Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Article in Chinese | WPRIM | ID: wpr-879535

ABSTRACT

OBJECTIVE@#To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-β3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs).@*METHODS@#The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-β3.@*RESULTS@#The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-β3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-β3 was observed in PA-MSCs, UC-MSCs and DP-MSCs.@*CONCLUSION@#Up-regulated expression of the Twist1, SIRT1 and TGF-β3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-β3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-β3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.


Subject(s)
Cell Differentiation , Cell Proliferation/genetics , Cells, Cultured , Dental Pulp/cytology , Female , Fibroblast Growth Factor 2/genetics , Humans , Mesenchymal Stem Cells/cytology , Nuclear Proteins/genetics , Placenta/cytology , Pregnancy , Sirtuin 1/genetics , Transforming Growth Factor beta3/genetics , Twist-Related Protein 1/genetics , Umbilical Cord/cytology
2.
Braz. j. med. biol. res ; 54(2): e9944, 2021. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142581

ABSTRACT

The aim of this study was to inhibit adipogenic differentiation by transfecting two growth factors, platelet-derived growth factor (PDGF-BB) and bone morphogenic protein 2 (BMP-2), into modified rat bone marrow mesenchymal stem cells (rBMSCs) and then compounded with platelet-rich plasma (PRP). To achieve rBMSCs, the osteoporosis model of rats was established, and then the rBMSCs from the rats were isolated and identified. Co-transfection of rBMSCs with PDGF-BB-GFP and BMP-2 and detection of PDGF-BB/BMP-2 expression in transfected BMSCs was assessed by qRT-PCR and western blot, respectively. Moreover, the effect of the two growth factors transfection of rBMSCs on adipogenic differentiation was evaluated by oil red O staining and western blot, respectively. Finally, construction of the two growth factors transfection of rBMSCs compounded with PRP and detection of adipogenic differentiation were assessed by oil red O staining, CCK-8, and western blot, respectively. In vitro studies revealed that the two growth factors transfection of rBMSCs compounded with PRP promoted cell viability and inhibited adipogenic differentiation and could be promising for inhibiting adipogenic differentiation.


Subject(s)
Animals , Rats , Cell Differentiation , Adipose Tissue/cytology , Platelet-Rich Plasma , Bone Morphogenetic Protein 2/genetics , Mesenchymal Stem Cells/cytology , Becaplermin/genetics , Transfection , Cells, Cultured
3.
Int. j. morphol ; 38(5): 1412-1420, oct. 2020. graf
Article in English | LILACS | ID: biblio-1134457

ABSTRACT

SUMMARY: Mesenchymal stem cells are characterized by in vitro high proliferation and multilineage potential maintenance. This study aimed to isolate and characterize equine YS mesenchymal stem cells and compare these with amniotic membranes. The yolk sac (YS) and amniotic membranes (AM) were obtained from 20 pregnant mares with gestational age around 30 days. Cells were cultured in α-MEM supplemented with 15 % FBS, 1 % antibiotic solution, 1 % L-glutamine and 1 % nonessential amino acids. To cell characterization we used cytogenetic analysis, fibroblast colony-forming unit assays, cell growth curves, immunophenotyping, flow cytometry, differentiation assays and teratoma formation. Results: Both cell sources presented fibroblastoid and epithelioid-like format. The YS cells have lower colony formation potential then AM ones, 3 versus 8 colonies per 103 plated cells. However, YS cells grew progressively while AM cells showed steady. Both, the YS and amnion cells immunolabeled for Oct-4, Nanog, SSEA-3, cytokeratin 18, PCNA, and vimentin. In addition, presented mesenchymal, hematopoietic, endothelial and pluripotency markers in flow cytometry. Discussion: Both cell sources presented high plasticity and differed into osteogenic, adipogenic, and chondrogenic lineages, and no tumor formation in nude mice was observed. The results suggest that horse YS may be useful for cell therapy such as amnion-derived cells.


RESUMEN: Las células madre mesenquimales se caracterizan por una alta proliferación in vitro y un mantenimiento potencial de múltiples líneas. Este estudio tuvo como objetivo aislar y caracterizar las células madre mesenquimales del saco vitelino equinas y compararlas con las membranas amnióticas. Se obtuvo el saco vitelino (SV) y las membranas amnióticas (MA) de 20 yeguas preñadas con edad gestacional de aproximadamente 30 días. Las células se cultivaron en α -MEM suplementado con 15 % de FBS, 1 % de solución antibiótica, 1 % de L-glutamina y 1 % de aminoácidos no esenciales. Para la caracterización celular utilizamos análisis citogenéticos, ensayos de unidades de colonias de fibroblastos, curvas de crecimiento celular, inmunofenotipaje, citometría de flujo, ensayos de diferenciación y formación de teratomas. Ambas fuentes celulares presentaron formato fibroblastoideo y epitelioide. Las células SV tienen un potencial de formación de colonias más bajo que las de MA, 3 versus 8 colonias por 103 células en placa. Sin embargo, las células SV crecieron progresivamente mientras que las células MA se mostraron estables. Tanto las células YS como las células amnios están inmunomarcadas para Oct-4, Nanog, SSEA-3, citoqueratina 18, PCNA y vimentina. Además, presentó marcadores mesenquimales, hematopoyéticos, endoteliales y pluripotenciales en citometría de flujo. Ambas fuentes celulares presentaron alta plasticidad y diferían en linajes osteogénicos, adipogénicos y condrogénicos, y no se observó formación de tumores en ratones. Los resultados sugieren que el SV de caballo puede ser útil para la terapia celular, como las células derivadas de amnios.


Subject(s)
Animals , Yolk Sac/cytology , Mesenchymal Stem Cells/cytology , Horses , Yolk Sac/embryology , In Vitro Techniques , Cells, Cultured , Immunophenotyping , Regenerative Medicine , Embryonic Development , Flow Cytometry , Amnion
4.
Article in Chinese | WPRIM | ID: wpr-878674

ABSTRACT

Objective To investigate the therapeutic effect of SPK1 gene transfected adipose derived mesenchymal stem cells(ADMSC)on experimental autoimmune encephalomyelitis mice and the effect on T helper cell 17(Th17)/regulatory T(Treg) cells balance. Methods EAE was induced by myelin oligodendrocyte glycoprotein 35-55 in mice.Totally 44 mice were randomly divided into four groups:normal control group(NC group),model group(EAE group),ADMSC group,and ADMSC-SPK1 group.Forty days after injection,the pathological changes of brain and spinal cord,Th17/Treg-related inflammatory markers in brain tissue,expressions of interleukin-17A(IL-17A)and forkhead box protein p3(Foxp3)in brain and spinal cord tissue,and flow cytometric results of spleen immune cells were detected. Results Forty days after the injection,serious inflammatory cell infiltration and demyelination occurred in the brain and spinal cord of EAE group,whereas demyelination and axonal injury were improved in ADMSC group and ADMSC-SPK1 group.Compared with EAE group,the ADMSC group and ADMSC-SPK1 group had significantly improved levels of IL-17A(


Subject(s)
Adipose Tissue/cytology , Animals , Cytokines , Encephalomyelitis, Autoimmune, Experimental/therapy , Interleukin-17 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Phosphotransferases (Alcohol Group Acceptor)/genetics , T-Lymphocytes, Regulatory/cytology , Th17 Cells/cytology , Transfection
5.
Chinese Journal of Biotechnology ; (12): 2151-2161, 2020.
Article in Chinese | WPRIM | ID: wpr-878474

ABSTRACT

Kidney is one of the most important organs of the body and the mammalian kidney development is essential for kidney unit formation. The key process of kidney development is metanephric development, where mesenchymal-epithelial transition (MET) plays a crucial role. Here we investigated the biological function of PPP3CA in metanephric mesenchyme (MM) cells. qRT-PCR and Western blotting were used to detect PPP3CA and MET makers expression in mK3, mK4 cells respectively at mRNA and protein level. Subsequently, PPP3CA was stably knocked down via lentivirus infection in mK4 cells. Flow cytometry, EdU/CCK-8 assay, wound healing assay were conducted to clarify the regulation of PPP3CA on cell apoptosis, proliferation and migration respectively. PPP3CA was expressed higher in epithelial-like mK4 cells than mesenchyme-like mK3 cells. Thus, PPP3CA was silenced in mK4 cells and PPP3CA deficiency promoted E-cadherin expression, cell apoptosis. Moreover, PPP3CA knock down attenuated cell proliferation and cell migration in mK4 cell. The underlying mechanism was associated with the dephosphorylation of PPP3CA on ERK1/2. Taken together, our results indicated that PPP3CA mediated MET process and cell behaviors of MM cells, providing new foundation for analyzing potential regulator in kidney development process.


Subject(s)
Animals , Apoptosis/genetics , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Silencing , Mesenchymal Stem Cells/cytology , Mesoderm , Mice
6.
Chinese Journal of Biotechnology ; (12): 1979-1991, 2020.
Article in Chinese | WPRIM | ID: wpr-878459

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread widely on a large scale in the whole world at present, seriously endangering human health. There are still no effective and specific drugs, so it is urgent to find safe and effective therapeutic methods. Mesenchymal stem cells (MSCs) have many biological functions of powerful immunomodulation and tissue repair and regeneration. As a stem cell therapy, it has the potential to reduce the tissue injury and mortality in severe patients infected with novel coronavirus. At present, many research institutions in China and abroad have started a number of clinical research projects about MSCs in the treatment of COVID-19. In addition, those projects have initially confirmed the safety and effectiveness of this therapy. Therefore, this research field has been proved to have a very good clinical therapy prospect.


Subject(s)
Betacoronavirus , COVID-19 , China , Coronavirus Infections/therapy , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2
7.
Chinese Journal of Biotechnology ; (12): 1970-1978, 2020.
Article in Chinese | WPRIM | ID: wpr-878458

ABSTRACT

At present, SARS-CoV-2 is raging, and novel coronavirus pneumonia (COVID-19) has caused more than 35 million confirmed patients and more than 500 000 cases death, which seriously endanger human health, socioeconomic development, as well as global medical and public health systems. COVID-19 is highly contagious, has a long incubation period, and causes many death cases due to lack of effective specific treatment. Mesenchymal stem cells have powerful anti-inflammatory and immunoregulatory functions, and can effectively reduce the cytokine storm caused by coronavirus in patients, and improve the pulmonary fibrosis of patients, promote the repair of damaged lung tissue, and reduce the mortality. Currently, a number of related clinical trials of mesenchymal stem cell treatment of COVID-19 have been conducted, and have confirmed the safety and efficacy, suggesting a good clinical application prospect. While progress has been made in mesenchymal stem cell therapy for COVID-19, we should also catch sight of the problems and challenges faced by mesenchymal stem cell clinical trials under severe epidemic situation, including clinical trials design, stem cell quality management, and ethics in treatment. Only by paying attention to these can we guarantee the safe and effective development of mesenchymal stem cell clinical trials in the treatment of COVID-19.


Subject(s)
Betacoronavirus , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/therapy , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2
8.
Braz. arch. biol. technol ; 63: e20180501, 2020. graf
Article in English | LILACS | ID: biblio-1132211

ABSTRACT

Abstract Mesenchymal stem cells and osteoblasts play important roles in bone formation. Achatina fulica mucus presented the property of osteoinduction. This study aimed to examine the effects of A. fulica mucus on human mesenchymal stem cell (hMSC) and human fetal osteoblastic cell line (HFOB) differentiation. The integrated effects of A. fulica mucus and polycaprolactone (PCL) on the differentiation of hMSCs were tested. The cell viability of hMSCs treated with A. fulica mucus was investigated by the MTT assay. The cell mineralization was observed by Alizarin Red S staining, the gene expression was investigated using RT-PCR, and the PI3K activation was studied using flow cytometry. The results indicated that A. fulica mucus induced osteogenic differentiation in hMSCs and HFOBs by upregulation of the osteogenic markers; osteopontin (OPN) and osteocalcin (OCN). The results of the Alizarin Red S staining indicated that A. fulica mucus supported mineralization in both hMSCs and HFOBs. The hMSCs cultured on PCL supplemented with A. fulica mucus showed significantly increased RUNX2 and OPN expressions. A. fulica mucus was observed to increase PI3K activation in hMSCs. The findings of this study suggested that A. fulica mucus and biomaterials could be applied together for use in bone regeneration in the future.


Subject(s)
Humans , Animals , Osteogenesis/physiology , Bone Regeneration , Mesenchymal Stem Cells/cytology , Mollusca/chemistry , Mucus/chemistry , Toxicity Tests , Reverse Transcriptase Polymerase Chain Reaction , Flow Cytometry
9.
Braz. arch. biol. technol ; 63: e20200082, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132241

ABSTRACT

Abstract Fluorescent nanodiamond (FND) has been used for long-term cell labeling and in vivo cell tracking because they have good at photostability and biocompatibility. In this study, we evaluate the effect of fluorescent nanodiamond labeling on in vitro culture and differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) into hepatocyte-like cells (HLCs). For hepatic differentiation of hUCMSCs, cells were induced with human hepatocyte growth factor, nicotinamide and Dexamethasone. FND was supplied in two experimental groups with 20 μg/mL and 100 μg/mL in 2 hours. The cell was assessed for FND uptake by laser scan microscopy and flow cytometry methods. The effect of FND on hUCMSCs was evaluated by the cell viability and growth assays as well as the differentiation throughout of morphology alterations or gene expression of anfa-fetoprotein, albumin, and hepatocyte nuclear factor 4α. The results showed that the labeling of hUCMSCs is efficient and easy and there was significant cellular uptake of FND. We did not observe any negative impacts of FND to the cell viability and growth. FND can be utilized for the long-term labeling and tracking of hUCSCs and HLCs in vivo studies.


Subject(s)
Humans , Umbilical Cord/cytology , Cell Differentiation , Hepatocytes/cytology , Mesenchymal Stem Cells/cytology , Cell Survival , Reverse Transcriptase Polymerase Chain Reaction
10.
Braz. arch. biol. technol ; 63: e20190260, 2020. graf
Article in English | LILACS | ID: biblio-1132251

ABSTRACT

Abstract Creating experimental models for obtaining stem cells from adipose tissue is necessary to elucidate their peculiar features. Objective: This study proposed a reliable reproducible and consistent experimental model for obtaining mesenchymal stem cells from adipose tissue. Material and Method: Lines of New Zealand rabbits, Wistar rats and CaviaPorcellus guinea pigs (4 animals per species) were used. Fatty tissue mesenchymal stem cells were removed from dorsal, epididymal and inguinal regions. Percentage viable cells and percentage cells expanded and submitted to chondrogenic differentiation were compared by animal species and collection site. Results: Chondrogenic differentiation occurred in a similar manner across all samples, independently of animal species or collection site. Among samples assessed, the inguinal region of rats yielded the highest percentage of viable and expanded cells. Conclusion: A reliable, reproducible and consistent model for obtaining mesenchymal stem cells was produced. Of the several variables analysed, the best results were obtained from the inguinal region of the rat.


Subject(s)
Animals , Guinea Pigs , Rats , Adipose Tissue/cytology , Mesenchymal Stem Cells/cytology , Rats, Wistar , Models, Animal
12.
Arq. bras. oftalmol ; 82(1): 32-37, Jan.-Feb. 2019. graf
Article in English | LILACS | ID: biblio-973879

ABSTRACT

ABSTRACT Purpose: To evaluate the ability of human immature dental pulp stem cells, which are mesenchymal stem cells of neural crest origin, to differentiate into the corneal epithelium for purposes of corneal transplantation and tissue engineering when cultured on de-epithelized amniotic membranes. Methods: We compared the immunophenotypes (ABCG2, K3/12, and vimentin) of cells grown on amniotic membranes or plastic surfaces under serum-free conditions or in culture media containing serum or serum replacement components. Results: Immature dental pulp stem cells grown on amniotic membranes under basal conditions are able to maintain their undifferentiated state. Our data also suggest that the culture medium used in the present work can modulate the expression of immature dental pulp stem cell markers, thus inducing epithelial differentiation of these cells in vitro. Conclusions: Our results suggest that the amniotic membrane is a good choice for the growth and transplantation of mesenchymal stem cells, particularly immature dental pulp stem cells, in clinical ocular surface reconstruction.


RESUMO Objetivos: Avaliar a capacidade das células-tronco imaturas da polpa do dente de leite que são células-tronco mesenquimais de origem da crista neural, de se diferenciarem no epitélio corneano para fins de transplante de córnea e engenharia de tecidos quando cultivadas em membrana amnióticas desepitelizadas. Métodos: Foram comparamos so imunofenótipo (ABCG2, CK3/12 e vimentina) de células cultivadas em membranas amnióticas ou em superfícies plásticas sob condições livres de soro ou em meios de cultura contendo soro ou componentes de substituição de soro. Resultados: Células-tronco imaturas da polpa do dente de leite cultivadas sobre membrana amniótica em condições basais são capazes de manter seu estado indiferenciado. Nossos dados também sugerem que o meio de cultura utilizado no presente trabalho pode modular a expressão de marcadores de células-tronco imaturas da polpa do dente de leite, induzindo a diferenciação epitelial destas células in vitro. Conclusão: Nossos resultados sugerem que a membrana amniótica é uma boa escolha para o crescimento e transplante de células-tronco mesenquimais, particularmente as células-tronco imaturas da polpa do dente de leite, na reconstrução da superfície ocular.


Subject(s)
Humans , Epithelium, Corneal/transplantation , Dental Pulp/cytology , Mesenchymal Stem Cell Transplantation/methods , Tissue Scaffolds , Mesenchymal Stem Cells/cytology , Amnion , Time Factors , Cells, Cultured , Reproducibility of Results , Fluorescent Antibody Technique , Cell Culture Techniques/methods , Corneal Diseases/surgery , Cell Proliferation
13.
Int. j. morphol ; 37(1): 54-58, 2019. graf
Article in English | LILACS | ID: biblio-990004

ABSTRACT

SUMMARY: Matrigel is a basement membrane matrix extracted from the EHS mouse tumor containing extracellular matrix protein, its main components are laminin, type IV collagen, nestin, heparin sulfate, growth factor and matrix metalloproteinase.At room temperature, Matrigel polymerized to form a three dimensional matrix with biological activity. It can simulate the structure, composition, physical properties and functions of the cell basement membrane in vivo, which is beneficial to the culture and differentiation of the cells in vitro, and can be used for the study of cell morphology, biochemical function, migration, infection and gene expression. In this study, Matrigel three-dimensional culture model of bone marrow mesenchymal stem cells(BMSCs) was established, and its morphology, proliferation and survival were observed. BMSCs were isolated and cultured with whole bone marrow adherence method. The Second generation BMSCs with good growth condition were selected and mixed with Matrigel to form cell gel complexes. The morphology and proliferation of mesenchymal stem cells were observed by phase contrast microscope and HE staining,Live/Dead staining was used to evaluate the cell activity.Phase contrast microscopy showed that BMSCs were reticulated in Matrigel and proliferated well, After 7 days, the matrix gel gradually became soft and collapsed, a few cell reticular crosslinking growth was seen at 14 days; HE staining showed that the cytoplasm of the cells was larger on the fourth day and the cells were elongated and cross-linked on the seventh day; Live/dead staining showed that most cells showed green fluorescence with the prolongation of culture time, on the first, 4 and 7 days, the activity of bone marrow mesenchymal stem cells in Matrigel gradually increased, and the percentages were 92.57 %, 95.54 % and 97.37 %, respectively. Matrigel three-dimensional culture system can maintain the morphology, function and proliferation ability of bone marrow mesenchymal stem cells.


RESUMEN: Matrigel es una matriz de membrana basal extraída del tumor de ratón EHS que contiene proteína de matriz extracelular. Los componentes principales son laminina, el colágeno tipo IV, nestina, sulfato de heparina, factor de crecimiento y metaloproteinasa de matriz. A temperatura ambiente, Matrigel se polimerizó para formar una matriz tridimensional. Es posible simular la estructura, la composición, las propiedades físicas y las funciones de la membrana basal celular in vivo, lo que es beneficioso para el cultivo y la diferenciación de las células in vitro, y se puede utilizar para el estudio de la morfología celular, la función bioquímica, la migración, infección y expresión génica. En este estudio, se estableció el modelo de cultivo tridimensional Matrigel de células madre mesenquimales de médula ósea (BMSC), y se observó su morfología, proliferación y supervivencia. Las BMSC fueron aisladas y cultivadas con el método de adherencia de la médula ósea completa. Se seleccionaron las BMSC de segunda generación con buenas condiciones de crecimiento y se mezclaron con Matrigel para formar complejos de gel de células. La morfología y la proliferación de las células madre mesenquimales se observaron con microscopio de contraste de fase y se tiñó con Hematoxilina-Eosina (HE); para evaluar la actividad celular se usó la tinción Live/Dead. La microscopía de contraste mostró que las BMSC se reticularon en Matrigel y proliferaron bien. Después de 7 días, se observó que el gel de matriz gradualmente se volvió blando y colapsó, y se visualizó un cruce transversal de algunas células reticulares a los 14 días. La tinción mostró que la mayoría de las células mostraron una fluorescencia verde con la prolongación del tiempo de cultivo; en los primeros 4 y 7 días, la actividad de las células madre mesenquimales de la médula ósea en Matrigel aumentó gradualmente y los porcentajes fueron de 92,57 %, 95,54 % y 97,37 %, respectivamente. El sistema de cultivo tridimensional de Matrigel puede mantener la morfología, la función y la capacidad de proliferación de las células madre mesenquimales de la médula ósea.


Subject(s)
Animals , Dogs , Proteoglycans/chemistry , Collagen/chemistry , Laminin/chemistry , Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Tissue Engineering , Drug Combinations
14.
Braz. j. med. biol. res ; 52(8): e8318, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011603

ABSTRACT

Currently, there is great clinical need for suitable synthetic grafts that can be used in vascular diseases. Synthetic grafts have been successfully used in medium and large arteries, however, their use in small diameter vessels is limited and presents a high failure rate. In this context, the aim of this study was to develop tissue engineering scaffolds, using poly(trimethylene carbonate-co-L-lactide) (PTMCLLA), for application as small diameter vascular grafts. For this, copolymers with varying trimethylene carbonate/lactide ratios - 20/80, 30/70, and 40/60 - were submitted to electrospinning and the resulting scaffolds were evaluated in terms of their physicochemical and biological properties. The scaffolds produced with PTMCLLA 20/80, 30/70, and 40/60 showed smooth fibers with an average diameter of 771±273, 606±242, and 697±232 nm, respectively. When the degradation ratio was evaluated, the three scaffold groups had a similar molecular weight (Mw) on the final day of analysis. PTMCLLA 30/70 and 40/60 scaffolds exhibited greater flexibility than the PTMCLLA 20/80. However, the PTMCLLA 40/60 scaffolds showed a large wrinkling and their biological properties were not evaluated. The PTMCLLA 30/70 scaffolds supported the adhesion and growth of mesenchymal stem cells (MSCs), endothelial progenitor cells, and smooth muscle cells (SMCs). In addition, they provided a spreading of MSCs and SMCs. Given the results, the electrospun scaffolds produced with PTMCLLA 30/70 copolymer can be considered promising candidates for future applications in vascular tissue engineering.


Subject(s)
Humans , Polyesters/chemistry , Blood Vessel Prosthesis , Dioxanes/chemistry , Tissue Scaffolds/chemistry , Materials Testing , Cells, Cultured/cytology , Myocytes, Smooth Muscle/cytology , Cell Proliferation , Mesenchymal Stem Cells/cytology , Endothelial Progenitor Cells/cytology
15.
J. coloproctol. (Rio J., Impr.) ; 38(3): 240-245, July-Sept. 2018.
Article in English | LILACS | ID: biblio-954604

ABSTRACT

ABSTRACT Crohn's disease has an ever-increasing prevalence and incidence, with about 20% of patients developing perianal fistula with significant impact on their quality of life. Despite the medical and surgical treatments currently used, Crohn's-related fistula treatment continues to pose a challenge due to the low rates of efficacy associated with high recurrence rates. Recent clinical trials have shown promising results regarding safety and efficacy of local treatment of this condition with the use of adipose tissue-derived mesenchymal stem cells. Besides being pluripotent and poorly immunogenic, they have immunomodulatory and anti-inflammatory properties, which combined, may accelerate healing. Our main objective is to summarize the clinical trials we found, highlighting the efficacy rates of this therapy and the main limitations we found in the analysis of the results. We conclude that, in perianal fistulas refractory to conventional therapies, the treatment with adipose tissue-derived mesenchymal cells is safe with promising results that may change the current paradigm of Crohn's related fistula treatment.


RESUMO A incidência e a prevalência da doença de Crohn têm aumentado e, ao longo do decurso da doença, cerca de 20% dos doentes irão desenvolver fístulas perianais com impacto significativo na sua qualidade de vida. Apesar dos tratamentos médicos e cirúrgicos utilizados atualmente, o tratamento destas fístulas continua a constituir um desafio com baixas taxas de eficácia e com elevadas taxas de recorrência. Ensaios clínicos recentes têm demonstrado resultados promissores em termos de segurança e eficácia de tratamentos locais destas fístulas com o recurso a células estaminais mesenquimatosas derivadas do tecido adiposo que, além de pluripotentes e pouco imunogênicas, têm capacidades imunomoduladoras e anti-inflamatórias capazes de promover o processo de cicatrização. O objetivo desta revisão sistemática é sumarizar os ensaios clínicos encontrados, realçando as taxas de eficácia desta terapêutica e as principais limitações na análise dos resultados. Concluímos que, nas fístulas perianais refratárias ás terapias convencionais, o tratamento com com celulas estaminais mesenquimatosas derivadas do tecido adiposo é seguro e com resultados promissores que podem mudar o paradigma atual do tratamento das fistulas complexas associadas à Doença de Crohn.


Subject(s)
Humans , Male , Female , Crohn Disease/pathology , Rectal Fistula/therapy , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Treatment Outcome
16.
Clinics ; 73: e268, 2018. tab, graf
Article in English | LILACS | ID: biblio-890754

ABSTRACT

OBJECTIVES: Articular cartilage is vulnerable to injuries and undergoes an irreversible degenerative process. The use of amniotic fluid mesenchymal stromal stem cells for the reconstruction of articular cartilage is a promising therapeutic alternative. The aim of this study was to investigate the chondrogenic potential of amniotic fluid mesenchymal stromal stem cells from human amniotic fluid from second trimester pregnant women in a micromass system (high-density cell culture) with TGF-β3 for 21 days. METHODS: Micromass was performed using amniotic fluid mesenchymal stromal stem cells previously cultured in a monolayer. Chondrocytes from adult human normal cartilage were used as controls. After 21 days, chondrogenic potential was determined by measuring the expression of genes, such as SOX-9, type II collagen and aggrecan, in newly differentiated cells by real-time PCR (qRT-PCR). The production of type II collagen protein was observed by western blotting. Immunohistochemistry analysis was also performed to detect collagen type II and aggrecan. This study was approved by the local ethics committee. RESULTS: SOX-9, aggrecan and type II collagen were expressed in newly differentiated chondrocytes. The expression of SOX-9 was significantly higher in newly differentiated chondrocytes than in adult cartilage. Collagen type II protein was also detected. CONCLUSION: We demonstrate that stem cells from human amniotic fluid are a suitable source for chondrogenesis when cultured in a micromass system. amniotic fluid mesenchymal stromal stem cells are an extremely viable source for clinical applications, and our results suggest the possibility of using human amniotic fluid as a source of mesenchymal stem cells.


Subject(s)
Humans , Pregnancy , Cell Culture Techniques/methods , Chondrocytes/cytology , Chondrogenesis , Mesenchymal Stem Cells/cytology , Gene Expression , Cell Differentiation , Collagen Type II/analysis , Aggrecans/metabolism , Transforming Growth Factor beta3/metabolism , SOX9 Transcription Factor/metabolism , Amniotic Fluid
17.
Braz. j. med. biol. res ; 51(2): e6520, 2018. tab, graf
Article in English | LILACS | ID: biblio-889032

ABSTRACT

Multiple growth factors can be administered to mimic the natural process of bone healing in bone tissue engineering. We investigated the effects of sequential release of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone regeneration. To improve the double emulsion/solvent evaporation technique, VEGF was encapsulated in PELA microcapsules, to which BMP-2 was attached. The scaffold (BMP-2/PELA/VEGF) was then fused to these microcapsules using the dichloromethane vapor method. The bioactivity of the released BMP-2 and VEGF was then quantified in rat mesenchymal stem cells (rMSCs). Immunoblotting analysis showed that BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblasts via the MAPK and Wnt pathways. Osteoblast differentiation was assessed through alkaline phosphatase expression. When compared with simple BMP-2 plus VEGF group and pure PELA group, osteoblast differentiation in BMP-2/PELA/VEGF group significantly increased. An MTT assay indicated that BMP-2-loaded PELA scaffolds had no adverse effects on cell activity. BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblast via the ERK1/2 and Wnt pathways. Our findings indicate that the sequential release of BMP-2 and VEGF from PELA microcapsule-based scaffolds is a promising approach for the treatment of bone defects.


Subject(s)
Animals , Rabbits , Rats , Polyesters/pharmacology , Polyethylene Glycols/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Vascular Endothelial Growth Factors/metabolism , Tissue Scaffolds , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cells/cytology , Time Factors , Bone Regeneration , Signal Transduction/physiology , Cells, Cultured , Models, Animal , Cell Proliferation , beta Catenin/physiology , Nanoparticles , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Wnt Signaling Pathway/physiology
18.
Braz. dent. j ; 28(6): 657-668, Nov.-Dec. 2017. tab, graf
Article in English | LILACS, BNUY, BNUY-Odon | ID: biblio-888708

ABSTRACT

Abstract Although the biological properties of mesenchymal stem cells (MSC) are well-characterized in vitro, MSC clinical application is still far away to be achieved, mainly due to the need of xenogeneic substances for cell expansion, such as fetal bovine serum (FBS). FBS presents risks regarding pathogens transmissions and internalization of animal's proteins, which can unleash antigenic responses in patients after MSC implantation. A wide range of venous blood derivatives (VBD) has been reported as FBS substitutes showing promising results. Thus, the aim of this study was to conduct a systematic scoping review to analyze whether VBD are effective FBS substitutes for MSC ex vivo expansion. The search was performed in SciVerse ScopusTM, PubMed, Web of ScienceTM, BIREME, Cochrane library up to January 2016. The keywords were selected using MeSH and entry terms. Two independent reviewers scrutinized the records obtained considering specific inclusion criteria. The included studies were evaluated in accordance with a modified Arksey and O' Malley's framework. From 184 found studies, 90 were included. Bone marrow mesenchymal stem cells (BMMSC) were presented in most of these studies. Overall, VBD allowed for either, maintenance of MCS's fibroblast-like morphology, high proliferation, high colony-formation ability and maintenance of multipotency. Besides. MSC expanded in VBD supplements presented higher mitogen activity than FBS. VBD seems to be excellent xeno-free serum for ex vivo expansion of mesenchymal stem cells. However, an accentuated heterogeneity was observed between the carried out protocols for VBD isolation did not allowing for direct comparisons between the included studies.


Resumo Embora as propriedades biológicas das células-tronco mesenquimais (MSC) sejam bem caracterizadas in vitro, a aplicação clínica das MSC ainda está longe de ser alcançada, principalmente devido à necessidade de substâncias xenogênicas para expansão celular, como o soro fetal bovino (FBS). O FBS apresenta riscos quanto às transmissões de patógenos e à internalização de proteínas animais, o que pode desencadear respostas antigênicas em pacientes após a implantação das MSC. Uma vasta gama de derivados do sangue venoso (VBD) têm sido relatada como substitutos do FBS mostrando resultados promissores. Assim, o objetivo deste estudo foi conduzir uma revisão de escopo sistemática para analisar se VBD poderiam ser substitutos do FBS eficazes para expansão das MSC em condições ex vivo. A pesquisa foi realizada no SciVerse Scopus, PubMed, Web of Science, BIREME e biblioteca Cochrane até janeiro de 2016. As palavras-chave foram selecionadas usando MeSH e entre termos. Dois revisores independentes examinaram os registros obtidos considerando critérios de inclusão específicos. Os estudos incluídos foram avaliados de acordo com uma estrutura modificada de Arksey e O 'Malley. Dos 184 estudos encontrados, 90 foram incluídos. As células-tronco da medula óssea (BMMSC) foram utilizadas na maior parte destes estudos. Em geral, o VBD permitiu tanto a manutenção da morfologia semelhante a fibroblastos das MCS, alta proliferação, alta capacidade de formação de colônias e manutenção de multipotêncialidade. Além disso, as MSC expandidas em suplementos derivados do sangue venoso apresentaram uma maior atividade mitogênica do que as expandidas em FBS. Os VBD parecem ser excelentes soro livres de agentes xenogênicos para expansão ex vivo de MSC. Entretanto, observou-se uma heterogeneidade acentuada entre os protocolos realizados para o isolamento VBD, não permitindo assim comparações diretas entre os estudos incluídos.


Subject(s)
Humans , Animals , Cattle , Veins , Blood Substitutes , Mesenchymal Stem Cells/cytology , Culture Media
19.
Arq. bras. cardiol ; 109(6): 579-589, Dec. 2017. graf
Article in English | LILACS | ID: biblio-887981

ABSTRACT

Abstract Background: Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown. Objectives: To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats. Methods: Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05. Results: In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats. Conclusions: MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.


Resumo Fundamentos: O diabetes mellitus é uma doença crônica grave que leva a complicações sistêmicas, como a disfunção cardiovascular. Estudos anteriores de terapia celular obtiveram resultados promissores com utilização de células estromais mesenquimais (CEM) derivadas de medula óssea de animais saudáveis (CEMc) em modelos de animais diabéticos. No entanto, a capacidade das CEM derivadas de ratos diabéticos em melhorar parâmetros cardíacos funcionais é ainda desconhecida. Objetivos: Investigar se CEM derivadas de medula óssea de ratos diabéticos (CEMd) poderiam contribuir para a recuperação metabólica e de propriedades elétricas cardíacas em outros ratos também com diabetes. Métodos: O diabetes foi induzido em ratos Wistar com estreptozotocina. As CEM foram caracterizadas por citometria de fluxo, análise morfológica e imunohistoquímica. A função elétrica cardíaca foi analisada através de registro do potencial de ação ventricular. As diferenças entre as variáveis foram consideradas significativas quando p < 0,05. Resultados: As propriedades in vitro das CEMc e CEMd foram avaliadas. Ambos os tipos celulares apresentaram morfologia, cinética de crescimento e perfil mesenquimal semelhante, e puderam ser diferenciadas em linhagens adipogênica e osteogênica. No entanto, em ensaios para unidades formadoras de colônias de fibroblastos (UFC-F), as CEMd formaram mais colônias em comparação às CEMc quando cultivadas em meio com ou sem hidrocortisona (1 µM). Para comparar o potencial terapêutico das células, os animais foram divididos em quatro grupos experimentais: não diabéticos (CTRL), diabéticos (DM), diabéticos tratados com CEMc (DM + CEMc) e diabéticos tratados com CEMd (DM + CEMd). Os grupos tratados receberam uma única injeção de CEM 4 semanas após o estabelecimento do diabetes. Ambas CEMc e CEMd controlaram a hiperglicemia e a perda de peso corporal e melhoraram o remodelamento elétrico cardíaco em ratos com diabetes. Conclusão: As CEMd e CEMc possuem propriedades in vitro e potencial terapêutico semelhante em um modelo de rato com diabetes induzido por estreptozotocina. (Arq Bras Cardiol. 2017; 109(6):579-589)


Subject(s)
Animals , Male , Rats , Mesenchymal Stem Cell Transplantation , Diabetes Mellitus, Experimental/chemically induced , Mesenchymal Stem Cells/cytology , Cell- and Tissue-Based Therapy , Heart Diseases/etiology , Heart Diseases/therapy , Blood Glucose/metabolism , Cell Differentiation , Cells, Cultured , Rats, Wistar , Mesenchymal Stem Cells/metabolism
20.
Int. j. morphol ; 35(4): 1597-1606, Dec. 2017. tab, graf
Article in Spanish | LILACS | ID: biblio-893174

ABSTRACT

RESUMEN: Las células madre de la línea germinal masculina son factores clave para la espermatogénesis masculina y la fertilidad. Las células sustentaculares (células de Sertoli) como células somáticas juegan un papel fundamental en la creación de un microambiente esencial para la auto-renovación y diferenciación de las células de la línea germinal masculina. Las células madre mesenquimales son reconocidas como células auto-renovables y multipotentes capaces de diferenciarse en múltiples tipos de células. La generación de células germinales masculinas a partir de células madre mesenquimales puede proporcionar un método terapéutico para tratar la infertilidad masculina. En este estudio, las células mesenquimales derivadas de la médula ósea (BMMSCs) se recuperaron de la médula ósea de ratones de 6-8 semanas de edad del Instituto de Investigación Médico Naval (NMRI). En el estudio se aislaron las células sustentaculares y se enrriquecieron usando placas revestidas con lectina. Se obtuvo el medio de condición celular después de diferentes intervalos de tiempo. Posteriormente se cultivaron las BMMSC con diferentes concentraciones de SCCM y medio de Eagle modificado por Dulbecco (DMEM) en diversos momentos. Se evaluaron marcadores específicos de células de línea germinal usando la reacción en cadena de polimerasa transcriptasa inversa (RT-PCR) e inmunocitoquímica. Los resultados mostraron que las BMMSCs cultivadas con SCCM durante 48h exhibieron transcritos específicos de línea germinal (Mvh, Iid4, piwil2) (p <0,05) y marcadores (Mvh, Scp3). Nuestros resultados indican que el cultivo de BMMSCs con SCCM puede conducir a la diferenciación efectiva de BMMSCs en células germinales y proporcionar una estrategia de tratamiento para la infertilidad masculina.


SUMMARY: Male germ line stem cells are key factors for male spermatogenesis and fertility. Sustentacular cells (Sertoli cells) as somatic cells play a pivotal role in creating essential microenvironment for the self-renewal and differentiation of the male germ line cells. Mesenchymal stem cells are recognized as self-renewing and multipotent cells able to differentiate into multiple cell types. The generation of male germ cells from mesenchymal stem cells may provide a therapeutic method to treat male infertility. In this study, Bone marrow derived mesenchymal cells (BMMSCs) were retrieved from the bone marrow of 6-8-week old Naval Medical Research Institute (NMRI) mice. Sustentacular cells (Sertoli cells) were isolated and made rich using lectin coated plates. Sustentacular cell condition medium (SCCM) was collected after different time intervals. Then the BMMSCs were cultured with different concentration of SCCM and Dulbecco's Modified Eagle's medium (DMEM) at various times. Specific markers of Germ line cells were evaluated by using Reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry. The results showed that BMMSCs cultured with SCCM for 48h exhibited germ line specific transcripts (Mvh, Iid4, piwil2) (p< 0.05) and markers (Mvh, Scp3). Our findings represent that culturing BMMSCs with SCCM may lead to effective differentiation of BMMSCs into germline cells and provide a treatment strategy for male infertility.


Subject(s)
Animals , Male , Mice , Sertoli Cells/cytology , Mesenchymal Stem Cells/cytology , Sertoli Cells/ultrastructure , Testis/cytology , Bone Marrow , Immunohistochemistry , Cell Differentiation , Culture Media, Conditioned , Reverse Transcriptase Polymerase Chain Reaction , Flow Cytometry
SELECTION OF CITATIONS
SEARCH DETAIL