gene and protein in the liver of VitD intervention group was significantly higher than that in T2DM group (P <0.05), while the TG content was significantly lower than that in T2DM group (P <0.05). Conclusion: 1,25(OH)2D3 can decrease the content of TG in the liver, and its mechanism may be achieved by upregulating the expressions of AdipoR2, p38MAPK, and LPL in the liver.


Subject(s)
Animals , Male , Triglycerides/blood , Calcitriol/pharmacology , Diabetes Mellitus, Type 2/metabolism , Liver/drug effects , Liver/metabolism , Reference Values , Blood Glucose/analysis , Body Weight , Enzyme-Linked Immunosorbent Assay , Gene Expression , Up-Regulation , Blotting, Western , Reproducibility of Results , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/analysis , p38 Mitogen-Activated Protein Kinases/drug effects , Diabetes Mellitus, Type 2/prevention & control , Receptors, Adiponectin/analysis , Receptors, Adiponectin/drug effects , Lipoprotein Lipase/analysis , Lipoprotein Lipase/drug effects
18.
Braz. j. med. biol. res ; 51(7): e7312, 2018. tab, graf
Article in English | LILACS | ID: biblio-951734

ABSTRACT

Farnesoid X receptor (FXR) and related pathways are involved in the therapeutic effect of sleeve gastrectomy for overweight or obese patients with diabetes mellitus. This study aimed to investigate the mechanism of FXR expression regulation during the surgical treatment of obese diabetes mellitus by sleeve gastrectomy. Diabetic rats were established by combined streptozotocin and high-fat diet induction. Data collection included body weight, chemical indexes of glucose and lipid metabolism, liver function, and the expression levels of musculoaponeurotic fibrosarcoma oncogene family B (MAFB), FXR, and related genes induced by sleeve gastrectomy. Chang liver cells overexpressing MAFB gene were established to confirm the expression of related genes. The binding and activation of FXR gene by MAFB were tested by Chip and luciferase reporter gene assays. Vertical sleeve gastrectomy induced significant weight loss and decreased blood glucose and lipids in diabetic rat livers, as well as decreased lipid deposition and recovered lipid function. The expression of MAFB, FXR, and FXR-regulated genes in diabetic rat livers were also restored by sleeve gastrectomy. Overexpression of MAFB in Chang liver cells led to FXR gene expression activation and the alteration of multiple FXR-regulated genes. Chip assay showed that MAFB could directly bind with FXR promoter, and the activation of FXR expression was confirmed by luciferase reporter gene analysis. The therapeutic effect of sleeve gastrectomy for overweight or obese patients with diabetes mellitus was mediated by activation of FXR expression through the binding of MAFB transcription factor.


Subject(s)
Animals , Male , Rats , Oncogene Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Diabetes Mellitus, Experimental/metabolism , MafB Transcription Factor/metabolism , Gastrectomy/methods , Obesity/surgery , Gene Expression Regulation , Blotting, Western , Rats, Sprague-Dawley , Oncogene Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Reverse Transcriptase Polymerase Chain Reaction , MafB Transcription Factor/genetics , Lipid Metabolism , Liver/metabolism , Obesity/metabolism
19.
Clinics ; 73: e113, 2018. tab, graf
Article in English | LILACS | ID: biblio-952803

ABSTRACT

OBJECTIVES: The objective of the present study was to evaluate the protective effect of pre-conditioning treatment with laser light on hepatic injury in rats submitted to partial ischemia using mitochondrial function and liver fatty acid binding protein as markers. METHODS: Rats were divided into four groups (n=5): 1) Control, 2) Control + Laser, 3) Partial Ischemia and 4) Partial Ischemia + Laser. Ischemia was induced by clamping the hepatic pedicle of the left and middle lobes of the liver for 60 minutes. Laser light at 660 nm was applied to the liver immediately prior to the induction of ischemia at 22.5 J/cm2, with 30 seconds of illumination at five individual points. The animals were sacrificed after 30 minutes of reperfusion. Blood and liver tissues were collected for analysis of mitochondrial function, determination of malondialdehyde and analysis of fatty acid binding protein expression by Western blot. RESULTS: Mitochondrial function decreased in the Partial Ischemia group, especially during adenosine diphosphate-activated respiration (state 3), and the expression of fatty acid binding protein was also reduced. The application of laser light prevented bioenergetic changes and restored the expression of fatty acid binding protein. CONCLUSION: Prophylactic application of laser light to the livers of rats submitted to partial ischemia was found to have a protective effect in the liver, with normalization of both mitochondrial function and fatty acid binding protein tissue expression.


Subject(s)
Animals , Reperfusion Injury/prevention & control , Ischemic Preconditioning/methods , Low-Level Light Therapy/methods , Fatty Acid-Binding Proteins/metabolism , Liver/radiation effects , Liver/blood supply , Aspartate Aminotransferases/blood , Blotting, Western , Reproducibility of Results , Rats, Wistar , Alanine Transaminase/blood , Mitochondrial Membranes/drug effects , Fatty Acid-Binding Proteins/analysis , Liver/metabolism , Malondialdehyde/analysis , Malondialdehyde/radiation effects , Mitochondrial Swelling/radiation effects
20.
Einstein (Säo Paulo) ; 16(3): eAO4353, 2018. tab, graf
Article in English | LILACS | ID: biblio-953188

ABSTRACT

ABSTRACT Objective To investigate the effects of physical training on metabolic and morphological parameters of diabetic rats. Methods Wistar rats were randomized into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes mellitus was induced by Alloxan (35mg/kg) administration for sedentary diabetic and Trained Diabetic Groups. The exercise protocol consisted of swimming with a load of 2.5% of body weight for 60 minutes per day (5 days per week) for the trained control and Trained Diabetic Groups, during 6 weeks. At the end of the experiment, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin and total protein. Liver samples were extracted for measurements of glycogen, protein, DNA and mitochondrial diameter determination. Results The sedentary diabetic animals presented decreased body weight, blood insulin, and hepatic glycogen, as well as increased glycemia and mitochondrial diameter. The physical training protocol in diabetic animals was efficient to recovery body weight and liver glycogen, and to decrease the hepatic mitochondrial diameter. Conclusion Physical training ameliorated hepatic metabolism and promoted important morphologic adaptations as mitochondrial diameter in liver of the diabetic rats.


RESUMO Objetivo Investigar os efeitos do treinamento físico nos parâmetros morfológicos e metabólicos de ratos diabéticos. Métodos Ratos Wistar foram randomizados para quatro grupos: controle sedentário, controle treinado, diabético sedentário e diabético treinado. Diabetes mellitus foi induzido por administração de Aloxana (35mg/kg) nos Grupos Diabético Sedentário e diabético treinado. O protocolo de treinamento físico incluiu natação com carga de 2,5% do peso corporal, por 60 minutos por dia (5 dias por semana) para os Grupos Controle Treinado e diabético treinado, durante 6 semanas. Ao final do experimento, os ratos foram sacrificados, e o sangue foi coletado para determinação das concentrações séricas de glicose, insulina, albumina e proteínas totais. Amostras do fígado foram coletadas para determinação do glicogênio, proteínas, DNA e diâmetro mitocondrial. Resultados O Grupo Sedentário Diabético apresentou redução no peso corporal, insulinemia e glicogênio hepático, além de maior glicemia e diâmetro mitocondrial hepático. O protocolo de treinamento físico em animais diabéticos foi eficiente para restaurar o peso corporal e o glicogênio hepático, além de reduzir o diâmetro mitocondrial hepático. Conclusão O treinamento físico melhorou o metabolismo hepático e promoveu importantes adaptações morfológicas, como no diâmetro mitocondrial no fígado de animais diabéticos.


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal/physiology , Swimming/physiology , Mitochondria, Liver/ultrastructure , Diabetes Mellitus, Experimental/metabolism , Liver/metabolism , Liver/ultrastructure , Liver Glycogen/metabolism , Blood Glucose/metabolism , Body Weight , Insulin-Like Growth Factor I/metabolism , Random Allocation , Rats, Wistar , Diabetes Mellitus, Experimental/chemically induced , Exercise Test , Insulin , Liver/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL