Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.354
Filter
1.
Chinese Journal of Oncology ; (12): 139-146, 2022.
Article in Chinese | WPRIM | ID: wpr-935193

ABSTRACT

Objective: To explore the effect of down-regulation of retinol binding protein 2 (RBP2) expression on the biological characteristics of ovarian cancer cells and its mechanism. Methods: Knockdown of RBP2 and cisplatin (DDP)-resistant ovarian cancer cell line SKOV3/DDP-RBP2i was established, the negative control group and blank control group were also set. Cell counting kit 8 (CCK-8) was used to detect the cell proliferation ability, flow cytometry was used to detect cell apoptosis, scratch test and Transwell invasion test were used to detect cell migration and invasion ability, real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and western blot were used to detect the expressions of molecular markers related to epithelial-mesenchymal transition (EMT). The effect of RBP2 on the growth of ovarian cancer was verified through experiment of transplanted tumors in nude mice, and the relationships between RBP2 expression and tumor metastasis and patient prognosis were analyzed using the clinical data of ovarian cancer in TCGA database. Results: After down-regulating the expression of RBP2, the proliferation ability of SKOV3/DDP cell was significantly reduced. On the fifth day, the proliferation activities of SKOV3/DDP-RBP2i group, negative control group and blank control group were (56.67±4.16)%, (84.67±3.51) and (87.00±4.00)% respectively, with statistically significant difference (P<0.001). The apoptosis rate of SKOV3/DDP-RBP2i group was (14.19±1.50)%, higher than (8.77±0.75)% of the negative control group and (7.48±0.52)% of the blank control group (P<0.001). The number of invasive cells of SKOV3/DDP-RBP2i group was (55.20±2.39), lower than (82.60±5.18) and (80.80±7.26) of the negative control group and the blank control group, respectively (P<0.001). The scratch healing rate of SKOV3/DDP-RBP2i group was (28.47±2.72)%, lower than (50.58±4.06)% and (48.92±4.63)% of the negative control group and the blank control group, respectively (P<0.001). The mRNA and protein expressions of E-cadherin in the SKOV3/DDP-RBP2i group were higher than those in the negative control group (P=0.015, P<0.001) and the blank control group (P=0.006, P<0.001). The mRNA and protein expression of N-cadherin in SKOV3/DDP-RBP2i group were lower than those in the negative control group (P=0.012, P<0.001) and the blank control group (P=0.005, P<0.001). The mRNA and protein expressions of vimentin in SKOV3/DDP-RBP2i group were also lower than those in the negative control group (P=0.016, P=0.001) and the blank control group (P=0.011, P=0.001). Five weeks after the cells inoculated into the nude mice, the tumor volume of SKOV3/DDP-RBP2i group, negative control group and blank control group were statistically significant different. The tumor volume of SKOV3/DDP-RBP2i group was smaller than those of negative control group and blank control group (P=0.001). Bioinformatics analysis showed that the expression of RBP2 in patients with metastatic ovarian cancer was higher than that without metastasis (P=0.043), and the median overall survival of ovarian cancer patients with high RBP2 expression was 41 months, shorter than 69 months of low RBP2 expression patients (P<0.001). Conclusion: Downregulation of the expression of RBP2 in SKOV3/DDP cells can inhibit cell migration and invasion, and the mechanism may be related to the inhibition of EMT.


Subject(s)
Animals , Apoptosis , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Silencing , Humans , Mice , Mice, Nude , Ovarian Neoplasms/pathology , Retinol-Binding Proteins, Cellular/metabolism
2.
Journal of Integrative Medicine ; (12): 355-364, 2022.
Article in English | WPRIM | ID: wpr-939887

ABSTRACT

OBJECTIVES@#Ziyin Huatan Recipe (ZYHT), a traditional Chinese medicine comprised of Lilii Bulbus, Pinelliae Rhizoma, and Hedyotis Diffusa, has shown promise in treating gastric cancer (GC). However, its potential mechanism has not yet been clearly addressed. This study aimed to predict targets and molecular mechanisms of ZYHT in treating GC by network pharmacology analysis and to explore the role of ZYHT in GC both in vitro and in vivo.@*METHODS@#Targets and molecular mechanisms of ZYHT were predicted via network pharmacology analysis. The effects of ZYHT on the expression of metastasis-associated targets were further validated by Western blot and quantitative real-time polymerase chain reaction. To explore the specific molecular mechanisms of the effects of ZYHT on migration and invasion, the runt-related transcription factor 3 (RUNX3) gene was knocked out by clustered regularly interspaced short palindromic repeats/Cas9, and lentiviral vectors were transfected into SGC-7901 cells. Then lung metastasis model of GC in nude mice was established to explore the anti-metastasis effect of ZYHT. Western blot and immunohistochemistry were used to explore the impact of ZYHT on the expression of metastasis-related proteins with or without RUNX3 gene.@*RESULTS@#The network pharmacology analysis showed that ZYHT might inhibit focal adhesion, migration, invasion and metastasis of GC. ZYHT inhibited the proliferation, migration and invasion of GC cells in vitro via regulating the expression of metastasis-associated targets. Knocking out RUNX3 almost completely reversed the cell phenotypes (migration and invasion) and protein expression levels elicited by ZYHT. In vivo studies showed that ZYHT inhibited the metastasis of GC cells to the lung and prolonged the survival time of the nude mice. Knocking out RUNX3 partly reversed the metastasis of GC cells to the lung and the protein expression levels elicited by ZYHT.@*CONCLUSION@#ZYHT can effectively inhibit the invasion and migration of GC in vitro and in vivo, and its molecular mechanism may relate to the upregulation of RUNX3 expression.


Subject(s)
Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , China , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Neoplasm Invasiveness , Stomach Neoplasms/genetics
3.
Article in Chinese | WPRIM | ID: wpr-927961

ABSTRACT

The present study explored the underlying mechanism of Astragali Radix-Curcumae Rhizoma-Paridis Rhizoma(AR-CR-PR) in the treatment of colorectal cancer(CRC) by network pharmacology and molecular docking and animal tests and verified the core targets based on the orthotopic transplantation model in nude mice. The active components of AR-CR-PR were retrieved from databases such as TCMSP. The targets of drugs and the disease were obtained from PubChem, SwissTargetPrediction, TTD, and DrugBank, and the intersection targets were imported into STRING for the analysis of the protein-protein interaction(PPI). Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses were performed through DAVID. AutoDock Vina was used to perform molecular docking and binding ability prediction between the active components and the core targets. The effects of AR-CR-PR on tumor growth, metastasis, and phosphorylation of core target proteins in tumor tissues based on the orthotopic transplantation model in nude mice. As revealed by network pharmacology, AR-CR-PR contained nine core components, such as quercetin, curcumin, and β-ecdysone, and the key targets included protein kinase B(AKT1), mitogen-activated protein kinase 3(MAPK3), MAPK1, and epithelial growth factor receptor(EGFR), which was indicated that the anti-CRC effect of AR-CR-PR was presumedly achieved by regulating tumor cell proliferation, apoptosis, migration, and angiogenesis through PI3 K-AKT, MAPK and other signaling pathways. The results of molecular docking showed that the nine core components had strong binding abilities to AKT1 and MAPK3. The results in vivo showed that AR-CR-PR could reduce the volume of the orthotopic tumor, inhibit liver metastasis, and decrease the phosphorylation of AKT1 and MAPK3 in the CRC model. The mechanism of AR-CR-PR in the intervention of CRC may be related to the activation of PI3 K-AKT and MAPK signaling pathway. This study provides a scientific basis for the clinical application of AR-CR-PR in the treatment of CRC and ideas for modern research on AR-CR-PR.


Subject(s)
Animals , Drugs, Chinese Herbal/pharmacology , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms , Network Pharmacology , Rhizome
4.
Article in English | WPRIM | ID: wpr-929239

ABSTRACT

β-Elemene is an effective anti-cancer ingredient extracted from the genus Curcuma (Zingiberaceae familiy). In the present study, we demonstrated that β-elemene inhibited the proliferation of colorectal cancer cells and induced cell cycle arrest in the G2/M phase. In addition, β-elemene induced nuclear chromatin condensation and cell membrane phosphatidylserine eversion, decreased cell mitochondrial membrane potential, and promoted the cleavage of caspase-3, caspase-9 and PARP proteins, indicating apoptosis in colorectal cancer cells. At the same time, β-elemene induced autophagy response, and the treated cells showed autophagic vesicle bilayer membrane structure, which was accompanied by up-regulation of the expression of LC3B and SQSTM1. Furthermore, β-elemene increased ROS levels in colorectal cancer cells, promoted phosphorylation of AMPK protein, and inhibited mTOR protein phosphorylation. In the experiments in vivo, β-elemene inhibited the tumor size and induced apoptosis and autophagy in nude mice. In summary, β-elemene inhibited the occurrence and development of colon cancer xenografts in nude mice, and significantly induced apoptosis and autophagy in colorectal cancer cells in vitro. These effects were associated with regulation of the ROS/AMPK/mTOR signaling. We offered a molecular basis for the development of β-elemene as a promising anti-tumor drug candidate for colorectal cancer.


Subject(s)
AMP-Activated Protein Kinases/genetics , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Mice , Mice, Nude , Reactive Oxygen Species , Sesquiterpenes , TOR Serine-Threonine Kinases/genetics
5.
Article in Chinese | WPRIM | ID: wpr-928724

ABSTRACT

OBJECTIVE@#To establish an animal model of acute B lymphoblastic leukemia (B-ALL) with minimal residual disease.@*METHODS@#The transplanted tumor was formed by subcutaneous injection of 2×107 Nalm-6 cells, and the body weight, activity status and tumor formation status of nude mice were observed. Peripheral blood, bone marrow, liver and spleen and other tissues of nude mice were taken for pathological examination to understand whether the success of subcutaneous modeling was accompanied by systemic metastasis.@*RESULTS@#There were 2×107 Nalm-6 cells injected subcutaneously in nude mice, (11.0±2.5) days later, the tumors of (3-4) × (3-4) mm were observed, the body weight of the nude mice was reduced and activity showed no limited. Infiltration of tumor cells in liver, spleen and bone marrow were observed in pathological sections.@*CONCLUSION@#The animal model of subcutaneous tumor of B-ALL was successfully established in nude mice.


Subject(s)
Animals , Body Weight , Disease Models, Animal , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma
6.
Article in Chinese | WPRIM | ID: wpr-928381

ABSTRACT

OBJECTIVE@#To explore the effect of circ-SFMBT2 on the biological behavior of non-small cell lung cancer (NSCLC) cells and its regulatory role on the miR-7-5p/ADAM10 axis.@*METHODS@#qRT-PCR and Western blotting were used to determine the expression of circ-SFMBT2, miR-7-5p, and ADAM10 in NSCLC tissues and adjacent tissues. Pearson analysis was used to analyze the correlation between circ-SFMBT2 and miR-7-5p, and between miR-7-5p and ADAM10. In vitro cultured human bronchial epithelial-like cells (HBE) and lung cancer cell lines H1650, H460, A549, H1299. CCK-8 and EdU methods were used to assess the ability of cell proliferation. Plate experiment was used to detect the clone formation ability. Flow cytometry was used to detect the apoptosis rate. Transwell experiment was used to detect cell invasion ability. Dual luciferase reporter experiment detects the targeting relationship between circ-SFMBT2 and miR-7-5p, and between miR-7-5p and ADAM10. Transplanted tumor experiment in nude mice assessed the effect of knocking down circ-SFMBT2 on the growth of transplanted tumor. Immunohistochemical experiments were performed to detect the positive rates of ADAM10 and Ki67 proteins in transplanted tumor tissues.@*RESULTS@#The expression levels of circ-SFMBT2 and ADAM10 were increased in NSCLC tissues and cell lines, while decreased the expression of miR-7-5p. circ-SFMBT2 was negatively correlated with miR-7-5p, while miR-7-5p was negatively correlated with ADAM10. Silencing the overexpression of circ-SFMBT2 and miR-7-5p could inhibit cell proliferation, clone formation and invasion, and also promote apoptosis. circ-SFMBT2 could target miR-7-5p, and ADAM10 was the target gene of miR-7-5p. The combined effect of silencing circ-SFMBT2 and inhibition of miR-7-5p, as well as miR-7-5p overexpression and ADAM10 overexpression could promote cell proliferation, clone formation and invasion, and also suppress cell apoptosis. Silencing circ-SFMBT2 could inhibit the growth of transplanted tumors.@*CONCLUSION@#Silencing circ-SFMBT2 can suppress the proliferation, clone formation, invasion ability and induce apoptosis of NSCLC cells by regulating the miR-7-5p/ADAM10 axis.


Subject(s)
ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation , Lung Neoplasms/genetics , Membrane Proteins/genetics , Mice , Mice, Nude , MicroRNAs/genetics , RNA, Circular , Repressor Proteins
7.
Article in English | WPRIM | ID: wpr-939801

ABSTRACT

OBJECTIVES@#Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignant tumor with unique geographical and ethnic distribution characteristics. NPC is mostly found in south China and Southeast Asia, and its treatment mainly depends on radiotherapy and chemotherapy. However, NPC is usually found in the late stage, and local recurrence and distant metastasis are common, leading to poor prognosis. The receptor tyrosine kinase AXL is up-regulated in various tumors and it is involved in tumor proliferation, migration, invasion, and other processes, which are associated with poor prognosis of tumors. This study aims to detect the expression of AXL in NPC cell lines and tissues, and to investigate its biological function of AXL and the underlying molecular mechanisms in regulation of NPC.@*METHODS@#The expression levels of AXL in normal nasopharyngeal epithelial tissues and NPC tissues were analyzed by GSE68799, GSE12452, and GSE53819 data sets based on Gene Expression Omnibus (GEO) database. The Cancer Genome Atlas (TCGA) database was used to analyze the relationship between AXL and prognosis of head and neck squamous cell carcinoma (HNSC). The indicators of prognosis included overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI). Western blotting assay was used to detect the AXL protein expression levels in normal nasopharyngeal epithelial cell line and NPC cell lines. Immunohistochemical method was used to detect AXL expression levels in normal nasopharyngeal epithelial tissues and NPC tissues. Cell lines with stable AXL knockdown were established by infecting 5-8F and Fadu cells with lentivirus interference vector, and cell lines with stable AXL overexpression were established by infecting C666-1 and HK-1 cells with lentivirus expression vector. Real-time PCR and Western blotting were used to detect the efficiency of knockdown and overexpression in stable cell lines. The effects of AXL knockdown or overexpression on proliferation, migration, and invasion of NPC cells were detected by CCK-8, plate colony formation, and Transwell assays, and the effect of AXL knockdown on tumor growth in nude mice was detected by subcutaneous tumor formation assay. The sequence of AXL upstream 2.0 kb promoter region was obtained by UCSC online database. The PROMO online database was used to predict AXL transcription factors with 0% fault tolerance, and the JASPAR online database was used to predict the binding sites of ETS1 to AXL. Real-time PCR and Western blotting were used to detect the effect of ETS1 on AXL protein and mRNA expression. The AXL upstream 2.0 kb promoter region was divided into 8 fragments, each of which was 250 bp in length. Primers were designed for 8 fragments. The binding of ETS1 to AXL promoter region was detected by chromatin immuno-precipitation (ChIP) assay to determine the direct regulatory relationship between ETS1 and AXL. Rescue assay was used to determine whether ETS1 affected the proliferation, migration, and invasion of NPC cells through AXL.@*RESULTS@#Bioinformatics analysis showed that AXL was highly expressed in NPC tissues (P<0.05), and AXL expression was positively correlated with OS, DFI, DSS, and PFI in HNSC patients. Western blotting and immunohistochemical results showed that AXL was highly expressed in NPC cell lines and tissues compared with the normal nasopharyngeal epithelial cell line and tissues. Real-time PCR and Western blotting results showed that knockdown and overexpression efficiency in the stable cell lines met the requirements of subsequent experiments. The results of CCK-8, plate colony formation, Transwell assays and subcutaneous tumor formation in nude mice showed that down-regulation of AXL significantly inhibited the proliferation, migration, invasion of NPC cells and tumor growth (all P<0.05), and the up-regulation of AXL significantly promoted the proliferation, migration, and invasion of NPC cells (all P<0.05).As predicted by PROMO and JASPAR online databases, ETS1 was a transcription factor of AXL and had multiple binding sites in the AXL promoter region. Real-time PCR and Western blotting results showed that knockdown or overexpression of ETS1 down-regulated or up-regulated AXL protein and mRNA expression levels. ChIP assay result showed that ETS1 bound to AXL promoter region and directly regulate AXL expression. Rescue assay showed that AXL rescued the effects of ETS1 on proliferation, migration and invasion of NPC cells (P<0.05).@*CONCLUSIONS@#AXL is highly expressed in NPC cell lines and tissues, which can promote the malignant progression of NPC, and its expression is regulated by transcription factor ETS1.


Subject(s)
Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/metabolism , RNA, Messenger/genetics , Sincalide/metabolism , Transcription Factors/genetics
8.
Article in Chinese | WPRIM | ID: wpr-936284

ABSTRACT

OBJECTIVE@#To explore the role of TRIM21 in modulating the invasive phenotype of hepatocellular carcinoma (HCC) cells and its mechanism of action.@*METHODS@#RNA interference technique was used to knock down the expression of TRIM21 and β-catenin, alone or in combination, in HCC cell lines 97H and LM3, and the interfering efficiency and the activity of closely related pathways were determined using Western blotting. The two cells with TRIM21 knockdown (siTRIM21 97H and siTRIM21 LM3 cells) were assessed for their invasion ability in vitro using Transwell invasion assay, and the lung metastasis capacity of siTRIM21 LM3 cells following tail vein injection was evaluated in nude mice. The binding of TRIM21 with β-catenin and the ubiquitylation level of β-catenin in TRIM21-overexpressing HEK293 cells were determined with Western blotting and co-immunoprecipitation assay. We also compared the overall survival of patients with CTNNB1highTRIM21high and CTNNB1highTRIM21low HCC subtypes using Kaplan-Meier method based on filtrated and grouped HCC clinical data from TCGA database.@*RESULTS@#TRIM21 knockdown significantly enhanced the invasion ability of 97H and LM3 cells in vitro (P < 0.01 or 0.05) and the lung metastasis ability of LM3 cells in nude mice (P < 0.01), and simultaneous knockdown of β -catenin obviously suppressed the in vitro invasiveness of the cells (P < 0.0001 or 0.05). Co-immunoprecipitation assay showed that TRIM21 was capable of directly binding with β-catenin protein to accelerate the ubiquitination and degradation of the latter, leading to inhibition of nuclear translocation of β-catenin and hence reduced invasiveness of HCC cells. Bioinformatic analysis showed that compared patients with CTNNB1highTRIM21low HCC subtype where Wnt pathway was activated, the patients with CTNNB1highTRIM21high HCC subtype had a significantly better survival outcomes (P < 0.05).@*CONCLUSION@#A high expression of TRIM21 suppresses the invasion of HCC cells by promoting β-catenin ubiquitylation and degradation, which possibly explains the poor prognosis of CTNNB1highTRIM21low HCC patients.


Subject(s)
Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Liver Neoplasms/pathology , Mice , Mice, Nude , Ribonucleoproteins/genetics , Ubiquitination , Wnt Signaling Pathway , beta Catenin/metabolism
9.
Chinese Journal of Burns ; (6): 45-56, 2022.
Article in Chinese | WPRIM | ID: wpr-935967

ABSTRACT

Objective: To explore the effects of porcine acellular dermal matrix (ADM) combined with human epidermal stem cells (ESCs) on wound healing of full-thickness skin defect in nude mice. Methods: The morphology of porcine ADM was analyzed by photograph of digital camera, the cell residues in porcine ADM were observed by hematoxylin-eosin (HE) staining, the surface structure of porcine ADM was observed by scanning electron microscope, the secondary structure of porcine ADM was analyzed by infrared spectrometer, the porcine ADM particle size was analyzed by dynamic light scattering particle size analyzer, and the porcine ADM potential was analyzed by nano-particle size potentiometer. The morphology of porcine ADM was observed by inverted fluorescence microscope when it was placed in culture medium for 30 min, 1 d, and 5 d (n=2). The porcine ADM was divided into 5 min group, 10 min group, 20 min group, 30 min group, 60 min group, and 120 min group according to the random number table (the same grouping method below) in static state at normal temperature for the corresponding time to calculate the water absorption by weighing method (n=3). Swiss white mouse embryonic fibroblasts (Fbs) were divided into blank control group (culture medium only), and 50.0 g/L ADM extract group, 37.5 g/L ADM extract group, 25.0 g/L ADM extract group, 12.5 g/L ADM extract group, and 6.5 g/L ADM extract group which were added with the corresponding final concentrations of ADM extract respectively. At post culture hour (PCH) 24, 48, and 72, the cell survival rate was detected by cell counting kit 8 and the cytotoxicity was graded (n=5). The erythrocytes of a 6-week-old male Sprague-Dawley male rat were divided into normal saline group, ultra-pure water group, and 5 mg/mL ADM extract group, 10 mg/mL ADM extract group, and 15 mg/mL ADM extract group which were treated with the corresponding final concentrations of porcine ADM extract respectively. After reaction for 3 h, the absorbance value of hemoglobin was detected by microplate reader to represent the blood compatibility of porcine ADM (n=3). ESCs were isolated and cultured from the discarded prepuce of a 6-year-old healthy boy who was treated in the Department of Urology of the First Affiliated Hospital of Army Medical University (the Third Military Medical University) in July 2020, and then identified by flow cytometry. The porcine ADM particles of composite ESC (hereinafter referred to as ESC/ADM) were constructed by mixed culture. After 3 days of culture, the composite effect of ESC/ADM was observed by HE staining and laser scanning confocal microscope. Thirty-six 7-8-week-old male non-thymic nude mice were divided into phosphate buffer solution (PBS) alone group, ADM alone group, ESC alone group, and ESC/ADM group, with 9 mice in each group, and the wound model of full-thickness skin defect was established. Immediately after injury, the wounds were treated with the corresponding reagents at one time. On post injury day (PID) 1, 7, 11, and 15, the wound healing was observed and the wound healing rate was counted (n=3). On PID 7, the epithelialization of wounds was observed by HE staining and the length of un-epithelialized wound was measured (with this and the following sample numbers of 4). On PID 11, the dermal area and collagen deposition of wounds were observed by Masson staining and the dermal area of wound section was calculated, the number of cells expressing CD49f, a specific marker of ESC, was calculated with immunofluorescence staining, the mRNA expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in ESC after wound transplantation was detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction. Data were statistically analyzed with independent sample t test, one-way analysis of variance, analysis of variance for repeated measurement, and least significant difference t test. Results: The porcine ADM was white particles and composed of reticular structure, with no cells inside, disordered structure, and rough surface. The absorption peak of porcine ADM appeared at the wave numbers of 1 659, 1 549, and 1 239 cm-1, respectively. The main particle size distribution of porcine ADM in solution was 500 to 700 nm, with negative charge on the surface. The morphology of porcine ADM in static state at 30 min and on 1 and 5 d was relatively stable. The water absorption of porcine ADM remained relatively high level in static state from 30 min to 120 min. The cytotoxicity of mouse embryonic Fbs in 6.5 g/L ADM extract group, 12.5 g/L ADM extract group, and 25.0 g/L ADM extract group was grade 1 at PCH 24, and the cytotoxicity of the other groups was 0 grade at each time point. After reaction for 3 h, the absorbance value of hemoglobin of erythrocytes in ultra-pure water group was significantly higher than the values in normal saline group and 15 mg/mL ADM extract group (with t values of 8.14 and 7.96, respectively, P<0.01). After 3 days of culture, the cells of the fourth passage showed pebble-like morphology, with low expression of CD71 and high expression of CD49f, which were identified as ESCs. There was ESC attachment and growth on porcine ADM particles. On PID 1, the wound sizes of nude mice were almost the same in PBS alone group, ADM alone group, ESC alone group, and ESC/ADM group. On PID 7, 11, and 15, the wound contraction of nude mice in each group was observed, especially in ADM alone group, ESC alone group, and ESC/ADM group. On PID 7, the wound healing rates of nude mice in ESC alone group and ESC/ADM group were significantly higher than the rate in PBS alone group (with t values of 2.83 and 4.72 respectively, P<0.05 or P<0.01). On PID 11, the wound healing rate of nude mice in ESC/ADM group was significantly higher than that in PBS alone group (t=4.86, P<0.01). On PID 15, the wound healing rates of nude mice in ADM alone group, ESC alone group, and ESC/ADM group were significantly higher than the rate in PBS alone group (with t values of 2.71, 2.90, and 3.23 respectively, P<0.05). On PID 7, the length of un-epithelialized wound of nude mice in ADM alone group, ESC alone group, and ESC/ADM group was (816±85), (635±66), and (163±32) μm, respectively, which were significantly shorter than (1 199±43) μm in PBS alone group (with t values of 5.69, 10.19, and 27.54 respectively, P<0.01). On PID 11, the dermal areas of wound section of nude mice in ADM alone group, ESC alone group, and ESC/ADM group were significantly larger than the area in PBS alone group (with t values of 27.14, 5.29, and 15.90 respectively, P<0.01); the collagen production of nude mice in ADM alone group and ESC/ADM group was more obvious than that in PBS alone group, and the collagen production of nude mice in ESC alone group and PBS alone group was similar. On PID 11, in the wounds of nude mice in ESC alone group and ESC/ADM group, the cells with positive expression of CD49f were respectively 135±7 and 185±15, and the mRNA expressions of GAPDH were positive; while there were no expressions of CD49f nor mRNA of GAPDH in the wounds of nude mice in PBS alone group and ADM alone group. Conclusions: ESC/ADM particles can promote the wound healing of full-thickness skin defects in nude mice, which may be related to the improved survival rate of ESCs after transplantation and the promotion of dermal structure rearrangement and angiogenesis by ADM.


Subject(s)
Acellular Dermis , Animals , Fibroblasts , Humans , Male , Mice , Mice, Nude , Rats , Rats, Sprague-Dawley , Stem Cells , Swine , Wound Healing
10.
Article in Chinese | WPRIM | ID: wpr-927899

ABSTRACT

Objective: To investigate the effect of Xuanfu Daizhe decoction on the stemness of esophageal cancer cells. Methods: The BALB/c nude mice were randomly divided into the control group and experimental group, 5 mice in each group, which were continuously administered with normal saline and Xuanfu Daizhe decoction (9.89 g/kg) by gastrogavage, respectively. Human esophageal carcinoma cells ECA-109 (5×106) were subcutaneously injected into the mice on the 8th day. Tumor volume was measured twice a week. The mice were sacrificed 4 weeks after injection, and the tumor tissue and mouse serum were collected. The expressions of the major stemness-regulating transcription factors, i.e., NANOG, OCT4 and SOX2, were detected by RT-qPCR, Western Blot and immunohistochemistry. ECA-109 cells were treated with 10% fetal bovine serum and serum from the above two groups of mice for 48 hours respectively, and three replicate wells were set in each group, and the expressions of NANOG, OCT4, SOX2 and the levels of AKT and p-AKT were detected by RT-qPCR and Western Blot, respectively. ALDH activity in tumor cells was detected by flow cytometry; the number of spheroids of tumor cells was detected by the spheroidization experiment. Results: Compared with the control group, the growth and size of esophageal cancer tumors were significantly inhibited by Xuanfu Daizhe Decoction; the expressions of NANOG, OCT4, SOX2, the ALDH activity, the number of spheroids, and the levels of AKT and phosphorylated AKT (p-AKT) in esophageal cancer cells were significantly reduced by Xuanfu Daizhe Decoction both in vivo and in vitro. Conclusion: Xuanfu Daizhe Decoction inhibits the stemness of esophageal cancer cells, it may be a potentially effective drug for the treatment of esophageal cancer and provides a theoretical basis for the exploration of new effective drugs for the treatment of esophageal cancer.


Subject(s)
Animals , Esophageal Neoplasms/pathology , Mice , Mice, Nude , Proto-Oncogene Proteins c-akt , Transcription Factors
11.
Article in Chinese | WPRIM | ID: wpr-927850

ABSTRACT

Objective To investigate the effects on cell proliferation and invasion of the circular RNA hsa_circ_0067582 in gastric cancer(GC). Methods After hsa_circ_0067582 overexpression (Oe-circ_0067582) plasmid was transfected into AGS and SGC-7901 cells,the cell viability,proliferation,invasion ability,and apoptosis were detected by CCK-8,colony formation and EdU assays,Transwell assay,and flow cytometry,respectively.Western blotting was employed to detect the expression levels of proteins related to the cell apoptosis and epithelial-mesenchymal transition(EMT).The effect of Oe-circ_0067582 on the growth of SGC-7901 cells in nude mice was observed.Bioinformatics tools were used to predict the binding target miRNA of hsa_circ_0067582,and the competing endogenous RNA(ceRNA)regulatory network was established.Finally,functional enrichment was performed to analyze the biological functions of the target genes of the predicted miRNA. Results Compared with the pLO-ciR(empty plasmid)group,the Oe-circ_0067582 group in AGS and SGC-7901 cells attenuated the cell viability(t=7.883,P=0.001;t=5.679,P=0.005),proliferation(t=6.709,P=0.003;t=5.857,P=0.003),and invasion ability(t=7.782,P=0.002;t=6.342,P=0.003)and induced cell apoptosis(t=7.225,P=0.002;t=11.509,P=0.001).Western blotting showed that the Oe-circ_0067582 group in AGS and SGC-7901 cells up-regulated the protein levels of cysteinyl aspartate specific proteinase (Caspase) 3(t=6.863,P=0.002;t=7.024,P=0.001),Caspase 7(t=3.295,P=0.04;t=6.008,P=0.004),Caspase 9(t=4.408,P=0.012;t=6.278,P=0.004),and E-cadherin(t=12.453,P=0.002;t=10.867,P=0.001),while down-regulated those of Vimentin(t=7.242,P=0.002;t=5.694,P=0.004)and N-cadherin(t=6.480,P=0.003;t=7.446,P=0.001).Furthermore,Oe-circ_0067582 significantly inhibited the growth of tumor in the SGC-7901 tumor-bearing nude mice(t=3.526,P=0.017).The prediction based on TargetScan and miRnada suggested that hsa_circ_0067582 can competitively bind to hsa-miR-181b-3p,hsa-miR-337-3p,hsa-miR-421,and hsa-miR-548d-3p.The functional enrichment indicated that the target genes of miRNA were involved in multiple cancer-related biological processes including negative regulation of apoptotic process,gene expression,transcriptional misregulation in cancer,transforming growth factor-β,and p53 signaling pathways. Conclusion Oe-circ_0067582 can inhibit the proliferation and attenuate EMT process to reduce the invasion ability of AGS and SGC-7901 cells,which provides a new target for the treatment of GC.


Subject(s)
Animals , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , RNA, Circular , Stomach Neoplasms/pathology
12.
Article in Chinese | WPRIM | ID: wpr-941048

ABSTRACT

OBJECTIVE@#To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment.@*METHODS@#The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay.@*RESULTS@#The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05).@*CONCLUSION@#JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.


Subject(s)
Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Culture Media, Conditioned , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Jagged-1 Protein/metabolism , Mice , Mice, Nude , Neovascularization, Pathologic/metabolism , Platelet Aggregation Inhibitors , Sincalide/metabolism , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment
13.
Article in Chinese | WPRIM | ID: wpr-941028

ABSTRACT

OBJECTIVE@#To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC).@*METHODS@#We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice.@*RESULTS@#Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05).@*CONCLUSION@#VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Subject(s)
Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Luciferases/genetics , Methylation , Mice , Mice, Nude , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Transcription Factor AP-2/metabolism
14.
Article in Chinese | WPRIM | ID: wpr-941020

ABSTRACT

OBJECTIVE@#To investigate the effect of Chaihu Guizhi Decoction (CHGZD) combined with capecitabine on growth and apoptosis of subcutaneous triple-negative breast cancer xenografts in nude mice and explore the possible mechanism.@*METHODS@#Nude mouse models bearing subcutaneous triple-negative breast cancer xenografts were randomized into 6 groups (n=10) for treatment with distilled water (model group), low (10.62 g/kg), medium (21.23 g/kg) and high (42.46 g/kg) doses of CHGZD, capecitabine (0.2 mg/kg), or the combination of CHGZD (42.46 g/kg) and capecitabine (0.2 mg/k) once daily for 21 consecutive days. The general condition of mice was observed, and after 21-day treatments, the tumors were dissected for measurement of tumor volume and weight and histopathological examination with HE staining. Serum IL-6 levels of the mice were determined with enzyme-linked immunosorbent assay (ELISA), and the expression levels of IL-6, STAT3, p-STAT3, Bax, Bcl-2 and cyclin D1 in the tumor tissues were detected using real-time PCR and Western blotting.@*RESULTS@#Compared with those in the model group, the tumor-bearing mice receiving treatments with CHGZD showed significantly increased food intake with good general condition, sensitive responses, increased body weight, and lower tumor mass (P < 0.01). Compared with capecitabine treatment alone, treatment with CHGZD alone at the medium and high doses and the combined treatment all resulted in significantly higher tumor inhibition rates (P < 0.01), induced obvious tumor tissue degeneration and reduced the tumor cell density. Treatments with CHGZD, both alone and in combination with capecitabine, significantly decreased serum IL-6 level, lowered the mRNA expression levels of IL-6 and STAT3, the protein expressions of IL-6, STAT3 and P-STAT3 (P < 0.05), and the mRNA and protein expressions of Bcl-2 and cyclin D1 (P < 0.05), and increased the mRNA and protein expressions of Bax in the tumor tissues (P < 0.05).@*CONCLUSION@#CHGZD combined with capecitabine can significantly inhibit tumor growth in nude mice bearing triple-negative breast cancer xenografts, the mechanism of which may involve the inhibition of IL-6/STAT3 signaling pathway and regulation of Bax, Bcl-2 and cyclin D1 expressions to suppress tumor cell proliferation and differentiation and induce cell apoptosis.


Subject(s)
Animals , Capecitabine/pharmacology , Cyclin D1/metabolism , Drugs, Chinese Herbal , Heterografts , Humans , Interleukin-6/metabolism , Mice , Mice, Nude , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , bcl-2-Associated X Protein/metabolism
15.
Int. braz. j. urol ; 47(2): 322-332, Mar.-Apr. 2021. tab, graf
Article in English | LILACS | ID: biblio-1154465

ABSTRACT

ABSTRACT Purpose: We assessed the efficacy and safety of a single injection of three bulking agents over the short- and long-term follow-ups in rabbits. Dermal and preputial matrices were compared with Deflux (DxHA) injection. Material and methods: Twenty-four rabbits were divided into three groups. Group I (n=8) underwent the injection of a lyophilized dermal matrix (LDM) beneath the seromuscular layer of the bladder wall. Rabbits in group II (n=8) were injected with lyophilized preputial matrix (LPM). Rabbits of group III (n=8) were injected with DxHA as the control group. They were followed up for 1 and 6 months after the injection. Subcutaneous injection of all bulking agents was also performed in nude mice. Biopsies were stained with LCA (leukocyte common antibody), CD68, CD31, and CD34. Scanning electron microscopy (SEM) and MTT assay were also performed. Results: Immunohistochemistry staining with CD68 and LCA revealed higher inflammation grade in LDM as compared with LPM and DxHA. Fibrosis grade was also higher in LDM both in short- and long-term follow-ups. However, no significant difference was detected in CD31 and CD34 staining between control and experimental groups. SEM analysis showed that the particle size of LPM was more similar to DxHA. MTT assay revealed that cell proliferation was similar in DxHA, LDM, and LPM. In-vivo assay in nude mice model showed more promising results in LPM as compared with LDM. Conclusion: The long-term results demonstrated that LPM was more similar to Deflux with the least local tissue reaction, inflammation, and fibrosis grade.


Subject(s)
Animals , Dextrans , Hyaluronic Acid , Rabbits , Urinary Bladder , Injections , Mice , Mice, Nude
16.
Rev. invest. clín ; 73(1): 39-51, Jan.-Feb. 2021. graf
Article in English | LILACS | ID: biblio-1289743

ABSTRACT

ABSTRACT Background: Cancer gene therapy using a nonviral vector is expected to be repeatable, safe, and inexpensive, and to have long-term effectiveness. Gene therapy using the E3 and C1 (E3C1) domain of developmental endothelial locus-1 (Del1) has been shown to improve prognosis in a mouse transplanted tumor model. Objective: In this study, we examined how this treatment affects angiogenesis in mouse transplanted tumors. Materials and methods: Mouse transplanted tumors (SCCKN human squamous carcinoma cell line) were injected locally with a nonviral plasmid vector encoding E3C1 weekly. Histochemical analysis of the transplanted tumors was then performed to assess the effects of E3C1 on prognosis. Results: All mice in the control group had died or reached an endpoint within 39 days. In contrast, one of ten mice in the E3C1 group had died by day 39, and eight of ten had died or reached an endpoint by day 120 (p < 0.01). Enhanced apoptosis in tumor stroma was seen on histochemical analyses, as was inhibited tumor angiogenesis in E3C1-treated mice. In addition, western blot analysis showed decreases in active Notch and HEY1 proteins. Conclusion: These findings indicate that cancer gene therapy using a nonviral vector encoding E3C1 significantly improved life-span by inhibiting tumor angiogenesis. (REV INVEST CLIN. 2021;73(1):39-51)


Subject(s)
Animals , Rabbits , Calcium-Binding Proteins/therapeutic use , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/therapy , Cell Adhesion Molecules/therapeutic use , Epidermal Growth Factor/therapeutic use , Discoidin Domain/genetics , Calcium-Binding Proteins/genetics , Tumor Cells, Cultured , Genetic Therapy , Cell Adhesion Molecules/genetics , Amino Acid Motifs , Epidermal Growth Factor/genetics , Mice, Nude , Neoplasm Transplantation , Neovascularization, Pathologic/therapy
17.
Braz. j. med. biol. res ; 54(4): e10117, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153531

ABSTRACT

The long noncoding RNA (lncRNA) H19 is involved in the pathogenesis of endometriosis by modulating the proliferation and invasion of ectopic endometrial cells in vitro, but related in vivo studies are rare. This study aimed to investigate the role of lncRNA H19 in a nude mouse model of endometriosis. Ectopic endometrial stromal cells (ecESCs) were isolated from ectopic endometrium of patients with endometriosis and infected with lentiviruses expressing short hairpin RNA (shRNA) negative control (LV-NC-shRNA) or lncRNA-H19 shRNA (LV-H19-shRNA). The ecESCs infected with LV-NC-shRNA and LV-H19-shRNA were subcutaneously implanted into forty 6- to 8-week-old female nude mice. The size and weight of the endometriotic implants were measured at 1, 2, 3, and 4 weeks after implantation and compared, and lncRNA H19 levels in endometriotic implants were evaluated using real-time polymerase chain reaction (RT-PCR). All nude mice survived the experimental period, and no significant differences in body weight were observed between the experimental group and the control group. All nude mice developed histologically confirmed subcutaneous endometriotic lesions with glandular structures and stroma after 1 week of implantation. The subcutaneous lesions in the LV-NC-shRNA group after 1, 2, 3, and 4 weeks of implantation were larger than those in the LV-H19-shRNA group, and lncRNA H19 levels in subcutaneous lesions in the LV-NC-shRNA group were significantly higher than those in the LV-H19-shRNA group. Knockdown of lncRNA H19 suppresses endometriosis in vivo. Further study is required to explore the underlying mechanism in the future.


Subject(s)
Humans , Animals , Female , Rabbits , Endometriosis/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Cell Proliferation/genetics , Endometrium , Mice, Nude
18.
Braz. j. med. biol. res ; 54(10): e10837, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285644

ABSTRACT

Circular RNAs (circRNAs) have been extensively elucidated with regard to their significant implications in oral squamous cell carcinoma (OSCC). This study performed the functional investigation of circRNA dehydrogenase E1 and transketolase domain containing 1 (circDHTKD1) in OSCC. RNA expression levels of different molecules were measured via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular behaviors were detected by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) for cell viability, colony formation assay for clonal capacity, flow cytometry for cell apoptosis, wound healing assay for migration, and transwell assay for migration/invasion. Western blot was used for analyzing protein expression. RNA pull-down and dual-luciferase reporter assays were applied to assess the binding between targets. A xenograft tumor model was established in nude mice for in vivo experiments. Our expression analysis revealed that circDHTKD1 was upregulated in OSCC tissues and cells. circDHTKD1 knockdown was shown to impede OSCC cell growth and metastasis but motivate apoptosis. Additionally, circDHTKD1 served as a microRNA-326 (miR-326) sponge and the function of circDHTKD1 was achieved by sponging miR-326 in OSCC cells. Also, miR-326 inhibited OSCC development via targeting GRB2-associated-binding protein 1 (GAB1). circDHTKD1 could sponge miR-326 to alter GAB1 expression. Furthermore, circDHTKD1 contributed to OSCC progression in vivo via the miR-326/GAB1 axis. These data disclosed a specific circDHTKD1/miR-326/GAB1 signal axis in governing the malignant progression of OSCC, showing the considerable possibility of circDHTKD1 as a predictive and therapeutic target for clinical diagnosis and treatment of OSCC.


Subject(s)
Animals , Rabbits , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Head and Neck Neoplasms , Cell Movement , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Squamous Cell Carcinoma of Head and Neck , Mice, Nude
19.
Braz. j. med. biol. res ; 54(7): e10236, 2021. graf
Article in English | LILACS | ID: biblio-1249317

ABSTRACT

This work aimed to research the function of MARVEL domain-containing protein 1 (MARVELD1) in glioma as well as its functioning mode. Bioinformatics analysis was utilized to assess the MARVELD1 expression in glioma tissues and its relationship with grade and prognosis, based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) databases. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays were carried out to determine the impact of MARVELD1 on malignant biological behavior of glioma, such as proliferation, invasion, and migration. qRT-PCR was carried out to test the mRNA level of MARVELD1. Western blot assay was performed to measure the protein expression of MARVELD1 and JAK/STAT pathway-related proteins. MARVELD1 was expressed at high levels in glioma tissues and cell lines. Kaplan-Meier survival analysis revealed that the higher MARVELD1 expression, the shorter the survival time of patients with glioma. Also, the MARVELD1 expression in WHO IV was significantly enhanced compared to that in WHO II and WHO III. Furthermore, the functional analysis of MARVELD1 in vitro revealed that knockdown of MARVELD1 in U251 cells restrained cell proliferation, migration, and invasion, while up-regulation of MARVELD1 in U87 cells presented opposite outcomes. Finally, we found that JAK/STAT signaling pathway mediated the function of MARVELD1 in glioma. MARVELD1 contributed to promoting the malignant progression of glioma, which is the key driver of activation of JAK/STAT signaling pathway in gliomas.


Subject(s)
Humans , Animals , Rats , Brain Neoplasms , Glioma , Phenotype , Signal Transduction , Gene Expression Regulation, Neoplastic , Up-Regulation , Cell Movement , Cell Line, Tumor , Cell Proliferation , MARVEL Domain-Containing Proteins , Membrane Proteins , Mice, Nude , Microtubule-Associated Proteins
20.
Braz. j. med. biol. res ; 54(6): e10754, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285670

ABSTRACT

Epidermal growth factor receptor (EGFR) signaling and components of the fibrinolytic system, including urokinase-type plasminogen activator (uPA) and thrombomodulin (TM), have been implicated in tumor progression. In the present study, we employed cBioPortal platform (http://www.cbioportal.org/), cancer cell lines, and an in vivo model of immunocompromised mice to evaluate a possible cooperation between EGFR signaling, uPA, and TM expression/function in the context of cervical cancer. cBioPortal analysis revealed that EGFR, uPA, and TM are positively correlated in tumor samples of cervical cancer patients, showing a negative prognostic impact. Aggressive human cervical cancer cells (CASKI) presented higher gene expression levels of EGFR, uPA, and TM compared to its less aggressive counterpart (C-33A cells). EGFR induces uPA expression in CASKI cells through both PI3K-Akt and MEK1/2-ERK1/2 downstream effectors, whereas TM expression induced by EGFR was dependent on PI3K/Akt signaling alone. uPA induced cell-morphology modifications and cell migration in an EGFR-dependent and -independent manner, respectively. Finally, treatment with cetuximab reduced in vivo CASKI xenografted-tumor growth in nude mice, and decreased intratumoral uPA expression, while TM expression was unaltered. In conclusion, we showed that EGFR signaling regulated expression of the fibrinolytic system component uPA in both in vitro and in vivo settings, while uPA also participated in cell-morphology modifications and migration in a human cervical cancer model.


Subject(s)
Humans , Animals , Female , Rats , Uterine Cervical Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Prognosis , Cell Movement , Cell Line, Tumor , ErbB Receptors , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL