ABSTRACT
Sepsis is a life-threatening organ dysfunction caused by dysregulated body response to infection. It is also one of the major causes of death in critically ill patients. Over the past few years, despite the continuous improvement in the treatment of sepsis, there is no specific treatment, clinical morbidity and mortality are still rising. Therefore, finding effective methods to treat sepsis and reduce mortality is an urgent clinical problem. Histone modification is an epigenetic modification that produces heritable phenotypic changes without altering the DNA sequence. In recent years, many studies have shown that histone modification is closely related to sepsis. This review discusses the mechanism of histone modification in the pathogenesis of sepsis from the aspects of inflammatory factors, signaling pathways, and macrophage polarization, in aimed to provide reference for the clinical treatment of sepsis.
Subject(s)
Humans , Histone Code , Sepsis/metabolism , Critical Illness , Macrophage ActivationABSTRACT
Foreign body reactions induced by macrophages often cause delay or failure of wound healing in the application of tissue engineering scaffolds. This study explores the application of nanosilver (NAg) to reduce foreign body reactions during scaffold transplantation. An NAg hybrid collagen-chitosan scaffold (NAg-CCS) was prepared using the freeze-drying method. The NAg-CCS was implanted on the back of rats to evaluate the effects on foreign body reactions. Skin tissue samples were collected for histological and immunological evaluation at variable intervals. Miniature pigs were used to assess the effects of NAg on skin wound healing. The wounds were photographed, and tissue samples were collected for molecular biological analysis at different time points post-transplantation. NAg-CCS has a porous structure and the results showed that it could release NAg constantly for two weeks. The NAg-CCS group rarely developed a foreign body reaction, while the blank-CCS group showed granulomas or necrosis in the subcutaneous grafting experiment. Both matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced significantly in the NAg-CCS group. The NAg-CCS group had higher interleukin (IL)-10 and lower IL-6 than the blank CCS group. In the wound healing study, M1 macrophage activation and inflammatory-related proteins (inducible nitric oxide synthase (iNOS), IL-6, and interferon-γ (IFN-γ)) were inhibited by NAg. In contrast, M2 macrophage activation and proinflammatory proteins (arginase-1, major histocompatibility complex-II (MHC-II), and found in inflammatory zone-1 (FIZZ-1)) were promoted, and this was responsible for suppressing the foreign body responses and accelerating wound healing. In conclusion, dermal scaffolds containing NAg suppressed the foreign body reaction by regulating macrophages and the expression of inflammatory cytokines, thereby promoting wound healing.
Subject(s)
Animals , Rats , Swine , Interleukin-6 , Macrophage Activation , Tissue Inhibitor of Metalloproteinase-1 , Wound Healing , Foreign-Body Reaction , Foreign Bodies , ChitosanABSTRACT
OBJECTIVE@#To explore the effect of leucine-rich α-2-glycoprotein (LRG1) derived from hepatocytes on activation of hepatic M1 Kupffer cells.@*METHODS@#A metabolic dysfunction-associated fatty liver disease (MAFLD) model was established in BALB/c mice by high-fat diet (HFD) feeding for 16 weeks. Oleic acid was used to induce steatosis in primary cultures of mouse hepatocytes. The mRNA and protein expressions of LRG1 in mouse liver tissues and hepatocytes were detected by real-time PCR and Western blotting. Primary hepatic macrophages were stimulated with the conditioned medium (CM) from steatotic hepatocyte along with LRG1 or transforming growth factor-β1 (TGF-β1), or both for 24 h, and the expression levels of inducible nitric oxide synthase (iNOS) was detected with Western botting, and the mRNA expressions of iNOS, chemokine ligand 1 (CXCL-1) and interleukin-1β (IL-1β) were measured by RT-PCR. The MAFLD mice were injected with LRG1 (n=6), TGF-β1 (n=6), or both (n=6) through the caudal vein, and the live tissues were collected for HE staining and immumohistochemical detection of F4/80 expression; the mRNA expressions of iNOS, CXCL-1 and IL-1β in liver tissues were detected using RT-PCR.@*RESULTS@#The mRNA and protein expression levels of LRG1 were significantly downregulated in the liver tissues of MAFLD mice and steatotic hepatocytes (P < 0.05). Treatment of the hepatic macrophages with CM from steatosis hepatocytes significantly enhanced the mRNA expression levels of iNOS, CXCL-1 and IL-1β, and these changes were significantly inhibited by the combined treatment with TGF-β1 and LRG1 (P < 0.05). In MAFLD mice, injections with either LRG1 or TGF-β1 alone reduced hepatic lipid deposition and intrahepatic macrophage infiltration, and these effects were significantly enhanced by their combined treatment, which also more strongly inhibited the mRNA expression levels of iNOS, CXCL-1 and IL-1β (P < 0.05).@*CONCLUSION@#LRG1 inhibits hepatic macrophage infiltration by enhancing TGF-β1 signaling to alleviate fatty liver inflammation in MAFLD mice.
Subject(s)
Animals , Mice , Transforming Growth Factor beta1 , Macrophage Activation , Signal Transduction , Non-alcoholic Fatty Liver Disease , Culture Media, Conditioned , GlycoproteinsABSTRACT
Under LPS-stimulus, platelets can activate macrophagesby a cell-to-cell contact or through cytokine degranulation. Rebound effects of anti-thrombotic agents, such as prostanoids and COX inhibitors can lead to thrombosis, infarct, and stroke. Aspirin has been prescribed for decades due to its powerful antiplatelet action, but it is also related to paradoxical effects such as withdrawal syndrome peaks, resistance, and thrombogenesis. Ultra-diluted aspirin can also produce the same effect in one hour, regardless of Cox-2, by still unknown pathways. Antithrombotic effects of aspirin are also reversed by its high dilutions.Aims: This study aims to characterize the effects of aspirin 15cH on macrophages challenged with LPS, a Cox-2 activator.Methodology: RAW 264.7 macrophages were sown in 24 wells plates using R10medium, boosted with 1µg/ml LPS,and treated with aspirin 15 cH and controls. The activity was evaluated after 24 hours. Supernatants were evaluated for cytokines, nitric oxide, and dielectric oscillations, through solvatochromic dyes (Cartwright's method).Results and discussion: macrophage spreading was increased by aspirin 15 cH, anLPS-like effect. Paradoxically, a significant reduction of this effect was noted when both, LPS and aspirin 15 cH, were added. Succussed water reversed the effect of LPS, leading to TNF (p<0.05) production close to baseline levels. Also, the single treatment with succussed water inhibited IL-10 production (p<0.05), but aspirin 200 µg/mL (positive control) highly increased it (p<0.0001), showing the validity of the model. Nitric oxide production was strengthened by LPS presence (p<0.0001), as expected, but partially downregulated after treatment with aspirin 200 µg/mL, water and succussed water. A pilot study with solvatochromic dyes showed no significant difference among treatments.Conclusion: The main data suggest that aspirin 15 cH increases macrophage activity but presents a paradoxal effect when mixed with LPS. On the other hand, succussed water itself has modulatory effects on macrophages.
Subject(s)
Preparation Scales , Aspirin/therapeutic use , Macrophage ActivationABSTRACT
Objective: To study the effect of microRNA-126 (miR-126) on the polarization of human monocyte-derived macrophages stimulated by Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS). Methods: Macrophages derived from human myeloid leukemia mononuclear cells were stimulated by Pg-LPS (5 mg/L) and by Pg-LPS (5 mg/L) after 24 h-transfection of miR-126 mimic or negative control RNA for 48 h, respectively. Real-time quantitative-PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting were conducted to detect the changes in miR-126, pro-inflammatory factor tumor necrosis factor-α (TNF-α), anti-inflammatory factors interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1) and M1 polarization-related pathways such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Results: Compared with non-LPS stimulation group (TNF-α: 1.000±0.020, iNOS: 1.125±0.064, miR-126: 1.004±0.113, IL-10: 1.003±0.053, Arg-1: 1.130±0.061), the mRNA levels of TNF-α (3.105±0.278) and iNOS (4.296±0.003) increased significantly (t=6.53, P=0.003; t=42.63, P<0.001, respectively), while miR-126, IL-10 and Arg-1 expressions (0.451±0.038, 0.545±0.004 and 0.253±0.017) decreased significantly (t=7.95, P=0.001; t=7.36, P=0.002; t=11.94, P<0.001, respectively) after Pg-LPS stimulated by human-derived macrophages for 48 h. The protein expression of iNOS, TNF-α, Arg-1 and IL-10 were consistent at mRNA levels. Meanwhile, the expressions of phospho-NF-κB p65 (p-p65), phospho-extracellular signal-regulated kinase (p-ERK) and phospho-p38 MAPK (p-p38) increased significantly, while the expression of Arg-1 decreased significantly. Compared with the negative controls (scramble RNA) (TNF-α: 1.141±0.197, iNOS: 1.173±0.115, IL-10: 1.032±0.138, Arg-1: 0.933±0.044), the mRNA levels of TNF-α (0.342±0.022) and iNOS (0.588±0.085) expressions significantly decreased (t=5.35, P=0.006; t=5.05, P=0.007), while IL-10 (1.786±0.221) and Arg-1 expressions (2.152±0.229) significantly increased (t=3.71, P=0.021; t=6.21, P=0.003) after Pg-LPS stimulation with miR-126 mimic transfection. The relative protein expressions of iNOS, p-p65, p-ERK and p-p38 significantly decreased (t=13.00, P<0.001; t=6.98, P=0.002; t=10.86, P<0.001; t=8.32, P=0.001), while the protein level of Arg-1 significantly increased (t=12.08, P<0.001). Conclusions: Pg-LPS could promote M1 polarization of macrophages. miR-126 might inhibit the effect of Pg-LPS on the M1 polarization of macrophages through down-regulating NF-κB and MAPK signaling pathways.
Subject(s)
Humans , Cell Polarity , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation , Macrophages/drug effects , MicroRNAs/metabolism , NF-kappa B/metabolism , Porphyromonas gingivalis , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Lung and intestine combination therapy(LICT) is effective in the treatment of acute lung injury(ALI). In this study, the combination of Mahuang Decoction and Dachengqi Decoction(hereinafter referred to as the combination), a manifestation of LICT, was employed to explore the effect of nuclear factor kappaB(NF-κB)/nucleotide binding oligomerization domain-like receptors-3(NLRP3) pathway and alveolar macrophage activation on the lung inflammation in rats with ALI, for the purpose of elucidating the mechanism of LICT in treating ALI. After the modeling of ALI with limpolysaccharide(LPS, ip), rats were respectively given(ig) the combination at 10, 7.5, and 5 g·kg~(-1)(high-dose, medium-dose, and low-dose LICT groups, separately), once every 8 h for 3 times. Haematoxylin-eosin(HE) staining was used to observe the histopathological changes of lung tissue, followed by the scoring of inflammation. Immunohistochemistry was applied to detect alveolar macrophage activation, enzyme-linked immunosorbent assay(ELISA) was applied to detect the serum content of tumor necrosis factor-α(TNF-α) and interleukin-18(IL-18), Western blot was applied to detect the protein expression of phosphorylated-nuclear factor kappaB p65(p-NF-κB p65), nuclear factor kappaB p65(NF-κB p65), phosphorylated-inhibitor kappaB alpha(p-IκBα), inhibitor kappaB alpha(IκBα), and NLRP3 in lung tissue, and quantitative reverse transcription-PCR(qRT-PCR) was applied to detect the mRNA expression of TNF-α, IL-18, NLRP3, and NF-κB p65 in lung tissue. The results showed that LICT groups demonstrated lung injury relief, decrease in inflammation score, alleviation of alveolar macrophage activation, significant decline in serum content of inflammatory factors TNF-α and IL-18, and decrease of the protein expression of p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3, and mRNA expression of TNF-α, IL-18, NLRP3, and NF-κB p65 in lung tissue. In summary, LICT has definite therapeutic effect on ALI. The mechanism is that it inhibits alveolar macrophage activation by suppressing NF-κB/NLRP3 signaling pathway, thereby reducing the activation and release of inflammatory factors and finally inhibiting inflammation.
Subject(s)
Animals , Rats , Acute Lung Injury/genetics , Drugs, Chinese Herbal , Intestines , Lipopolysaccharides , Lung/metabolism , Macrophage Activation , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal TransductionABSTRACT
OBJECTIVE@#Acute lung injury (ALI) is a serious respiratory dysfunction caused by pathogen or physical invasion. The strong induced inflammation often causes death. Tanshinone IIA (Tan-IIA) is the major constituent of Salvia miltiorrhiza Bunge and has been shown to display anti-inflammatory effects. The aim of the current study was to investigate the effects of Tan-IIA on ALI.@*METHODS@#A murine model of lipopolysaccharide (LPS)-induced ALI was used. The lungs and serum samples of mice were extracted at 3 days after treatment. ALI-induced inflammatory damages were confirmed from cytokine detections and histomorphology observations. Effects of Tan-IIA were investigated using in vivo and in vitro ALI models. Tan-IIA mechanisms were investigated by performing Western blot and flow cytometry experiments. A wound-healing assay was performed to confirm the Tan-IIA function.@*RESULTS@#The cytokine storm induced by LPS treatment was detected at 3 days after LPS treatment, and alveolar epithelial damage and lymphocyte aggregation were observed. Tan-IIA treatment attenuated the LPS-induced inflammation and reduced the levels of inflammatory cytokines released not only by inhibiting neutrophils, but also by macrophage. Moreover, we found that macrophage activation and polarization after LPS treatment were abrogated after applying the Tan-IIA treatment. An in vitro assay also confirmed that including the Tan-IIA supplement increased the relative amount of the M2 subtype and decreased that of M1. Rebalanced macrophages and Tan-IIA inhibited activations of the nuclear factor-κB and hypoxia-inducible factor pathways. Including Tan-IIA and macrophages also improved alveolar epithelial repair by regulating macrophage polarization.@*CONCLUSION@#This study found that while an LPS-induced cytokine storm exacerbated ALI, including Tan-IIA could prevent ALI-induced inflammation and improve the alveolar epithelial repair, and do so by regulating macrophage polarization.
Subject(s)
Animals , Mice , Abietanes , Acute Lung Injury/drug therapy , Cytokine Release Syndrome , Cytokines , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Macrophage Activation , Macrophages , Triacetoneamine-N-Oxyl/pharmacologyABSTRACT
Leishmaniasis are a group of parasitic zoonoses provoked by protozoa from Leishmania genus and belonging to the group of neglected tropical diseases. The search and development for new drugs is necessary not only to investigate the activity against only the parasite, but also to investigate the possible synergistic effect of new drugs with the immune response of the host. In the present review, macrophages are pointed out as potential targets of the investigation of new antileishmanial drugs, and some methodologies in order to assess their activation as response to Leishmania-infected cells are presented. Macrophages are an important role in the cellular immune response, since they are cells from mononuclear phagocytic system, the first line of defense of the host, against parasites from Leishmania genus. Phagocytic capacity, lysosomal activity, increase of nitric oxide and intracellular calcium levels are parameters regarding assessment of macrophages activation which allow them to be more hostile in order to solve the infection and lead the patient to cure. In this context, we bring 19 substances already investigated and that activate macrophages, what makes them promising in the antileishmanial treatment. Therefore, assessment of macrophages activation, are important tools for discovery of immunomodulatory compounds which have potential to act in synergism with host immune response. Such compounds might be promising as monotherapy in the treatment of leishmaniasis, as well as being used as adjuvants in vaccines and/or in combination with conventional drugs.
Subject(s)
Leishmaniasis/drug therapy , Immunomodulation , Macrophage Activation/immunologyABSTRACT
The aim of this paper was to investigate the effect and mechanism of paeonol on peritoneal macrophage M1 polarization in mice, explore whether the intervention action is related to the down-regulation of miR-155 and the inhibition of downstream JAK1-STAT1 pathway, and provide a new idea for the molecular mechanism of paeonol against atherosclerosis(AS). Lipopolysaccharide(LPS) and interferon-γ(IFN-γ) were used to stimulate macrophages for 24 hours to establish the M1 polarization model, and paeonol was given 24 hours before co-stimulation to provide a pre-protective effect on cells. CCK-8 assay was used to detect the cells damage induced by LPS and IFN-γ co-stimulation; flow cytometry was used to detect the expression of M1 surface markers F4/80 and CD86. ELISA was used to detect the secretion of interleukin 6(IL-6) and tumor necrosis factor-α(TNF-α) in supernatant. RT-qPCR was used to detect the expression of miR-155, and Western blot was used to detect the protein expression at JAK1-STAT1-SOCS1 pathway. The results showed that LPS and IFN-γ had no obvious damage to the cells at the optimal concentration, but they induced macrophages polarized to M1, resulted in high expression of M1 type marker factors F4/80 and CD86 on the cell surface, and increased secretion of IL-6 and TNF-α on the cell surface(P<0.05 or P<0.01). Paeonol significantly reduced the LPS and IFN-γ-induced high expression of F4/80 and CD86, the secretion of inflammatory factors IL-6 and TNF-α(P<0.05 or P<0.01), decreased the expression level of miR-155, significantly down-regulated the protein phosphorylation level of JAK1-STAT1 and up-regulated the protein expression of SOCS1(P<0.01) in RAW264.7 cells. The results showed that paeonol could inhibit M1 polarization of macrophages by down-regulating cell surface marker factors and inflammatory factors secreted by cells, which may be related to the down-regulation of miR-155 expression and the inhibition JAK1-STAT1 pathway activation.
Subject(s)
Animals , Mice , Acetophenones , Macrophage Activation , Macrophages , MicroRNAs , STAT1 Transcription FactorABSTRACT
Macrophages play pivotal roles in host defense and immune homeostasis, which have two major functional polarization states, the classically activated M1 and the alternatively activated M2. Interleukin (IL)-17A is an immune modulator able to shape macrophage phenotypes. Wnt/β-catenin is a developmental signaling pathway that plays crucial roles in morphogenesis and tissue homeostasis, which has also been recently demonstrated playing roles in immune regulation. A growing amount of evidence suggests that both Wnt and IL-17A signaling are involved in macrophage polarization. However, their interaction in macrophage polarization remains elusive. The aim of present study was to explore impacts of Wnt/β-catenin on IL-17A-mediated macrophage M1/M2 polarization in murine monocyte/macrophage-like cell line RAW264.7. Results revealed that IL-17A activated Wnt/β-catenin signaling and induced macrophage M1 polarization, but inhibited M2 polarization. In contrast, the activation of Wnt/β-catenin signaling led to the inhibition of M1 macrophage polarization but the promotion of M2 polarization. Importantly, the activation of Wnt/β-catenin also showed abilities to inhibit the IL-17A-induced M1 macrophage polarization while diminishing the IL-17A-inhibited M2 polarization. Molecular analysis further uncovered that the JAK/STAT signaling pathway was involved in the interaction of Wnt/β-catenin and IL-17A in the modulation of macrophage polarization. These results suggested that the Wnt/β-catenin signaling modulated IL-17A-altered macrophage polarization in part by regulating the JAK/STAT signaling pathway. This study thus revealed a novel function of Wnt/β-catenin signaling in regulating IL-17A-altered macrophage polarization.
Subject(s)
Animals , Rats , Interleukin-17 , beta Catenin , Wnt Signaling Pathway , Macrophage Activation , MacrophagesABSTRACT
Abstract Introduction: It is hypothesized that increased macrophage migration inhibitory factor (MIF) expression may contribute to diabetic nephropathy (DN) pathogenesis. The aim of the present study was to investigate the renal effects of MIF inhibition in a diabetic experimental model. Methods: Eighteen male Wistar rats (230 ± 20 g) were divided into three groups: 1) control, 2) diabetic (STZ, 50 mg/kg, dissolved in saline, ip), 3) diabetic + MIF antagonist (p425, 1 mg/kg per day, ip, on the 21th day, for 21 consecutive days). The treatment started since we founwd a significant increase in urine albumin excretion (UAE) rate in the diabetic rats in comparison with the control rats. The rats were kept individually in metabolic cages (8 AM-2 PM) and urine samples were collected in the 21 and 42th day. At the end, blood and tissue samples were collected for biochemical (BS, UPE, urine GAG, BUN, Cr, Na, and K) and histological analyses. Results: The results of this study showed that MIF antagonist (p425) significantly decreased urine protein and GAG excretion, urine protein/creatinine ratio, and serum BUN and Cr in the streptozotocin-induced DN in the rats. Pathological changes were significantly alleviated in the MIF antagonist (p425)-administered DN rats. Conclusion: Collectively, these data suggested that MIF antagonist (p425) was able to protect against functional and histopathological injury in the DN.
Resumo Introdução: Supõe-se que elevações da expressão do fator de inibição da migração de macrófagos (MIF) possam contribuir para a patogênese da nefropatia diabética (ND). O objetivo do presente estudo foi investigar os efeitos renais da inibição do MIF em um modelo experimental diabético. Métodos: Dezoito ratos Wistar machos (230 ± 20g) foram divididos em três grupos: 1) controle, 2) diabético (STZ 50 mg/kg dissolvida em soro fisiológico, IP), 3) diabético + antagonista do MIF (p425 1 mg/kg por dia IP no 21o dia por 21 dias consecutivos). O tratamento começou após a identificação de aumento significativo na albuminúria nos ratos diabéticos em relação aos controles. Os ratos foram mantidos individualmente em gaiolas metabólicas (8h-14h) e amostras de urina foram colhidas no 21o e no 42o dia. Ao final do estudo, amostras de sangue e tecido foram colhidas para análises bioquímicas (BS, excreção urinária de proteína, excreção urinária de GAGs, BUN, Cr, Na e K) e histológicas. Resultados: O presente estudo demonstrou que o antagonista do MIF (p425) diminuiu significativamente proteinúria, excreção urinária de GAGs , relação proteína/creatinina na urina, BUN e Cr no grupo com ND induzida por estreptozotocina. As alterações patológicas foram significativamente abrandadas nos ratos com ND que receberam antagonista do MIF (p425). Conclusão: Coletivamente, os dados sugerem que o antagonista do MIF (p425) teve efeito protetor contra lesões funcionais e histopatológicas da ND.
Subject(s)
Animals , Male , Rats , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Intramolecular Oxidoreductases/antagonists & inhibitors , Protective Agents/therapeutic use , Protective Agents/pharmacology , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/therapy , Blood Glucose , Rats, Wistar , Streptozocin/pharmacology , Creatinine/urine , Creatinine/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/urine , Diabetes Mellitus, Experimental/blood , Diabetic Nephropathies/urine , Diabetic Nephropathies/pathology , Diabetic Nephropathies/blood , Albuminuria/drug therapy , Disease Models, Animal , Glycosaminoglycans/urine , Kidney/pathology , Macrophage ActivationABSTRACT
Ulcerative colitis is an intestinal inflammatory disease characterized by diarrhea, abdominal pain and purulent stool. Uncontrolled inflammation caused by macrophage hyper-activation is an important cause of ulcerative colitis. Therefore, inhibiting macrophage hyper-activation is an effective way to treat ulcerative colitis. Notch signaling pathway is involved in regulating the immune response of macrophages and promoting inflammation. NF-κB signaling pathway is the "star pathway" involved in inflammation. NLRP3 inflammatory body is involved in the activation of macrophages. Notch, NF-κB and NLRP3 inflammatory bodies constitute the upstream and downstream signal pathways in the existing immune inflammatory diseases. Notch signal pathway can regulate the activation of macrophage via NF-κB/NLRP3 inflammatory body signaling pathway.
Subject(s)
Humans , Colitis, Ulcerative , Cytokines , Macrophage Activation , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Notch , Signal TransductionABSTRACT
Intestinal microbiota is involved in the atherosclerotic process by development of an atheromatous core with foam cells in carotid arteries. It has reported that lipopolysaccharide (LPS) from Escherichia coli localizes in human atherosclerotic plaque and causes inflammation via interaction with toll like receptor 4. However, there is no evidence that whether LPS-activated macrophages regulate endothelial cell (EC) function. We evaluated whether LPS-activated macrophage acts as one of the stimulants activating EC and its underlying signaling pathways. Using Western blotting and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we confirmed that intraperitoneal injection with LPS increases iNOS protein and inflammatory cytokine, TNF-α and IL-6 mRNA expressions. To determine whether LPS-mediated macrophage inflammatory condition affects EC activation and inflammation, human umbilical vein endothelial cells (HUVECs) were incubated with isolated peritoneal macrophages from LPS-injected mice. Interestingly, p90RSK Serine 380 phosphorylation and protein expression were significantly increased by macrophage treatment in EC. Messenger RNA levels of vascular cell adhesion molecule 1 and p90RSK was increased, but endothelial nitric oxide synthase was decreased. In addition, NF-κB promoter activity, which plays an important role in the pathogenesis of inflammation, was strongly enhanced by the macrophage treatment in EC. We further evaluated the effects of LPS on EC function in the mouse aorta using en face staining. In agreement with in vitro result, p90RSK expression was strongly increased in the steady laminar flow region of the mouse aorta in mice injected with LPS. Together, our study demonstrates that p90RSK might be a one of the major therapeutic candidates for the prevention of vascular diseases mediated by LPS.
Subject(s)
Animals , Humans , Mice , Aorta , Atherosclerosis , Blotting, Western , Carotid Arteries , Endothelial Cells , Escherichia coli , Foam Cells , Gastrointestinal Microbiome , Human Umbilical Vein Endothelial Cells , In Vitro Techniques , Inflammation , Injections, Intraperitoneal , Interleukin-6 , Macrophage Activation , Macrophages , Macrophages, Peritoneal , Nitric Oxide Synthase Type III , Phosphorylation , Plaque, Atherosclerotic , RNA, Messenger , Serine , Toll-Like Receptor 4 , Vascular Cell Adhesion Molecule-1 , Vascular DiseasesABSTRACT
BACKGROUND/AIMS: Classical M1 macrophage activation exhibits an inflammatory phenotype while alternative M2 macrophage activation exhibits an anti-inflammatory phenotype. We aimed to determine whether there are discriminant patterns of macrophage polarization in Crohn's disease (CD) and intestinal tuberculosis (iTB). METHODS: Colonic mucosal biopsies from 29 patients with iTB, 50 with CD, and 19 controls were examined. Dual colored immunohistochemistry was performed for iNOS/CD68 (an M1φ marker) and CD163/CD68 (an M2φ marker), and the ratio of M1φ to M2φ was assessed. To establish the innate nature of macrophage polarization, we analyzed the extent of mitochondrial depolarization, a key marker of inflammatory responses, in monocyte-derived macrophages obtained from CD and iTB patients, following interferon-γ treatment. RESULTS: M1φ polarization was more prominent in CD biopsies (P=0.002) than in iTB (P=0.2) and control biopsies. In granuloma-positive biopsies, including those in CD, M1φ predominance was significant (P=0.001). In iTB, the densities of M1φ did not differ between granuloma-positive and granuloma-negative biopsies (P=0.1). Interestingly, higher M1φ polarization in CD biopsies correlated with high inflammatory response exhibited by peripheral blood-derived monocytes from these patients. CONCLUSIONS: Proinflammatory M1φ polarization was more common in colonic mucosa of CD patients, especially in the presence of mucosal granulomas. Further characterization of the innate immune system could help in clarifying the pathology of iTB and CD.
Subject(s)
Humans , Biopsy , Colon , Crohn Disease , Granuloma , Immune System , Immunohistochemistry , Macrophage Activation , Macrophages , Monocytes , Mucous Membrane , Pathology , Phenotype , TuberculosisABSTRACT
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Subject(s)
Humans , Adaptive Immunity , Astrocytes , Physiology , Brain Injuries, Traumatic , Allergy and Immunology , Therapeutics , Histone Deacetylases , Therapeutic Uses , Immunity, Innate , Allergy and Immunology , Immunotherapy , Methods , Inflammasomes , Physiology , Macrophage Activation , Spinal Cord Injuries , Allergy and Immunology , TherapeuticsABSTRACT
OBJECTIVE@#Salmonella enterica remains a major cause of food-borne disease in humans, and Salmonella Typhimurium (ST) contamination of poultry products is a worldwide problem. Since macrophages play an essential role in controlling Salmonella infection, the aim of this study was to evaluate the effect of glycyrrhizic acid (GA) on immune function of chicken HD11 macrophages.@*METHODS@#Chicken HD11 macrophages were treated with GA (0, 12.5, 25, 50, 100, 200, 400, or 800 μg/ml) and lipopolysaccharide (LPS, 500 ng/ml) for 3, 6, 12, 24, or 48 h. Evaluated responses included phagocytosis, bacteria-killing, gene expression of cell surface molecules (cluster of differentiation 40 (CD40), CD80, CD83, and CD197) and antimicrobial effectors (inducible nitric oxide synthase (iNOS), NADPH oxidase-1 (NOX-1), interferon-γ (IFN-γ), LPS-induced tumor necrosis factor (TNF)-α factor (LITAF), interleukin-6 (IL-6), and IL-10), and production of nitric oxide (NO) and hydrogen peroxide (H2O2).@*RESULTS@#GA increased the internalization of both fluorescein isothiocyanate (FITC)-dextran and ST by HD11 cells and markedly decreased the intracellular survival of ST. We found that the messenger RNA (mRNA) expression of cell surface molecules (CD40, CD80, CD83, and CD197) and cytokines (IFN-γ, IL-6, and IL-10) of HD11 cells was up-regulated following GA exposure. The expression of iNOS and NOX-1 was induced by GA and thereby the productions of NO and H2O2 in HD11 cells were enhanced. Notably, it was verified that nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways were responsible for GA-induced synthesis of NO and IFN-γ gene expression.@*CONCLUSIONS@#Taken together, these results suggested that GA exhibits a potent immune regulatory effect to activate chicken macrophages and enhances Salmonella-killing capacity.
Subject(s)
Animals , Cells, Cultured , Chickens , Glycyrrhizic Acid/pharmacology , Macrophage Activation/drug effects , NF-kappa B/physiology , Phagocytosis/drug effects , Salmonella/drug effects , Signal Transduction/drug effectsABSTRACT
Este trabajo utilizó un modelo macrófago humano-amastigote como herramienta para recrear in vitro la infección causada por aislados de pacientes con fracaso terapéutico y valorar su utilidad en la identificación de aislados de Leishmania con fenotipo quimio-resistente. Objetivos: (1) Evaluar un modelo in vitro de macrófago humano-amastigote y (2) Determinar su utilidad en la identificación de aislados de Leishmania con fenotipo quimio-resistente. Métodos: Se evaluó un protocolo de purificación basado en la capacidad de los monocitos de adherirse al plástico. Monocitos purificados de sangre humana fueron infectados con promastigotes metacíclicos de especies de referencia y aislados de Leishmania de tres pacientes con falla terapéutica a antimoniales. Se determinó el porcentaje de infección inicial y el efecto leishmanicida de glucantime, anfotericinaB y pentamidina; se correlacionó la capacidad leishmanicida con los niveles de producción de óxido nítrico en cada condición estudiada. Resultados: Los resultados sugieren que el modelo macrófago humano-amastigote empleado recrea in vitro la infección causada por especies de referencia, o con aislados de pacientes con fracaso terapéutico. Adicionalmente sugieren que en monocitos infectados (1) con el aislado VE98MR no puede definirse una IC50 para glucantime ni para pentamidina y (2) con el aislado VE96ZC no puede definirse una IC50 para glucantime mas si para pentamidina. De igual forma, se evidencia una disminución efectiva del porcentaje de infección susceptible a anfotericina-B, para todos los aislados y cepas de referencia. El efecto leishmanicida no se correlaciona con aumentos significativos de la producción de óxido nítrico. Conclusiones: El modelo macrófago humano-amastigote empleado constituye una prueba de concepto que permitió identificar como aislados potencialmente quimio-resistentes a L. (L.) amazonensis (VE98MR) y L. (L.) mexicana (VE96ZC), mas no al aislado L. (L.) amazonensis (VE2000MM)(AU)
This work used a human-amastigote macrophage model as a tool to recreate in vitro infection caused by isolates from patient's with therapeutic failure and assess its usefulness in the identification of chemo-resistant Leishmania isolates. Objectives: (1) Evaluate in vitro a human-amastigote macrophage model and (2) determine its usefulness in the identification of Leishmania isolates with chemo-resistant phenotype. Methods: A purification protocol based on the ability of monocytes to adhere to plastic was evaluated. Monocytes purified from human blood were infected with metacyclic promastigotes of reference species and Leishmania isolates from three patients with antimonial therapeutic failure. The percentage of initial infection and the leishmanicidal effect of glucantime, amphotericin-B and pentamidine were determined; the leishmanicidal capacity was correlated with the levels of nitric oxide production in each condition studied. Results: Results suggest that the human-amastigote macrophage model recreates in vitro the infection caused by reference species, or isolates from patients with therapeutic failure. In addition, they suggest that (1) an effective IC50 for glucantime and pentamidine could not be defined in monocytes infected with the isolate VE98MR and (2) an effective IC50 for pentamidine but nor for glucantime could be defined in monocytes infected with the isolate VE96ZC. On the contrary, an effective decrease in the percentage of infection susceptible to amphotericin-B was observed for all isolates and reference strains. The leishmanicidal effect did not correlate with significant increases in nitric oxide production. Conclusion: The human-amastigote macrophage model used constitutes a proof of concept to identify as potentially chemo-resistant isolates L. (L.) amazonensis (VE98MR) and L. (L.) mexicana (VE96ZC), but not L (L.) amazonensis (VE2000MM)(AU)
Subject(s)
Humans , Male , Female , In Vitro Techniques/methods , Leishmaniasis, Cutaneous/physiopathology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/virology , Tropical Medicine , Public Health , Drug Therapy , Macrophage ActivationABSTRACT
As a new humanized monoclonal antibody against the interleukin-6 receptor, tocilizumab is currently used for the treatment of rheumatoid arthritis (RA) patients. Tocilizumab was reported to provoke drug-related liver toxicity, although there have been no reports on significant liver toxicity from tocilizumab in Korean patients with RA to date. Here, we describe the first case of tocilizumab-related liver toxicity in a patient with complicated RA, accompanied with macrophage activation syndrome, who had received tacrolimus and prednisolone and in whom both conventional disease modifying anti-rheumatic drugs, including methotrexate, leflunomide and sulfasalazine or tumor necrotizing factor-alpha blockades, were contraindicated due to drug eruption and a history of lung cancer.
Subject(s)
Humans , Antirheumatic Agents , Arthritis, Rheumatoid , Drug Eruptions , Interleukin-6 , Liver , Lung Neoplasms , Macrophage Activation Syndrome , Macrophage Activation , Macrophages , Methotrexate , Prednisolone , Sulfasalazine , Tacrolimus , Tranexamic AcidABSTRACT
Recurrent macrophage activation syndrome (MAS) is very rare. We present the case of an adolescent boy with human leukocyte antigen (HLA) B27-positive ankylosing spondylitis (AS), who experienced episodes of recurrent MAS since he was a toddler. A 16-year-old boy was admitted because of remittent fever with pancytopenia and splenomegaly after surgical intervention for an intractable perianal abscess. He had been diagnosed with hemophagocytic lymphohistiocytosis (HLH) 4 different times, which was well controlled with intravenous immunoglobulin and steroids since the age of 3. We were unable to identify the cause for the HLH. He remained symptom-free until the development of back pain and right ankle joint pain with swelling at 15 years of age. He was diagnosed with HLA B27-positive AS with bilateral active sacroiliitis. He showed symptom aggravation despite taking naproxen and methotrexate, and the symptoms improved with etanercept. On admission, his laboratory data showed leukopenia with high ferritin and triglyceride levels. Bone marrow biopsy examination showed histiocytic hyperplasia with hemophagocytosis. There was no evidence of infection. He received naproxen alone, and his symptoms and laboratory data improved without any other immunomodulatory medications. Genetic study revealed no primary HLH or inflammasome abnormalities. In this case, underlying autoimmune disease should have been considered as the cause of recurrent MAS in the young patient once primary HLH was excluded.
Subject(s)
Adolescent , Humans , Male , Abscess , Ankle Joint , Autoimmune Diseases , Back Pain , Biopsy , Bone Marrow , Etanercept , Ferritins , HLA-B27 Antigen , Hyperplasia , Immunoglobulins , Inflammasomes , Leukocytes , Leukopenia , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Macrophage Activation , Macrophages , Malaria , Methotrexate , Naproxen , Pancytopenia , Sacroiliitis , Splenomegaly , Spondylitis, Ankylosing , Steroids , TriglyceridesABSTRACT
In the previous study, the rhizome mixture of Anemarrhena asphodeloides and Coptis chinensis (DW2007), improved TNBS-, oxazolone-, or DSS-induced colitis in mice by regulating macrophage activation. Therefore, to understand the effect of DW2007 on the T cell differentiation involved in the adaptive immunity, we measured its effect on both Th17 and Treg cell differentiation in splenocytes, in the lamina propria of mice with DSS-induced colitis (DIC), and in the spleens of mice with collagen-induced arthritis (CIA). Results showed that DW2007 potently inhibited the differentiation of splenocytes into Th17 cells, but increased Treg cell differentiation in vitro. In the colon of wild type and TLR4−/− mice with DIC, DW2007 potently suppressed DSS-induced colon shortening and myeloperoxidase activity. DW2007 also suppressed collagen-induced paw thickening, clinical index, and myeloperoxidase activity in CIA mice. Overall, DW2007 potently suppressed Th17 cell differentiation in mice with CIA and DIC, but increased Treg cell differentiation. Moreover, DW2007 strongly inhibited the expression of TNF-α and IL-1β, as well as the activation of NF-κB. Based on these findings, DW2007 may ameliorate inflammatory diseases by regulating the innate immunity via the inhibition of macrophage activation and the adaptive immunity via the correction of disturbed Th17/Treg cells.