ABSTRACT
SUMMARY: We evaluated the role and mechanism of acteoside in the regulation of memory impairment induced by chronic unpredictable mild stress (CUMS). CUMS was used to induce depression in rats and the successful establishment of CUMS model were verified by forced swimming test and sucrose preference test. The Y-maze test and novel object recognition test assessed memory functions. The structural changes in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Immunofluorescence staining and western blotting determined the protein levels. Y-maze test and novel object recognition test showed that there was memory performance impairment in rats of CUMS group, which was improved by the acteoside treatment. HE staining showed that CUMS exposure damaged the structure in the cortex and hippocampus, while the acteoside treatment alleviated the structural changes. Compared with the control group, the levels of BNDF and CREB in the cortex and hippocampus of the CUMS group were significantly decreased. Acteoside significantly reversed the expressions of these proteins in CUMS rats. Meanwhile, compared with the control group, the levels of p-mTOR and p- P70S6K in the cortex and hippocampus of the CUMS group were significantly increased, and these changes were significantly reversed by acteoside. Nevertheless, the effect of acteoside on mTOR signaling was markedly blocked by rapamycin, a specific inhibitor of mTOR signaling. Acteoside can attenuate memory impairment and ameliorate neuronal damage and synaptic plasticity in depression rats probably via inhibiting the mTOR signaling pathway. Acteoside may serve as a novel reagent for the prevention of depression.
Evaluamos el papel y el mecanismo del acteoside en la regulación del deterioro de la memoria inducido por estrés leve crónico impredecible (ELCI). Se utilizó ELCI para inducir depresión en ratas y el establecimiento exitoso del modelo ELCI se verificó mediante una prueba de natación forzada y una prueba de preferencia de sacarosa. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos evaluaron las funciones de la memoria. Los cambios estructurales en la corteza y el hipocampo se observaron mediante tinción con hematoxilina y eosina (HE). La tinción por inmunofluorescencia y la transferencia Western determinaron los niveles de proteína. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos mostraron que había un deterioro del rendimiento de la memoria en ratas del grupo ELCI, que mejoró con el tratamiento con acteósidos. La tinción con HE mostró que la exposición a ELCI dañó la estructura de la corteza y el hipocampo, mientras que el tratamiento con actósidos alivió los cambios estructurales. En comparación con el grupo de control, los niveles de BNDF y CREB en la corteza y el hipocampo del grupo ELCI disminuyeron significativamente. Acteoside revirtió significativamente las expresiones de estas proteínas en ratas ELCI. Mientras tanto, en comparación con el grupo control, los niveles de p-mTOR y p-P70S6K en la corteza y el hipocampo del grupo ELCI aumentaron significativamente, y estos cambios fueron revertidos significativamente ELCI por el acteoside. Sin embargo, el efecto del acteoside sobre la señalización de mTOR fue notablemente bloqueado por la rapamicina, un inhibidor específico de la señalización de mTOR. El acteoside puede atenuar el deterioro de la memoria y mejorar el daño neuronal y la plasticidad sináptica en ratas con depresión, probablemente mediante la inhibición de la vía de señalización mTOR. Acteoside puede servir como un reactivo novedoso para la prevención de la depresión.
Subject(s)
Animals , Rats , Depression/drug therapy , Polyphenols/administration & dosage , Glucosides/administration & dosage , Memory Disorders/drug therapy , Stress, Psychological/complications , Blotting, Western , Fluorescent Antibody Technique , Rats, Sprague-Dawley , Maze Learning , Recognition, Psychology/drug effects , Disease Models, Animal , TOR Serine-Threonine Kinases/antagonists & inhibitors , Polyphenols/therapeutic use , Behavior Rating Scale , MTOR Inhibitors , Glucosides/therapeutic use , Neuronal Plasticity/drug effects , NeuronsABSTRACT
This study aimed to explore the effect of Ganmai Dazao Decoction on the ethology of rats with posttraumatic stress disorder(PTSD) and study the related mechanism through the changes in magnetic resonance imaging and protein expression. Sixty rats were randomly divided into 6 groups, namely the normal group, the model group, the low(1 g·kg~(-1)), medium(2 g·kg~(-1)), and high-dose Ganmai Dazao Decoction groups(4 g·kg~(-1)), and the positive control group(intragastric administration with 10.8 mg·kg~(-1) of fluoxetine), with 10 rats in each group. Two weeks after inducing PTSD by single-prolonged stress(SPS) in rats, the positive control group was given fluoxetine hydrochloride capsule by gavage, the low, medium, and high-dose groups were given Ganmai Dazao Decoction by gavage, and both the normal group and the model group were given the same volume of normal saline by gavage, each for 7 days. The open field experiment, elevated cross elevated maze, forced swimming experiment, and new object recognition test were carried out for the behavioral test. Three rats in each group were selected to detect the expression of neuropeptide receptor Y1(NPY1R) protein in the hippocampus by Western blot. Then, the other three rats in each group were selected to use the 9.4T magnetic resonance imaging experiment to observe the overall structural changes in the brain region and the anisotropy fraction of the hippocampus. The results of the open field experiment showed that the total distance and central distance of rats in the model group were significantly lower than those in the normal group, and the total distance and central distance of rats in the middle and high-dose Ganmai Dazao Decoction groups were higher than those in the model group. The results of the elevated cross maze test showed that medium and high-dose Ganmai Dazao Decoction remarkably increased the number of open arm entries and the residence time of open arm of rats with PTSD. The results of the forced swimming experiment showed that the immobility time in the water of the model group rats was significantly higher than that of the normal group, and Ganmai Dazao Decoction hugely reduced the immobility time in the water of rats with PTSD. The results of the new object recognition test showed that Ganmai Dazao Decoction significantly increased the exploration time of new objects and familiar objects in rats with PTSD. The results of Western blot showed that Ganmai Dazao Decoction significantly reduced the expression of NYP1R protein in the hippocampus of rats with PTSD. The 9.4T magnetic resonance examination found that there was no significant difference in the structural image among the groups. In the functional image, the fractional anisotropy(FA value) of the hippocampus in the model group was significantly lower than that in the normal group. The FA value of the hippocampus in the middle and high-dose Ganmai Dazao Decoction groups was higher than that in the model group. Ganmai Dazao Decoction reduces the injury of hippocampal neurons by inhibiting the expression of NYP1R in the hippocampus of rats with PTSD, thereby improving the nerve function injury of rats with PTSD and playing a neuroprotective role.
Subject(s)
Animals , Rats , Ethology , Stress Disorders, Post-Traumatic , Fluoxetine , Hippocampus , Maze LearningABSTRACT
This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.
Subject(s)
Mice , Animals , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Arachidonic Acid , Tryptophan , Mice, Inbred C57BL , Alzheimer Disease/genetics , Maze Learning , Glycerophospholipids , Disease Models, Animal , Amyloid beta-Peptides/metabolismABSTRACT
Objective: To explore the effect of lead exposure on the neurobehavior and gut microbiota community structure in mice. Methods: In August 2019, 64 C57BL/6 mice were randomly divided into 4 groups: control group (0 ppm) , low lead exposure group (20 mg/l) , medium lead exposure group (100 mg/l) and high lead exposure group (500 mg/l) . During the experiment, they were free to eat and drink. The drinking water of the lead exposure group was mixed with lead acetate, and sodium acetate was added in the control group. After 10 weeks of exposure, the Morris water maze was used to test the learning and memory ability of each group of mice, and then they were sacrificed for sampling. ICP-MS was used to detect lead content in whole blood and brain tissue. ELISA was used to determine the level of IL-1β in mouse serum. 16S rRNA sequencing was used to detect the structural diversity of the intestinal flora in feces, and then the correlation between the flora and behavior indicators was analyzed. Results: In the Morris water maze experiment, compared with the control group, there was no significant difference in the body weight and swimming speed of the mice in the lead exposure groups. The escape latency of the mice in the 100 mg/l and 500 mg/l dose groups was prolonged, and the number of platform crossings decreased (P<0.05) ; meanwhile, the staying time of the mice in the 500 mg/l Pb-treated group in the target quadrant was lower than that of the control group, and the difference was statistically significant (P<0.05) . Compared with the control group, the blood lead content of the mice in each lead exposure group was significantly increased, and the brain lead content of mice in the 500 mg/l dose group was significantly elevated (P<0.05) . The serum IL-1β levels of mice in each lead exposure group were higher than those of the control group (P<0.05) . At the phylum level, the relative abundance of the Proteobacteria phylum in all of Pb-treated groups was significantly increased (P<0.05) ; at the genus level, Allobaculum, Desulfovibrio, Lachnospiraceae_NK4A136_group, Turicibacter and Ureaplasma were significantly increased (P<0.05) . Among them. The relative abundance of Desuffaoibrio, Turici bacter, and Ureaplasma was negatively correlated with the residence time of mice in the quadrant of the platform (r=-0.32, -0.29, -0.44, P<0.05) . Conclusion: Lead exposure induced learning and memory impairments in mice, which may be related to the disturbance of the gut microbiota.
Subject(s)
Animals , Mice , Gastrointestinal Microbiome , Lead/toxicity , Maze Learning , Memory Disorders , Mice, Inbred C57BL , RNA, Ribosomal, 16S/geneticsABSTRACT
Objective: To uncover the time-dependent expression pattern of ptk2b gene and ptk2b-encoded protein, protein tyrosine kinase 2 beta(PTK2B), in the brain tissues of transgenic animal models of Alzheimer's disease (AD) and its relationship with the levels of Aβ1-42, phosphorylation of Tau (p-Tau) and low density lipoprotein receptor-related protein-1(LRP-1) in blood and brain tissues. Methods: In this study, 5-, 10- and 15-month-old APPswe/PS1dE9 double-transgenic mice harboring the genotype of AD confirmed by the gene test were divided into the 5-, 10- and 15-month-old experiment groups, and simultaneously, age-matched C57BL/6J mice were placed into the corresponding control groups, with 8 mice in each group. All mice were subjected to the Morris Water Maze for test of cognitive and behavioral ability. Expression profiles of PTK2B, Aβ1-42, p-Tau/Tau and LRP-1 in the hippocampus or blood of mice were quantified by using the immunohistochemistry staining, Western blot or enzyme-linked immunosorbent assay (ELISA), while the mRNA expression of ptk2b in the hippocampus was quantified by using the real-time quantitative polymerase chain reaction (qRT-PCR). Results: Results of experiment groups demonstrated that as mice aged, the expression levels of PTK2B, ptk2b mRNA, Aβ1-42 and p-Tau/Tau in the hippocampus were increased, and the expression of LRP-1 was decreased gradually. While in the blood, the level of Aβ1-42 was decreased, and the cognitive and behavioral ability was decreased in an age-dependent manner (all P< 0.05). However, comparisons among the control groups, only the age-dependent downregulation of LRP-1 were observed in hippocampus(P<0.05), but other indicators had no significant differences (P>0.05). Conclusion: In the hippocampus of APP/PS1 double-transgenic mice, the expressions of PTK2B, Aβ1-42 and p-Tau/Tau are upregulated, LRP-1 is downregulated, while cognitive and behavioral ability is decreased, and such changes are presented in a time-dependent manner.
Subject(s)
Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Focal Adhesion Kinase 2/metabolism , Hippocampus/metabolism , Low Density Lipoprotein Receptor-Related Protein-1 , Maze Learning , Mice, Inbred C57BL , Mice, Transgenic , RNA, MessengerABSTRACT
This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERβ expression was detected by immunohistochemistry, and the expression levels of ERβ and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERβ, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERβ and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.
Subject(s)
Animals , Mice , Flavonoids , Hippocampus , Maze Learning , Polypodiaceae , Receptors, Estrogen , Scopolamine/toxicity , Signal Transduction , p38 Mitogen-Activated Protein Kinases/geneticsABSTRACT
HIGHLIGHTS: Tumor progression and anxiety and depression behaviors under evaluation during propranolol use in murine melanoma. Evaluation of anxiety and depression through forced swimming behavior tests, elevated plus maze, open field and marble-burying test.
Abstract Melanoma, a severe form of skin cancer, has rapid growth and has been prone to behavioral disorders that worsen the patient's prognosis and survival. Among these psychic disorders can occur anxiety and depression, in addition to cognitive deficit. In order to try to elucidate the neuropsychological disorders that occur in melanoma, the objective of this study was to evaluate propranolol in tumor progression and in anxious and depressive behaviors in an animal model with melanoma. B16F10 cells were injected into C57BL6/J mice subsequently treated with propranolol at doses of 1.43 mg/kg and 5.71 mg/kg and evaluated for tumor growth and in open field, forced swimming, elevated plus maze and marble-burying test at initial time and consolidated tumor. As a result, the group treated with propranolol at a dose of 5.71 mg/kg showed less tumor growth. In the initial behavioral tests, melanoma altered the animals' motility, but anxious behavior was not detected. Depressive behavior was detected in the forced swimming test in the two doses of the treatment used. When taking time with consolidated tumor, there was a reduction in the locomotor activity of the animals in the open field test, impairing the analysis of anxious and depressive behavior. The data suggest that there was a reduction in the progression of melanoma, there was no anxious behavior in the animals, only the depressive behavior and the use of propranolol did not improve the evaluated behavior.
Subject(s)
Animals , Male , Mice , Anxiety/psychology , Propranolol/administration & dosage , Skin Neoplasms/psychology , Melanoma, Experimental/psychology , Depression/psychology , Swimming , Maze Learning , Disease Models, Animal , Mice, Inbred C57BLABSTRACT
Formaldehyde is one of the simplest organic small molecules containing C, H and O elements in the early stage of earth's evolution; however, it has been found to be existed in every eukaryotic cell and participate in "one carbon metabolism". Recent studies have shown that formaldehyde may act as a signal molecule to regulate memory formation. After electrical stimulation or learning activity, the levels of formaldehyde in rat brains were increased instantly, and N-methyl-D-aspartate (NMDA) receptor was activated to promote the formation of long-term potentiation (LTP) or spatial memory. On the contrary, after reducing the levels of formaldehyde in the brains, NMDA receptor could not be activated, which was accompanied by the deficits in both LTP and memory. Moreover, in the brains of normal aged rats and APP/PS1 transgenic mice, the concentrations of formaldehyde were abnormally increased, which directly inhibited NMDA receptor activity and impaired spatial memory. This article reviewed the physiological and pathophysiological functions of endogenous formaldehyde in learning and memory.
Subject(s)
Animals , Mice , Rats , Formaldehyde , Hippocampus , Long-Term Potentiation , Maze Learning , Memory , Memory Disorders , Receptors, N-Methyl-D-AspartateABSTRACT
The objective of this study was to elucidate the effect of chronic stress (CS) on dopamine (DA) level and synaptic efficiency in the hippocampal dentate gyrus (DG) during spatial learning and memory. Sprague Dawley (SD) male rats were randomly divided into control group and CS group (n = 10). CS group was treated with chronic mild unpredictable stress, and control group did not receive any treatments. The levels of epinephrine and corticosterone (CORT) in serum were measured by using enzyme-linked immunosorbent assay (ELISA); the spatial learning and memory abilities of rats were measured by Morris water maze (MWM) test. Meanwhile, the amplitude of field excitatory postsynaptic potential (fEPSP) and concentration of DA in the DG region were determined by in vivo electrophysiology, microdialysis and HPLC techniques during MWM test in rats. After that, the DA D1 receptor (D1R) and its key downstream members in DG were examined by immunohistochemistry or Western blot assay. The results showed that the levels of epinephrine and CORT in the serum of the rats in CS group were significantly increased compared with those in the control group (P < 0.05). In CS group rats, the escape latency was significantly prolonged and the number of platform crossing was markedly decreased during MWM test, compared with those in control group (P < 0.05). Furthermore, the amplitude of fEPSP in the DG was not changed during MWM test in CS rats, while it was significantly increased on the 3rd day of MWM test in control group (P < 0.05). Compared with baseline or control group, CS group showed significantly increased DA level from the 1st to 3rd days of MWM test in the DG (P < 0.05). In addition, the protein expression of D1R was markedly up-regulated in the DG in CS group, while the protein expression levels of p-PKA, p-CREB and BDNF were significantly reduced, compared with those in control group. These results suggest that CS may impair spatial learning and memory abilities in rats through the enhancement of the DA levels in the hippocampal DG.
Subject(s)
Animals , Male , Rats , Dentate Gyrus , Dopamine , Hippocampus , Maze Learning , Rats, Sprague-Dawley , Spatial Learning , Spatial MemoryABSTRACT
Abstract The high prevalence of anxiety disorders associated with pharmacotherapy side effects have motivated the search for new pharmacological agents. Species from Citrus genus, such as Citrus limon (sicilian lemon), have been used in folk medicine as a potential therapy to minimize emotional disorders. In order to searching for new effective treatments with fewer side effects, the present study evaluated the anxiolytic mechanism of action and the hypnotic-sedative activity from the Citrus limon fruit's peels essential oil (CLEO). Adults male Swiss mice were submitted to barbiturate-induced sleep test; elevated plus-maze (EPM) and light-dark box (LDB) (evaluation of the mechanism of action); rotarod; and catalepsy tests. CLEO oral treatment decreased latency and increased the sleep total time; moreover it induced in animals an increased the number of entries and percentage of time spent into open arms of the EPM; an increased the number of transitions and the percentage of time into light compartment in the LDB; which were only antagonized by flumazenil pretreatment, with no injury at motor function. Thus, results suggest that CLEO treatment induced an anxiolytic behavior suggestively modulated by the benzodiazepine binding site of the GABAA receptor or by an increase of GABAergic neurotransmission, without cause impairment in the motor coordination.
Subject(s)
Animals , Male , Mice , Anxiety/drug therapy , Anti-Anxiety Agents/therapeutic use , Oils, Volatile/therapeutic use , Citrus/chemistry , GABA Modulators/pharmacology , Hypnotics and Sedatives/therapeutic use , Anti-Anxiety Agents/isolation & purification , Maze Learning/drug effects , Hypnotics and Sedatives/isolation & purificationABSTRACT
Abstract Hippocampus is a part of the brain that has a major role in spatial learning and memory which can be affected by herbal extracts. Incense resin (Styrax benzoin) has been used by local communities to improve intelligence. However, there is no scientific evidence of the functions of Styrax benzoin for regulating hippocampal function. The aim of this study was intended to analyze and investigate the effect of incense resin on learning, memory, and dendrite complexity of mice. Three months old male Deutch Democratic Yokohama (DDY) mice were injected orally with graded doses of 100, 150, and 200 mg/kg of incense resin aqueous extract daily for 30 days. Spatial learning and memory performance levels were tested with Y-maze alternation, novel object recognition, and Morris water maze. The branches and maximum dendritic span in the dentate gyrus were observed by the Golgi-Cox staining. Overall, our results showed that incense resin extract increased learning and memory ability, and the number of dendrite branching in the dentate gyrus.
Subject(s)
Animals , Male , Mice , Dendritic Cells/drug effects , Plant Extracts/pharmacology , Styrax/chemistry , Spatial Learning/drug effects , Memory/drug effects , Administration, Oral , Maze Learning/drug effectsABSTRACT
Fetal exposure to sevoflurane induces long-term cognitive impairment. Histone acetylation regulates the transcription of genes involved in memory formation. We investigated whether sevoflurane exposure during late-pregnancy induces neurocognitive impairment in offspring, and if this is related to histone acetylation dysfunction. We determined whether the effects could be reversed by an enriched environment (EE). Pregnant rats were exposed to 2.5% sevoflurane or control for 1, 3, or 6 h on gestational day 18 (G18). Sevoflurane reduced brain-derived neurotrophic factor (BDNF), acetyl histone H3 (Ac-H3), and Ac-H4 levels and increased histone deacetylases-2 (HDAC2) and HDAC3 levels in the hippocampus of the offspring on postnatal day 1 (P1) and P35. Long-term potentiation was inhibited, and spatial learning and memory were impaired in the 6-h sevoflurane group at P35. EE alleviated sevoflurane-induced cognitive dysfunction and increased hippocampal BDNF, Ac-H3, and Ac-H4. Exposure to 2.5% sevoflurane for 3 h during late-pregnancy decreased hippocampal BDNF, Ac-H3, and Ac-H4 in the offspring but had no effect on cognitive function. However, when the exposure time was 6 h, impaired spatial learning and memory were linked to reduced BDNF, Ac-H3, and Ac-H4, which could be reversed by EE.
Subject(s)
Animals , Female , Pregnancy , Rats , Cognitive Dysfunction , Acetylation , Histones , Maze Learning , Brain-Derived Neurotrophic Factor , Sevoflurane , HippocampusABSTRACT
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Subject(s)
Animals , Male , Brain , Metabolism , Pathology , Cognitive Dysfunction , Drug Therapy , Metabolism , Pathology , Disease Models, Animal , Dizocilpine Maleate , Pharmacology , Excitatory Amino Acid Antagonists , Pharmacology , Hydrocarbons, Brominated , Inflammasomes , Metabolism , Maze Learning , Physiology , Microglia , Metabolism , Pathology , NLR Family, Pyrin Domain-Containing 3 Protein , Metabolism , Neurons , Metabolism , Pathology , Nootropic Agents , Pharmacology , Random Allocation , Rats, Wistar , Receptors, N-Methyl-D-Aspartate , Metabolism , Spatial Memory , Physiology , Specific Pathogen-Free OrganismsABSTRACT
OBJECTIVE@#To investigate the effects of Acorus tatarinowii Schott and its active component 5- hydroxymethyl furfural (HMF) on learning and memory and ERK/CREB signal in hippocampus of rats with exercise-induced fatigue.@*METHODS@#SD rats were randomly divided into normal group (A), exercise group (B), exercise + HMF low, middle and high dose treatment group (C, D, E), exercise + acorus tatarinowii Schott low, middle and high dose treatment group (F, G, H), with ten rats in each group. The rats in group C, D and E were treated with HMF at the doses of 0.10, 1.00 and 3.00 mg. kg by ig. The rats in group F, G and H were treated with the extracts of Acorus tatarinowii Schott at the doses of 0.12, 1.20 and 4.80 g. kg by ig. Learning and memory of rats were tested by the method of water maze experiment, and the expression levels of p-ERK1/2 and p-CREB protein in hippocampus of rats were tested by the method of Western blot in the end of the experiment.@*RESULTS@#The escape latencies of E and H groups were lower than those of groups B, C, D, F and G; and the numbers of plateau crossing were more than those of groups B, C, D, F and G and the expression levels of p-ERK1/2, p-CREB protein were higher than those of groups B, C, D, F and G , respectively(P < 0.01). There was no significant difference in the above indexes among groups A, E and H(P>0.05) except that the expression levels of p-ERK2 protein in group E were lower than those in group A and H (P<0.05).@*CONCLUSION@#Acorus tatarinowii and its active component- HMF can improve the learning and memory of rats with exercise-induced fatigue, and the mechanism is related to the up-regulation of ERK / CREB signal in hippocampus of rats with exercise-induced fatigue.
Subject(s)
Animals , Rats , Acorus , Chemistry , Cyclic AMP Response Element-Binding Protein , Metabolism , Fatigue , Drug Therapy , Furaldehyde , Pharmacology , Hippocampus , Metabolism , MAP Kinase Signaling System , Maze Learning , Memory , Physical Conditioning, Animal , Phytochemicals , Pharmacology , Random Allocation , Rats, Sprague-DawleyABSTRACT
OBJECTIVE@#To investigate the effects of berberine on learning and memory ability in vascular cognitive impairment rats.@*METHODS@#Sixty-eight Wistar rats were randomly divided into control group (n=10), sham operated group (n=10) and the modeling group of vascular cognitive impairment rat (n=48), then the rats in modeling group were randomly divided into four groups (n=10): vehicle group, berberine low dose group (20 mg/kg), medium dose group (40 mg/kg) and high dose group (60 mg/kg). Bilateral common carotid arteries were occluded in rats to establish vascular cognitive impairment (VCI) model. Different doses of berberine were intraperitoneally injected into the treatment group and normal saline was intraperitoneally injected into the other groups once a day for a total of 34 days. After 28 days of administration, Morris water maze was used to test the learning and memory ability of rats. After the water maze experiment, the levels of superoxide dismutase (SOD) activity, glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor alpha(TNF-α), interleukin-1 beta (IL-1β), 5-hydroxytryptamine (5-HT) and monoamine oxidase (MAO) in the forebrain cortex were detected.@*RESULTS@#Compared to sham group, the escape latency in VCI group was significantly extended (P<0.01) and the times of passing through the platform were decreased remarkably (P<0.01). The levels of SOD, GSH and 5-HT in the hippocampus or anterior cortex were decreased significantly (P<0.01), while the contents of MDA, TNF-α, IL-1β and MAO were increased remarkably (P<0.01). Compared with VCI group, the escape latency in berberine-treated groups was shortened significantly (P<0.01, P<0.05) and the times of passing through the platform were increased remarkably (P<0.01, P<0.05), the levels of SOD, GSH and 5-HT were increased significantly (P<0.01), while the contents of TNF-α, IL-1β and MAO were decreased remarkably (P<0.01).@*CONCLUSION@#Berberine could significantly improve the spatial learning and memory abilities of rats with vascular cognitive impairment. The mechanism may be related to the effects of berberine on the hippocampal antioxidant stress, anti-inflammatory response and the monoamine neurotransmitter system in the forebrain cortex. Berberine 60 mg/kg dose group had better effect.
Subject(s)
Animals , Rats , Berberine , Pharmacology , Cognitive Dysfunction , Drug Therapy , Hippocampus , Inflammation , Maze Learning , Memory , Oxidative Stress , Random Allocation , Rats, Sprague-Dawley , Rats, WistarABSTRACT
OBJECTIVE@#To investigate the effects of rutaecarpine on high glucose-induced Alzheimer's disease-like pathological and cognitive dysfunction and its mechanism in rats.@*METHODS@#Adult male SD rats were randomly divided into three groups (n=20): control group, high glucose group and rutaecarpine group. Rats in the control group were fed with conventional feed and tap water. The rats in the high glucose group were fed with conventional feed and 20% sucrose water. The rutaecarpine group was fed with fodder contain 0.01% rutaecarpine and 20% sucrose water. Morris water maze test was used to detect learning and memory and cognitive function of three groups rats after 24 weeks of feeding. Western blot analysis was used to detect tau protein at Thr205 and Ser214 sites in each group. Phosphorylation levels of GSK-3β in serine 9 site (S9-GSK-3β) and PP2A at cycline 307 site (Y307-PP2AC) were also detected. Immunohistochemistry further confirmed tau protein at Thr205 site in each group both in hippocampus and cortex.@*RESULTS@#Compared with the control group, Morris water maze results showed that the latency of finding the hidden platform of the rats in high glucose group was increased significantly and the number of crossing platforms and the target quadrant residence time were significantly decreased (all P<0.05). Immunohistochemistry showed that the phosphorylation level of tau protein at Thr205 site was significantly increased in the high glucose group compared with the control group, and the phosphorylation level of tau protein at Thr205 site in the rutaecarpine group was higher than that in the high glucose group. Western blot analysis showed that the phosphorylation level of tau protein in the high glucose group was significantly increased at Thr205 and Ser214 site compared with the control group, but the phosphorylation level of pS9-GSK-3β was significantly decreased (all P <0.05). Compared with the high glucose group, the latency of finding the hidden platform of the rats in rutaecarpine group was significantly decreased, and the number of crossing platforms and the target quadrant residence time were significantly increased (both P<0.05). Compared with the high glucose group, the phosphorylation levels of tau protein at Thr205 and Ser214 sites showed a significant decrease, but the phosphorylation level of pS9-GSK-3β was significantly increased (all P<0.05).@*CONCLUSION@#Rutaecarpine can alleviate AD-like cognitive dysfunction induced by high glucose, possibly by enhancing pS9-GSK-3β phosphorylation, down-regulating GSK-3β activity, and thus reducing hyperphosphorylation of tau-associated sites.
Subject(s)
Animals , Male , Rats , Alzheimer Disease , Drug Therapy , Cognitive Dysfunction , Drug Therapy , Glucose , Glycogen Synthase Kinase 3 beta , Chemistry , Indole Alkaloids , Pharmacology , Maze Learning , Phosphorylation , Quinazolines , Pharmacology , Random Allocation , Rats, Sprague-Dawley , tau Proteins , ChemistryABSTRACT
OBJECTIVE@#To study the effects of prenatal cold stress on the behavior and mood of offspring in pregnant rats.@*METHODS@#Six SPF-class Wister pregnant rats were randomly divided into normal temperature control group and cold stress group with 3 rats in each group. The pregnant female rats in the normal temperature control group were kept in the environment of (22 ±2)℃, and the pregnant female rats in the cold stress group were placed in the artificial intelligence climate chamber at(4 ±0.1)℃ for 7 days before the birth, and the young rats were divided into normal temperature after the young rats were born. After the young rats were born, they were divided into normal temperature control group of male rats (MR, 22), normal temperature control group of mother rats (FR, 15), cold stress group of male rats (MC, 15), and cold stress group of female rats (FC, 15) .In the fourth generation of the offspring, the open field experiment and the elevated cross maze test were carried out.@*RESULTS@#In the open field experiment, there was no significant difference in spontaneous activity and exploration behavior between the normal temperature control group and the cold stress group (P>0.05). In the elevated plus maze experiment, the retention time of the open arms, the number of open arms and the distance of the male and female rats in the cold stress group were significantly higher than those in the normal temperature control group (P<0.05).@*CONCLUSION@#Prenatal maternal cold stress has no significant effect on spontaneous activity, exploration behavior and activity level of offspring, but the offspring have obvious abnormal behaviors with reduced anxiety behavior.
Subject(s)
Animals , Female , Male , Pregnancy , Rats , Anxiety , Behavior, Animal , Cold-Shock Response , Exploratory Behavior , Maze Learning , Prenatal Exposure Delayed Effects , Random Allocation , Stress, PsychologicalABSTRACT
Oxiracetam (ORC) is a commonly used nootropic drug for improving cognition and memory impairments. The therapeutic effect and underlying mechanism of ORC in vascular dementia (VaD) treatment remain unknown. In this study, 3-month-old male Sprague-Dawley rats with permanent bilateral common carotid artery occlusion-induced VaD were treated orally with low (100 mg/kg) or high (200 mg/kg) dose ORC once a day for 4 weeks. The results of the Morris water maze test and Nissl staining showed that ORC treatment significantly alleviated learning and memory deficits and neuronal damage in rats with VaD. Mechanistically, the protein levels of a panel of genes associated with neuronal apoptosis (Bcl-2, Bax) and autophagy (microtubule-associated protein 1 chain 3, Beclin1, p62) were significantly altered by ORC treatment compared with VaD, suggesting a protective role of ORC against VaD-induced neuronal apoptosis and autophagy. Moreover, the Akt/mTOR pathway, which is known to be the upstream signaling governing apoptosis and autophagy, was found to be activated in ORC-treated rats, suggesting an involvement of Akt/mTOR activation in ORC-rendered protection in VaD rats. Taken together, this study demonstrated that ORC may alleviate learning and memory impairments and neuronal damage in VaD rats by altering the expression of apoptosis/autophagy-related genes and activation of the Akt/mTOR signaling pathway in neurons.
Subject(s)
Animals , Male , Rats , Pyrrolidines/administration & dosage , Dementia, Vascular/drug therapy , Signal Transduction/physiology , Neuroprotective Agents/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , Cognitive Dysfunction/drug therapy , Autophagy/drug effects , Dementia, Vascular/physiopathology , Dementia, Vascular/metabolism , Rats, Sprague-Dawley , Apoptosis/drug effects , Maze Learning/drug effects , Disease Models, Animal , TOR Serine-Threonine Kinases/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/metabolismABSTRACT
Few behavioral tests allow measuring several characteristics and most require training, complex analyses, and/or are time-consuming. We present an apparatus based on rat exploratory behavior. Composed of three different environments, it allows the assessment of more than one behavioral characteristic in a short 3-min session. Factorial analyses have defined three behavioral dimensions, which we named Exploration, Impulsivity, and Self-protection. Behaviors composing the Exploration factor were increased by chlordiazepoxide and apomorphine and decreased by pentylenetetrazole. Behaviors composing the Impulsivity factor were increased by chlordiazepoxide, apomorphine, and both acute and chronic imipramine treatments. Behaviors composing the Self-protection factor were decreased by apomorphine. We submitted Wistar rats to the open-field test, the elevated-plus maze, and to the apparatus we are proposing. Measures related to exploratory behavior in all three tests were correlated. Measures composing the factors Impulsivity and Self-protection did not correlate with any measures from the two standard tests. Also, compared with existing impulsivity tests, the one we proposed did not require previous learning, training, or sophisticated analysis. Exploration measures from our test are as easy to obtain as the ones from other standard tests. Thus, we have proposed an apparatus that measured three different behavioral characteristics, was simple and fast, did not require subjects to be submitted to previous learning or training, was sensitive to drug treatments, and did not require sophisticated data analyses.
Subject(s)
Animals , Male , Anxiety/psychology , Behavior, Animal/physiology , Behavioral Research/instrumentation , Exploratory Behavior/physiology , Fear/physiology , Impulsive Behavior/physiology , Time Factors , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Apomorphine/pharmacology , Chlordiazepoxide/pharmacology , Rats, Wistar , Maze Learning/drug effects , GABA Antagonists/pharmacology , Dopamine Agonists/pharmacology , Exploratory Behavior/drug effects , Fear/drug effects , Impulsive Behavior/drug effects , Antidepressive Agents, Tricyclic/pharmacologyABSTRACT
Abstract Purpose To investigate the effects of huperzine A (HupA) on hippocampal inflammatory response and neurotrophic factors in aged rats after anesthesia. Methods Thirty-six Sprague Dawley rats (20-22 months old) were randomly divided into control, isofluran, and isoflurane+HupA groups; 12 rats in each group. The isoflurane+HupA group was intraperitoneally injected with 0.2 mg/kg of HupA. After 30 min, isoflurane inhalation anesthesia was performed in the isoflurane and isoflurane+HupA groups. After 24 h from anesthesia, Morris water maze experiment and open-field test were performed. Hippocampal inflammatory and neurotrophic factors were determined. Results Compared with isoflurane group, in isofluran+HupA group the escape latency of rats was significantly decreased (P < 0.05), the original platform quadrant residence time and traversing times were significantly increased (P < 0.05), the central area residence time was significantly increased (P < 0.05), the hippocampal tumor necrosis factor α, interleukin 6 and interleukin 1β levels were significantly decreased (P < 0.05), and the hippocampal nerve growth factor, brain derived neurotrophic factor and neurotrophin-3 levels were significantly increased (P < 0.05). Conclusion HupA may alleviate the cognitive impairment in rats after isoflurane anesthesia by decreasing inflammatory factors and increasing hippocampal neurotrophic factors in hippocampus tissue.