Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Journal of Experimental Hematology ; (6): 1486-1491, 2023.
Article in Chinese | WPRIM | ID: wpr-1010001

ABSTRACT

OBJECTIVE@#To investigate the role of platelet-rich plasma (PRP) in inducing the M2 macrophage polarization via regulating AMPK singling pathway.@*METHODS@#The expressions of M1 marker CD11c and M2 marker CD206 in macrophages of blank control group, LPS group, LPS+PRP group, and LPS+PRP+Compound C group were detected by flow cytometry. Western blot was used to observe the effects of PRP on the expression of AMPK-mTOR signaling pathway-related proteins at different times (12 h, 18 h and 24 h) after LPS treatment. RNA interference technology was used to silence the expression of AMPK in macrophages, and the expression of TGF-β protein was subsequently examined by Western blot.@*RESULTS@#LPS significantly reduced the expression of CD206 and increased the expression of CD11c (P <0.05). After the addition of PRP, the expression of CD206 was significantly increased (P <0.05), while the expression of CD11c was significantly decreased (P <0.05). Compared with LPS group, PRP treatment significantly increased the expressions of p-AMPK and p-ULK1 proteins at 12 h, 18 h and 24 h, while significantly decreased the expression of p-mTOR protein (P <0.05). After the addition of AMPK inhibitor Compound C, the expression of CD206 was significantly reduced (P <0.05) and the expression of CD11c was significantly increased compared with LPS+PRP group (P <0.05). After silencing the expression of AMPK in macrophages, the promotion effect of PRP on TGF-β was significantly reduced (P <0.05).@*CONCLUSION@#PRP can stimulate the transformation of macrophages to M2 type via AMPK signalling pathway.


Subject(s)
Humans , AMP-Activated Protein Kinases/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Transforming Growth Factor beta/metabolism , Platelet-Rich Plasma/metabolism
2.
Journal of Experimental Hematology ; (6): 1242-1246, 2023.
Article in Chinese | WPRIM | ID: wpr-1009980

ABSTRACT

Bone marrow macrophage is an important component of bone marrow microenvironment, which is closely related to hematopoietic regulation and hematopoietic stem cell transplantation(HSCT). Recent studies have shown that bone marrow macrophage is an important part of hematopoietic stem cell niche, which can help regulate the mobilization and function of hematopoietic stem/progenitor cells. After HSCT, the microenvironment of bone marrow is damaged and a large number of macrophages infiltrate into the bone marrow. Regulating the macrophage-related signal pathways can promote the recovery of hematopoiesis and the reconstruction of hematopoietic function. Co-culture of macrophages and hematopoietic stem cells (HSC) in vitro significantly increased the number of HSCs and their ability of clone formation, which suggests that macrophages play an important role in the regulation of hematopoiesis in the hematopoietic microenvironment of bone marrow. This paper reviews the recent research progress on the role of macrophages in bone marrow hematopoietic microenvironment.


Subject(s)
Humans , Bone Marrow/metabolism , Hematopoietic Stem Cells/physiology , Hematopoiesis/physiology , Stem Cell Niche , Macrophages/metabolism
3.
Journal of Zhejiang University. Medical sciences ; (6): 751-765, 2023.
Article in English | WPRIM | ID: wpr-1009936

ABSTRACT

OBJECTIVES@#To investigate the mechanism of comorbidity between non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS) based on metabolomics and network pharmacology.@*METHODS@#Six ApoE-/- mice were fed with a high-fat diet for 16 weeks as a comorbid model of NAFLD and AS (model group). Normal diet was given to 6 wildtype C57BL/6J mice (control group). Serum samples were taken from both groups for a non-targeted metabolomics assay to identify differential metabolites. Network pharmacology was applied to explore the possible mechanistic effects of differential metabolites on AS and NAFLD. An in vitro comorbid cell model was constructed using NCTC1469 cells and RAW264.7 macrophage. Cellular lipid accumulation, cell viability, morphology and function of mitochondria were detected with oil red O staining, CCK-8 assay, transmission electron microscopy and JC-1 staining, respectively.@*RESULTS@#A total of 85 differential metabolites associated with comorbidity of NAFLD and AS were identified. The top 20 differential metabolites were subjected to network pharmacology analysis, which showed that the core targets of differential metabolites related to AS and NAFLD were STAT3, EGFR, MAPK14, PPARG, NFKB1, PTGS2, ESR1, PPARA, PTPN1 and SCD. The Kyoto Encyclopedia of Genes and Genomes showed the top 10 signaling pathways were PPAR signaling pathway, AGE-RAGE signaling pathway in diabetic complications, alcoholic liver disease, prolactin signaling pathway, insulin resistance, TNF signaling pathway, hepatitis B, the relax in signaling pathway, IL-17 signaling pathway and NAFLD. Experimental validation showed that lipid metabolism-related genes PPARG, PPARA, PTPN1, and SCD were significantly changed in hepatocyte models, and steatotic hepatocytes affected the expression of macrophage inflammation-related genes STAT3, NFKB1 and PTGS2; steatotic hepatocytes promoted the formation of foam cells and exacerbated the accumulation of lipids in foam cells; the disrupted morphology, impaired function, and increased reactive oxygen species production were observed in steatotic hepatocyte mitochondria, while the formation of foam cells aggravated mitochondrial damage.@*CONCLUSIONS@#Abnormal lipid metabolism and inflammatory response are distinctive features of comorbid AS and NAFLD. Hepatocyte steatosis causes mitochondrial damage, which leads to mitochondrial dysfunction, increased reactive oxygen species and activation of macrophage inflammatory response, resulting in the acceleration of AS development.


Subject(s)
Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Cyclooxygenase 2/metabolism , PPAR gamma/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Hepatocytes , Macrophages/metabolism , Liver
4.
Journal of Zhejiang University. Medical sciences ; (6): 785-794, 2023.
Article in English | WPRIM | ID: wpr-1009932

ABSTRACT

The pathogenesis of inflammatory bowel disease (IBD) is not fully elucidated. However, it has been considered that inflammatory macrophages may be involved in the imbalance of the intestinal mucosal immunity to regulate several signaling pathways, leading to IBD progression. The ratio of M1 to M2 subtypes of activated macrophages tends to increase in the inflamed intestinal section. There are challenges in the diagnosis and treatment of IBD, such as unsatisfactory specificity of imaging findings, low drug accumulation in the intestinal lesions, unstable therapeutic efficacy, and drug-related systemic toxicity. Recently developed nanoparticles may provide a new approach for the diagnosis and treatment of IBD. Nanoparticles targeted to macrophages can be used as contrast agents to improve the imaging quality or used as a drug delivery vector to increase the therapeutic efficiency of IBD. This article reviews the research progress on macrophage-targeting nanoparticles for the diagnosis and treatment of IBD to provide a reference for further research and clinical application.


Subject(s)
Humans , Inflammatory Bowel Diseases/therapy , Intestines , Macrophages/metabolism , Intestinal Mucosa/pathology , Nanoparticles
5.
Journal of Zhejiang University. Science. B ; (12): 248-261, 2023.
Article in English | WPRIM | ID: wpr-971484

ABSTRACT

An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.


Subject(s)
Humans , Hepatic Stellate Cells/pathology , Receptors, Calcitriol , Liver Cirrhosis/pathology , Macrophages/metabolism
6.
China Journal of Chinese Materia Medica ; (24): 4201-4207, 2023.
Article in Chinese | WPRIM | ID: wpr-1008616

ABSTRACT

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 μg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 μg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 μg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Subject(s)
Female , Rats , Mice , Animals , Bilobalides/pharmacology , Neuroprotection , Lipopolysaccharides/toxicity , Culture Media, Conditioned/pharmacology , Mice, Inbred C57BL , Macrophages/metabolism , Microglia , Cytokines/metabolism , Nerve Growth Factors/pharmacology , Inflammation/metabolism
7.
West China Journal of Stomatology ; (6): 385-394, 2023.
Article in English | WPRIM | ID: wpr-1007919

ABSTRACT

OBJECTIVES@#This study aimed to explore the functions and potential regulatory targets of local macrophages in nonalcoholic fatty liver combined with Porphyromonas gingivalis (P. gingivalis)infection.@*METHODS@#Single-cell RNA sequencing was used to analyze the phenotypes and functional changes in various cells in the liver tissue of nonalcoholic steatohepatitis (NASH) mice fed with P. gingivalis. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay, and immunofluorescence staining were applied to observe the inflammation and expression levels of macrophage antigen presenting functional markers in the NASH liver. Oil red staining was performed to observe the accumulation of local adipose tissue in the NASH liver. Results were verified through RT-PCRand RNA sequencing using P. gingivalis-lipopolysaccharide treated mouse peritoneal macrophages.@*RESULTS@#In comparison with healthy livers with Kupffer cells, the NASH liver combined with P. gingivalis infection-related macrophages showed significant heterogeneity. C1qb, C1qc, Mafb, Apoe, and Cd14 were highly expressed, but Cd209a, H2-Aa, H2-Ab1, and H2-DMb1, which are related to the antigen presentation function, were weakly expressed. Further in vivo and in vitro investigations indicated that the activation and infiltration of these macrophages may be due to local P. gingivalis-lipopolysaccharide accumulation.@*CONCLUSIONS@#P. gingivalis-lipopolysaccharide induces a local macrophage immunotolerance phenotype in nonalcoholic fatty liver, which may be the key mechanism of periodontitis pathogen infection that promotes NASH inflammation and pathogenesis. This study further clarifies the dysfunction and regulatory mechanisms of macrophages in the pathogenesis of P. gingivalis-infected NASH, thereby providing potential therapeutic targets for its clinical treatment.


Subject(s)
Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Kupffer Cells/pathology , Porphyromonas gingivalis , Lipopolysaccharides/metabolism , Inflammation/pathology , Macrophages/metabolism , Mice, Inbred C57BL
8.
Chinese Journal of Cellular and Molecular Immunology ; (12): 884-890, 2023.
Article in Chinese | WPRIM | ID: wpr-1009444

ABSTRACT

Objective To investigate the effects of long noncoding RNA H19 on lipid accumulation of macrophages under high fat stress and its mechanism. Methods Human THP-1 cells-derived macrophages were incubated with ox-LDL, and the effects of H19 siRNA intervention on lipid accumulation was observed. The THP-1 cells were divided into control group (conventional culture), ox-LDL group, siRNA negative control (NC siRNA) combined with ox-LDL treatment group, and H19 siRNA combined with ox-LDL treatment group. Oil red O staining was used to determine the lipid accumulation in cells, and cholesterol concentration was analyzed by enzymatic method; ATP assay kit for detecting celluar ATP content; colorimetry was used to detect the levels of oxidative stress indicators and ELISA was used to detect the levels of monocyte chemoattractant protein-1 (MCP-1) in the cell supernatant. Western blot analysis was used to detect the protein expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear factor κB p-p65 (NF-κB p-p65). Results Knockdown H19 significantly inhibited intracellular lipid accumulation, decreased total cholesterol (TC) and cholesterol ester (CE) content, and decreased CE/TC ratio. Knockdown H19 significantly alleviated cell damage including an increase in ATP content, a decrease in oxidative stress levels and a decrease in MCP-1 levels, which caused by high-fat stress. H19 siRNA upregulated expression of ABCA1, PPARα and PGC-1α in THP-1 derived macrophages, downregulated NF-κB signal pathway. Conclusion Knockdown H19 upregulates PGC-1α expression in THP-1 cells and downregulates NF-κB pathway, which promotes cholesterol reverse transport, reduces inflammatory reaction and inhibits lipid accumulation.


Subject(s)
Humans , Adenosine Triphosphate , Cholesterol , NF-kappa B , PPAR alpha , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , THP-1 Cells , Macrophages/metabolism , Lipid Metabolism
9.
Journal of Zhejiang University. Science. B ; (12): 1027-1036, 2023.
Article in English | WPRIM | ID: wpr-1010580

ABSTRACT

随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。


Subject(s)
Mice , Animals , Reactive Oxygen Species/metabolism , Pseudomonas aeruginosa , Macrophages/metabolism , Mitochondria , Cytokines/metabolism
10.
Journal of Central South University(Medical Sciences) ; (12): 1152-1162, 2023.
Article in English | WPRIM | ID: wpr-1010338

ABSTRACT

OBJECTIVES@#The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy.@*METHODS@#The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 μg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 μg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting.@*RESULTS@#After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 μg/mL group, the survival rates of macrophages in the 100, 200, and 400 μg/mL groups were significantly decreased, and the concentrations of TGF-β1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 μg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-β1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 μg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group.@*CONCLUSIONS@#Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta1/metabolism , Silicon Dioxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Matrix Metalloproteinase 1/metabolism , Tissue Inhibitor of Metalloproteinase-1 , Sirolimus , Beclin-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dust , TOR Serine-Threonine Kinases/metabolism , Lung/metabolism , Fibroblasts/metabolism , Silicosis/metabolism , Macrophages/metabolism , Autophagy
11.
Journal of Experimental Hematology ; (6): 880-888, 2023.
Article in Chinese | WPRIM | ID: wpr-982145

ABSTRACT

OBJECTIVE@#To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.@*METHODS@#THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.@*RESULTS@#1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.@*CONCLUSION@#Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.


Subject(s)
Humans , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Macrophages/metabolism , Cytokines/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B
12.
Asian Journal of Andrology ; (6): 389-397, 2023.
Article in English | WPRIM | ID: wpr-981936

ABSTRACT

Male reproductive infections are known to shape the immunological homeostasis of the testes, leading to male infertility. However, the specific pathogenesis of these changes remains poorly understood. Exosomes released in the inflammatory microenvironment are important in communication between the local microenvironment and recipient cells. Here, we aim to identify the immunomodulatory properties of inflammatory testes-derived exosomes (IT-exos) and explore their underlying mechanisms in orchitis. IT-exos were isolated using a uropathogenic Escherichia coli (UPEC)-induced orchitis model and confirmed that IT-exos promoted proinflammatory M1 activation with increasing expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. We further used small RNA sequencing to identify the differential miRNA profiles in exosomes and primary testicular macrophages (TMs) from normal and UPEC-infected testes, respectively, and identified that miR-155-5p was highly enriched in IT-exos and TMs from inflammatory testes. Further study of bone marrow derived macrophages (BMDMs) transfected with miR-155-5p mimic showed that macrophages polarized to proinflammatory phenotype. In addition, the mice that were administrated IT-exos showed remarkable activation of TM1-like macrophages; however, IT-exos with silencing miR-155-5p showed a decrease in proinflammatory responses. Overall, we demonstrate that miR-155-5p delivered by IT-exos plays an important role in the activation of TM1 in UPEC-induced orchitis. Our study provides a new perspective on the immunological mechanisms underlying inflammation-related male infertility.


Subject(s)
Humans , Male , Mice , Animals , Orchitis , Uropathogenic Escherichia coli/metabolism , MicroRNAs/metabolism , Exosomes/metabolism , Macrophages/metabolism , Phenotype , Infertility, Male/metabolism
13.
Chinese Journal of Cellular and Molecular Immunology ; (12): 656-662, 2023.
Article in Chinese | WPRIM | ID: wpr-981913

ABSTRACT

Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.


Subject(s)
Mitochondria , Mitophagy , Homeostasis/physiology , Phagocytosis , Macrophages/metabolism
14.
Chinese Journal of Cellular and Molecular Immunology ; (12): 488-493, 2023.
Article in Chinese | WPRIM | ID: wpr-981890

ABSTRACT

Objective To investigate the molecular mechanism of taurine regulating the polarization of M2 macrophages by mitophagy. Methods THP-1 cells were divided into four groups: M0 group (THP-1 cells were treated by 100 nmol/L phorbol myristate ester for 48 hours to polarize into M0), M2 group (THP-1 cells were induced to polarize into M2 macrophages by 20 ng/mL interferon-4 (IL-4) for 48 hours), M2 combined with taurine groups (added with 40 or 80 mmol/L taurine on the basis of M2 macrophages). The mRNA expression of mannose receptor C type 1(MRC-1), C-C motif chemokine ligand 22(CCL22) and dendritic cell-specific ICAM-3 grabbing non-integrin (CD209) in M2 macrophages were detected by quantitative real-time PCR. Mitochondrial and lysosome probes were used to detect the number of mitochondria and lysosomes by multifunction microplate reader and confocal laser scanning microscope. The level of mitochondrial membrane potential (MMP) was detected by JC-1 MMP assay kit. The expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blot analysis. Results Compared with M0 group, the expression of MRC-1, CCL22, CD209 and PINK1, the number of mitochondria and the level of MMP in M2 group were significantly increased, whereas the number of lysosomes and LC3II/LC3I ratio were decreased. Compared with M2 group, the expressions of MRC-1, CCL22 and CD209, the number of mitochondria and the level of MMP in M2 combined with taurine group dropped significantly while the number of lysosomes was found increased, and the protein expression of PINK1 and LC3II/LC3I ratio were also increased. Conclusions The polarization of M2 macrophages is regulated by taurine to prevent excessive polarization via reducing the level of MMP, improving the level of mitophagy, reducing the number of mitochondria, and inhibiting the mRNA expression of polarization markers in M2 macrophages.


Subject(s)
Mitophagy , Taurine , Macrophages/metabolism , Protein Kinases/metabolism , RNA, Messenger
15.
Chinese Journal of Cellular and Molecular Immunology ; (12): 385-390, 2023.
Article in Chinese | WPRIM | ID: wpr-981877

ABSTRACT

Objective To investigate the effect of Echinococcus granulosus cyst fluid(EgCF) on the cytoskeletal rearrangement and phagocytosis and the migration of macrophages induced by lipopolysaccharide(LPS). Methods Peritoneal macrophages of C57BL/6 mice were isolated and cultured in vitro, and divided into control group and LPS group and LPS combined with EgCF group. After 48 hours of treatment, filamentous actin (F-actin) changes were observed with rhodamine-labelled phalloidin staining and fluorescence microscopy; TranswellTM chamber was used to test cell migration ability and flow cytometry to test cell phagocytosis. After 1 hour of treatment, PI3K and AKT, phosphorylated AKT (p-AKT), Rac1, guanosine triphospho-Rac1 (GTP-Rac1), WASP and Arp2 protein expressions were detected with Western blot analysis. Results Compared with the control group, after LPS stimulation, macrophages were deformed significantly; pseudopodia increased; actin cytoskeleton increased and was more distributed in pseudopodia; the ability of migration and phagocytosis were significantly improved, and the expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 proteins significantly increased. EgCF treatment caused cell shrinkage and disappearance of pseudopodia protrusions of LPS-activated cells, and led to the reduced phagocytic and migratory of cells; the protein expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 decreased significantly compared with the LPS group. Conclusion LPS induces the migration and enhances phagocytosis of macrophages while EgCF inhibits these effects, which is related to actin cytoskeleton rearrangement.


Subject(s)
Mice , Animals , Lipopolysaccharides/pharmacology , Echinococcus granulosus/metabolism , Proto-Oncogene Proteins c-akt , Cyst Fluid/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Phagocytosis , Actins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Guanosine Triphosphate/pharmacology
16.
China Journal of Orthopaedics and Traumatology ; (12): 514-518, 2023.
Article in Chinese | WPRIM | ID: wpr-981725

ABSTRACT

OBJECTIVE@#To investigate the enhancement of macrophage chemotaxis in patients with knee osteoarthritis (KOA) and its correlation with the disease severity.@*METHODS@#Eighty patients with KOA admitted from July 2019 to June 2022 were enrolled as the observation group and divided into 29 cases of moderate group, 30 cases of severe group and 21 cases of extremely severe group. At the same time, 30 healthy subjects were included as the control group. The gene expressions of NF-κB, CXC chemokine receptor 7 (CXCR7) and CXC chemokine ligand 12 (CXCL12) in macrophages of each group were analyzed. Visual analogue scale(VAS) was used to evaluate the degree of joint pain. Joint function was evaluated by knee Joint Society Scoring system(KSS). Finally, data analysis was carried out.@*RESULTS@#The expression levels of NF-κB, CXCR7 and CXCL12 in moderate group, severe group and extreme recombination group were higher than those in control group. The VAS, the expression of NF-κB, CXCR7 and CXCL12 in the severe group and the extreme recombination group were higher than those in the moderate group, whereas KSS was lower than that in the moderate group. The VAS, expression levels of NF-κB, CXCR7 and CXCL12 in the extremely severe group were higher than those in the severe group, and KSS was lower than that in the severe group (all P<0.01). The expression levels of NF-κB, CXCR7 and CXCL12 in macrophages were positively correlated with VAS score, but negatively correlated with KSS(all P<0.01). The expression levels of NF-κB, CXCR7 and CXCL12 in macrophages were positively correlated with the severity of disease. After excluding the influence of traditional factors (gender, age and disease duration), multiple linear regression analysis further showed that the expression levels of NF-κB, CXCR7 and CXCL12 were still positively correlated with the severity of disease(all P<0.01).@*CONCLUSION@#The chemotaxis of macrophages in patients with KOA increased with the aggravation of the disease, and was related to the degree of pain and function impairment.


Subject(s)
Humans , Osteoarthritis, Knee/genetics , Chemotaxis/genetics , NF-kappa B/metabolism , Macrophages/metabolism , Receptors, CXCR/metabolism , Patient Acuity
17.
Journal of Biomedical Engineering ; (6): 384-391, 2023.
Article in Chinese | WPRIM | ID: wpr-981554

ABSTRACT

Macrophages are important immune effector cells with significant plasticity and heterogeneity in the body immune system, and play an important role in normal physiological conditions and in the process of inflammation. It has been found that macrophage polarization involves a variety of cytokines and is a key link in immune regulation. Targeting macrophages by nanoparticles has a certain impact on the occurrence and development of a variety of diseases. Due to its characteristics, iron oxide nanoparticles have been used as the medium and carrier for cancer diagnosis and treatment, making full use of the special microenvironment of tumors to actively or passively aggregate drugs in tumor tissues, which has a good application prospect. However, the specific regulatory mechanism of reprogramming macrophages using iron oxide nanoparticles remains to be further explored. In this paper, the classification, polarization effect and metabolic mechanism of macrophages were firstly described. Secondly, the application of iron oxide nanoparticles and the induction of macrophage reprogramming were reviewed. Finally, the research prospect and difficulties and challenges of iron oxide nanoparticles were discussed to provide basic data and theoretical support for further research on the mechanism of the polarization effect of nanoparticles on macrophages.


Subject(s)
Humans , Macrophages/metabolism , Cytokines , Inflammation , Neoplasms/metabolism , Nanoparticles , Magnetic Iron Oxide Nanoparticles , Tumor Microenvironment
18.
Journal of Southern Medical University ; (12): 568-576, 2023.
Article in Chinese | WPRIM | ID: wpr-986963

ABSTRACT

OBJECTIVE@#To investigate the effect of Akt2 inhibitor on macrophage polarization in the periapical tissue in a rat model of periapical inflammation.@*METHODS@#Rat models of periapical inflammation were established in 28 normal SD rats by opening the pulp cavity of the mandibular first molars, followed by injection of normal saline and Akt2 inhibitor into the left and right medullary cavities, respectively. Four rats without any treatment served as the healthy control group. At 7, 14, 21 and 28 days after modeling, 7 rat models and 1 control rat were randomly selected for observation of inflammatory infiltration in the periapical tissues by X-ray and HE staining. Immunohistochemistry was used to detect the expression and localization of Akt2, macrophages and the inflammatory mediators. RT-PCR was performed to detect the mRNA expressions of Akt2, CD86, CD163, inflammatory mediators, miR-155-5p and C/EBPβ to analyze the changes in macrophage polarization.@*RESULTS@#X-ray and HE staining showed that periapical inflammation was the most obvious at 21 days after modeling in the rats. Immunohistochemistry and RT-PCR showed that compared with those in the control rats, the expressions of Akt2, CD86, CD163, miR-155-5p, C/EBPβ, and IL-10 increased significantly in the rat models at 21 days (P < 0.05). Compared with saline treatment, treatment with the Akt2 inhibitor significantly decreased the expression levels of Akt2, CD86, miR-155-5p and IL-6 and the ratio of CD86+M1/CD163+M2 macrophages (P < 0.05) and increased the expression levels of CD163, C/EBPβ and IL-10 in the rat models (P < 0.05).@*CONCLUSION@#Inhibition of Akt2 can delay the progression of periapical inflammation in rats and promote M2 macrophage polarization in the periapical inflammatory microenvironment possibly by reducing miR-155-5p expression and activating the expression of C/EBPβ in the Akt signaling pathway.


Subject(s)
Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , Interleukin-10 , Rats, Sprague-Dawley , Macrophages/metabolism , Inflammation/metabolism
19.
Chinese Journal of Oncology ; (12): 410-414, 2023.
Article in Chinese | WPRIM | ID: wpr-984737

ABSTRACT

Objective: To investigate the differences of immune microenvironment between stage T1N3 and stage T3N0 breast cancer patients and explore the relationship between M1 macrophage infiltration and lymph node metastasis in breast cancer. Methods: Clinical information and RNA-sequencing (RNA-Seq) expression data of stage T1N3 (n=9) and stage T3N0 (n=11) breast cancer patients were extracted from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Using CIBERSORT, the proportions of 22 types of immune cells were calculated, and then the differences of immune cell infiltration between stage T1N3 and T3N0 patients were compared. From 2011 to 2022, pathologic specimens were collected from breast cancer patients who underwent curative resection at the Cancer Hospital, Chinese Academy of Medical Sciences, including 77 at stage T1N3 and 58 at stage T3N0.The METABRIC database analysis results were verified by examining the density of M1 macrophages in tissues using dual-staining immunohistochemistry. Results: METABRIC data analysis showed M1 macrophage was the highest proportion, 15.85% in stage T1N3 breast cancer; M2 macrophage was the highest proportion, 13.07% in stage T3N0 breast cancer.M1 macrophage proportions were statistically different between patients with stage T1N3 and stage T3N0 (P=0.010). The dual-staining immunohistochemistry analysis of breast cancer tissues showed M1 macrophage density (median) of 62.0 and 38.0 cells/mm(2) for stage T1N3 and T3N0, respectively. The difference was statistically significant (P=0.002). Conclusion: The density of M1 macrophages is notably higher in stage T1N3 patients and is associated with lymph node metastasis.


Subject(s)
Humans , Female , Breast Neoplasms/pathology , Lymphatic Metastasis/pathology , Macrophages/metabolism , Tumor Microenvironment
20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 527-539, 2023.
Article in English | WPRIM | ID: wpr-982722

ABSTRACT

Activated fibroblasts and M2-polarized macrophages may contribute to the progression of pulmonary fibrosis by forming a positive feedback loop. This study was aimed to investigate whether fibroblasts and macrophages form this loop by secreting SDF-1 and TGF-β and the impacts of neotuberostemonine (NTS) and tuberostemonine (TS). Mice were intratracheally injected with 3 U·kg-1 bleomycin and orally administered with 30 mg·kg-1 NTS or TS. Primary pulmonary fibroblasts (PFBs) and MH-S cells (alveolar macrophages) were used in vitro. The animal experiments showed that NTS and TS improved fibrosis related indicators, inhibited fibroblast activation and macrophage M2 polarization, and reduced the levels of TGF-β and SDF-1 in alveolar lavage fluid. Cell experiments showed that TGF-β1 may activated fibroblasts into myofibroblasts secreting SDF-1 by activating the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways. It was also found for the first time that SDF-1 was able to directly polarize macrophages into M2 phenotype secreting TGF-β through the same pathways as mentioned above. Moreover, the results of the cell coculture confirmed that fibroblasts and macrophages actually developed a feedback loop to promote fibrosis, and the secretion of TGF-β and SDF-1 was crucial for maintaining this loop. NTS and TS may disturb this loop through inhibiting both the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways to improve pulmonary fibrosis. NTS and TS are stereoisomeric alkaloids with pyrrole[1,2-a]azapine skeleton, and their effect on improving pulmonary fibrosis may be largely attributed to their parent nucleus. Moreover, this study found that inhibition of both the AKT and ERK pathways is essential for maximizing the improvement of pulmonary fibrosis.


Subject(s)
Animals , Mice , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System , Alkaloids/pharmacology , Fibroblasts , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL