Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Critical Care Medicine ; (12): 1291-1297, 2023.
Article in Chinese | WPRIM | ID: wpr-1010942

ABSTRACT

OBJECTIVE@#To investigate the effect of microRNA-509-3p (miR-509-3p) on the apoptosis of atherosclerotic vascular endothelial cells.@*METHODS@#Mouse aortic endothelial cells (MAECs) were divided into normal control group, oxidized low-density lipoprotein (ox-LDL) group, miR-509-3p overexpression group, miR-509-3p overexpression control group, miR-509-3p inhibitor + ox-LDL group, and miR-509-3p inhibitor control + ox-LDL group. MAEC were induced with 100 mg/L ox-LDL for 24 hours, and then transfected with miR-509-3p overexpression/inhibitor and corresponding control for 48 hours. The miR-509-3p expression in MAECs exposed to ox-LDL was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Flow cytometry was used to detect the level of apoptosis, and cell counting kit (CCK-8) was used to detect the proliferation activity of MAECs. The direct gene targets of miR-509-3p were predicted using bioinformatics analyses and confirmed using a dual luciferase reporter assay. The expression of Bcl-2 mRNA and protein was detected by RT-qPCR and Western blotting, respectively.@*RESULTS@#Compared with the normal control group, miR-509-3p was significantly upregulated in ox-LDL-stimulated MAECs (1.68±0.85 vs. 1.00±0.30, t = 2.398, P < 0.05). After transfection of MAECs with miR-509-3p overexpression, the luciferase activity of the BCL2 3'UTR WT reporter gene was significantly lower than that of miR-509-3p overexpression control group (0.83±0.06 vs. 1.00±0.07, t = 4.531, P = 0.001). The luciferase activity of the BCL2 3'-UTR mutant (MUT) reporter gene was not significantly different from that of miR-509-3p overexpression control group (0.94±0.05 vs. 1.00±0.08, t = 1.414, P = 0.188). Compared with the normal control group and miR-509-3p mimics control group, the cell proliferation activity was decreased [(0.60±0.06)% vs. (1.00±0.09)%, (0.89±0.04)%, both P < 0.01], the percentage of apoptotic cells were increased [(23.46±2.02)% vs. (7.66±1.52)%, (10.40±0.78)%, both P < 0.05], and the mRNA and protein expression of Bcl-2 were significantly downregulated (Bcl-2 mRNA: 0.52±0.13 vs. 1.00±0.36, 1.10±0.19, Bcl-2 protein: 0.42±0.07 vs. 1.00±0.11, 0.93±0.10, both P < 0.01) in miR-509-3p overexpression group. Compared with the ox-LDL group, inhibition of miR-509-3p expression could increase the proliferation activity of MAECs induced by ox-LDL [(0.64±0.35)% vs. (0.34±0.20%)%, P < 0.05], and reduce the apoptosis rate [(13.59±2.22)% vs. (29.84±5.19)%, P < 0.01], and up-regulated the expression of Bcl-2 mRNA and protein in MAECs induced by ox-LDL (Bcl-2 mRNA relative expression: 0.82±0.09 vs. 0.52±0.10, Bcl-2 protein relative expression: 0.83±0.17 vs. 0.40±0.07, both P < 0.05).@*CONCLUSIONS@#Bcl-2 was one of the target genes of miR-509-3p. miR-509-3p can reduce the proliferation activity of endothelial cells, reduce the expression of Bcl-2, and promote cell apoptosis, thereby promoting the occurrence and development of atherosclerosis. Inhibition of miR-509-3p expression may be a potential therapeutic target for atherosclerosis.


Subject(s)
Animals , Mice , Humans , Endothelial Cells , MicroRNAs/metabolism , Signal Transduction , Lipoproteins, LDL/metabolism , Apoptosis , RNA, Messenger/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Atherosclerosis/metabolism , Luciferases/pharmacology , Cell Proliferation , Human Umbilical Vein Endothelial Cells
2.
Chinese Medical Journal ; (24): 2576-2586, 2023.
Article in English | WPRIM | ID: wpr-1007564

ABSTRACT

BACKGROUND@#Steroid receptor-associated and regulated protein (SRARP) suppresses tumor progression and modulates steroid receptor signaling by interacting with estrogen receptors and androgen receptors in breast cancer. In endometrial cancer (EC), progesterone receptor (PR) signaling is crucial for responsiveness to progestin therapy. The aim of this study was to investigate the role of SRARP in tumor progression and PR signaling in EC.@*METHODS@#Ribonucleic acid sequencing data from the Cancer Genome Atlas, Clinical Proteomic Tumor Analysis Consortium, and Gene Expression Omnibus were used to analyze the clinical significance of SRARP and its correlation with PR expression in EC. The correlation between SRARP and PR expression was validated in EC samples obtained from Peking University People's Hospital. SRARP function was investigated by lentivirus-mediated overexpression in Ishikawa and HEC-50B cells. Cell Counting Kit-8 assays, cell cycle analyses, wound healing assays, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Western blotting and quantitative real-time polymerase chain reaction were used to evaluate gene expression. The effects of SRARP on the regulation of PR signaling were determined by co-immunoprecipitation, PR response element (PRE) luciferase reporter assay, and PR downstream gene detection.@*RESULTS@#Higher SRARP expression was significantly associated with better overall survival and disease-free survival and less aggressive EC types. SRARP overexpression suppressed growth, migration, and invasion in EC cells, increased E-cadherin expression, and decreased N-cadherin and Wnt family member 7A ( WNT7A ) expression. SRARP expression was positively correlated with PR expression in EC tissues. In SRARP -overexpressing cells, PR isoform B (PRB) was upregulated and SRARP bound to PRB. Significant increases in PRE-based luciferase activity and expression levels of PR target genes were observed in response to medroxyprogesterone acetate.@*CONCLUSIONS@#This study illustrates that SRARP exerts a tumor-suppressive effect by inhibiting the epithelial-mesenchymal transition via Wnt signaling in EC. In addition, SRARP positively modulates PR expression and interacts with PR to regulate PR downstream target genes.


Subject(s)
Female , Humans , Receptors, Progesterone/metabolism , Proteomics , Cell Line, Tumor , Endometrial Neoplasms/metabolism , Cell Proliferation/genetics , Luciferases/pharmacology , Gene Expression Regulation, Neoplastic/genetics
3.
China Journal of Chinese Materia Medica ; (24): 4731-4737, 2023.
Article in Chinese | WPRIM | ID: wpr-1008640

ABSTRACT

This study aimed to analyze the effect of matrine on tumor necrosis factor-α(TNF-α)-induced inflammatory response in human umbilical vein endothelial cells(HUVECs) and explore whether the underlying mechanism was related to the miR-25-3p-mediated Krüppel-like factor 4(Klf4) pathway. The HUVEC cell inflammation model was induced by TNF-α stimulation. After 24 or 48 hours of incubation with different concentrations of matrine(0.625, 1.25, and 2.5 mmol·L~(-1)), CCK-8 assay was used to detect cell proliferation. After treatment with 2.5 mmol·L~(-1) matrine for 48 h, the expression of TNF-α, interleukin-6(IL-6), interleukin-1β(IL-1β), and Klf4 mRNA and miR-25-3p was detected by real-time fluorescence-based quantitative PCR, and the protein expression of TNF-α, IL-6, IL-1β, and Klf4 was detected by Western blot. The anti-miR-25-3p was transfected into HUVECs, and the effect of anti-miR-25-3p on TNF-α-induced cell proliferation and inflammatory factors was detected by the above method. The cells were further transfected with miR-25-3p and incubated with matrine to detect the changes in proliferation and expression of related inflammatory factors, miR-25-3p, and Klf4. The targeting relationship between miR-25-3p and Klf4 was verified by bioinformatics analysis and dual luciferase reporter gene assay. The results displayed that matrine could inhibit TNF-α-induced HUVEC proliferation, decrease the mRNA and protein expression of TNF-α, IL-6, and IL-1β, increase the mRNA and protein expression of Klf4, and reduce the expression of miR-25-3p. Bioinformatics analysis showed that there were specific complementary binding sites between miR-25-3p and Klf4 sequences. Dual luciferase reporter gene assay confirmed that miR-25-3p negatively regulated Klf4 expression in HUVECs by targeting. The inhibition of miR-25-3p expression can reduce TNF-α-induced cell proliferation and mRNA and protein expression of TNF-α, IL-6, and IL-1β. MiR-25-3p overexpression could reverse the effect of matrine on TNF-α-induced cell proliferation and the mRNA and protein expression of TNF-α, IL-6, IL-1β, and Klf4. This study shows that matrine inhibits the inflammatory response induced by TNF-α in HUVECs through miR-25-3p-mediated Klf4 pathway.


Subject(s)
Humans , Tumor Necrosis Factor-alpha/metabolism , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells , Matrines , Interleukin-6/genetics , Signal Transduction , Antagomirs , Inflammation/metabolism , Luciferases/pharmacology , RNA, Messenger , Apoptosis
4.
São Paulo; s.n; s.n; 2013. 162 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-847171

ABSTRACT

Tiazolidinadionas (TZDs) são agentes sensibilizadores de insulina que agem por ligação ao receptor gama ativado por proliferador de peroxissomos (PPARγ). Elas têm apresentado efeitos cardioprotetores em humanos e propriedades anti-aterogênicas em modelos animais. Estudos in vitro têm sugerido que esses efeitos anti-aterogênicos da ativação de PPARγ ocorrem por inibição da expressão de genes pro-inflamatórios e por aumentar o efluxo de colesterol via ativação dos receptores LXR-ABCA1. Entretanto, vários efeitos colaterais são associados ao tratamento com as TZDs, tornando necessária a pesquisa por novos compostos desta classe. Neste estudo, 14 novas tiazolidina-2,4- dionas, que são TZDs modificadas por bioisosterismo, foram avaliadas quanto à expressão de fatores aterogênicos e inflamatórios em linhagens de macrófagos J774 e RAW 264.7 e em camundongos com deleção genética para o receptor de LDL (LDLr-/-). Após a avaliação da citotoxicidade em macrófagos, foram eleitas cinco TZDs, denominadas de GQ-11, GQ-97, GQ-177, GQ-145 e LYSO-7. Três destas TZDs (GQ- 145, GQ-177 e LYSO-7) aumentaram significativamente a expressão de RNAm dos fatores de transcrição PPARγ1, PPARγ2 e do receptor CD36, assim como também aumentaram a expressão gênica de ABCA1 em 2.9, 3.5 e 6.7 vezes, respectivamente. Em adição, estas TZDs diminuíram a expressão gênica de iNOS, COX2, VCAM e IL-6 associado a redução na produção de nitritos, mas apenas a LYSO-7 reduziu significativamente a expressão desses genes quando comparada à rosiglitazona (RSG), além de diminuir a expressão da proteína-1 quimiotática para monócitos (MCP-1). No estudo experimental, os camundongos LDLr-/- machos foram alimentados com dieta hipercolesterolêmica por 16 semanas e quatro semanas antes da eutanásia receberam os derivados tiazolidínicos (20 mg/kg/dia) por gavagem. GQ-177 inibiu a progressão da placa aterosclerótica associada à aumento nas concentrações plasmáticas de HDL-C, com elevação na expressão de ABCA1, e redução da via inflamatória CD40-CD40L. LYSO-7 também mostrou inibição da aterogênese associada à redução das concentrações plasmáticas de colesterol total e triacilgliceróis, com diminuição na interação entre CD40-CD40L e expressão de citocinas inflamatórias. A GQ-145 não alterou os níveis plasmáticos dos lipídeos, mas aumentou a expressão de todos os genes pró-aterogênicos e pró-inflamatórios. Adicionalmente, as vias de ativação destas novas TZDs também foram estudadas por ensaio de luciferase, como gene repórter. A GQ-177 induziu ativação de PPARγ e ligação ao seu domínio, enquanto a LYSO-7 estimulou ativação de PPARα e PPARδ. Portanto, conclui-se que as novas TZDs, especialmente a GQ-177 e a LYSO-7, podem apresentar propriedades ateroprotetoras associadas ao transporte reverso de colesterol e aos efeitos antiinflamatórios, e poderiam ser uma alternativa promissora para o tratamento da aterosclerose. Porém, estudos complementares são requeridos para caracterizar as vias de sinalização intracelular, visto que as duas demonstraram ativar diferentes isotipos do fator de transcrição PPAR


Thiazolidinediones (TZDs) are insulin-sensitizing agents that act by binding to peroxisome proliferator-activated receptor-γ (PPARγ). They have been demonstrated to possess cardioprotective effects in humans and antiatherogenic properties in animal models. In vitro studies have also suggested that these antiatherogenic effects of PPARγ activation occur by inhibiting the inflammatory gene expression and by increasing cholesterol efflux via LXR-ABCA1 activation. However, several side effects are associated with TZDs treatment making necessary the search for new compounds. In this study, 14 new thiazolidine-2,4-diones, modified TZDs by bioisosterism, were tested for aterogenic and inflammtary factors in RAW 264.7 macrophages and in low-density lipoprotein receptor-deficient mice. After the citotoxicity evaluation in RAW 264.7 macrophages the TZDs named GQ-11, GQ-97, GQ-177, GQ-145 e LYSO-7 were selected for this study. Three of these TZDs (GQ-177, GQ-145 and LYSO-7) significantly increased the expression of PPARγ1, PPARγ2 and CD36 mRNA, and enhanced the expression of ABCA1 mRNA in 2.9, 3.5 and 6.7 fold, respectively. Moreover, they also significantly decreased the expression of iNOS, COX2, VCAM and IL-6 mRNA in relation to control, and these results are associated to reduction on nitrits concentration. In addition, LYSO-7 significantly reduced the expression of these genes when compared to rosiglitazone, and decreased expression of MCP1 mRNA. In the experimental study, male LDLr-/- mice were fed an atherogenic diet containing 0.5% cholesterol for 16 weeks, and 4 weeks before euthanasia they received TZDs (20mg/kg/ per day) by gavage. GQ-177 treatment inhibited progression of atherosclerotic plaque associated to increased plasma concentrations of HDL-C, with enhance of ABCA1 expression and reduction on CD40-CD40L interaction. LYSO-7 treatment also showed inhibition of the atherogenesis associated to decreased plasma concentrations of total cholesterol and TAG, with reduction on CD40-CD40L pathway and inflammatory cytokines expression.GQ-145 did not alter the lipid plasma levels and increased the expression of all pro-atherogenic and pro-inflammatory genes. Furthermore, the activation of PPARs has also been studied, by luciferase assay as reporter gene. GQ-177 induced activation of PPARγ, whereas LYSO-7 stimulated activation of PPARα and PPARß/δ. Altogether, our data suggest that the new TZDs derivatives, specially GQ- 177 and LYSO-7, may have atheroprotective properties associated with the reverse cholesterol transport and anti-inflammatory effects, and could be a promising alternative for the treatment of atherosclerosis. However, further studies are warranted in order to characterize the pathways of intracellular signaling since both have demonstrated to activate different isotypes of PPAR


Subject(s)
Animals , Male , Mice , Atherosclerosis/pathology , Luciferases/pharmacology , Cell Death , Cell Survival , Liver X Receptors/analysis , Peroxisome Proliferator-Activated Receptors , PPAR gamma
5.
Braz. j. med. biol. res ; 45(2): 131-138, Feb. 2012. ilus
Article in English | LILACS | ID: lil-614575

ABSTRACT

MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.


Subject(s)
Animals , Female , Mice , Pregnancy , /genetics , DNA-Binding Proteins/genetics , MicroRNAs/genetics , Myocytes, Cardiac/cytology , Transcription Factors/genetics , Cell Culture Techniques , Cell Proliferation , Computational Biology , DNA-Binding Proteins/metabolism , Luciferases/pharmacology , Mice, Transgenic , MicroRNAs/metabolism , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL