Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.336
Filter
1.
Int. braz. j. urol ; 47(2): 322-332, Mar.-Apr. 2021. tab, graf
Article in English | LILACS | ID: biblio-1154465

ABSTRACT

ABSTRACT Purpose: We assessed the efficacy and safety of a single injection of three bulking agents over the short- and long-term follow-ups in rabbits. Dermal and preputial matrices were compared with Deflux (DxHA) injection. Material and methods: Twenty-four rabbits were divided into three groups. Group I (n=8) underwent the injection of a lyophilized dermal matrix (LDM) beneath the seromuscular layer of the bladder wall. Rabbits in group II (n=8) were injected with lyophilized preputial matrix (LPM). Rabbits of group III (n=8) were injected with DxHA as the control group. They were followed up for 1 and 6 months after the injection. Subcutaneous injection of all bulking agents was also performed in nude mice. Biopsies were stained with LCA (leukocyte common antibody), CD68, CD31, and CD34. Scanning electron microscopy (SEM) and MTT assay were also performed. Results: Immunohistochemistry staining with CD68 and LCA revealed higher inflammation grade in LDM as compared with LPM and DxHA. Fibrosis grade was also higher in LDM both in short- and long-term follow-ups. However, no significant difference was detected in CD31 and CD34 staining between control and experimental groups. SEM analysis showed that the particle size of LPM was more similar to DxHA. MTT assay revealed that cell proliferation was similar in DxHA, LDM, and LPM. In-vivo assay in nude mice model showed more promising results in LPM as compared with LDM. Conclusion: The long-term results demonstrated that LPM was more similar to Deflux with the least local tissue reaction, inflammation, and fibrosis grade.


Subject(s)
Animals , Dextrans , Hyaluronic Acid , Rabbits , Urinary Bladder , Injections , Mice , Mice, Nude
2.
Braz. j. med. biol. res ; 54(7): e10236, 2021. graf
Article in English | LILACS | ID: biblio-1249317

ABSTRACT

This work aimed to research the function of MARVEL domain-containing protein 1 (MARVELD1) in glioma as well as its functioning mode. Bioinformatics analysis was utilized to assess the MARVELD1 expression in glioma tissues and its relationship with grade and prognosis, based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) databases. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays were carried out to determine the impact of MARVELD1 on malignant biological behavior of glioma, such as proliferation, invasion, and migration. qRT-PCR was carried out to test the mRNA level of MARVELD1. Western blot assay was performed to measure the protein expression of MARVELD1 and JAK/STAT pathway-related proteins. MARVELD1 was expressed at high levels in glioma tissues and cell lines. Kaplan-Meier survival analysis revealed that the higher MARVELD1 expression, the shorter the survival time of patients with glioma. Also, the MARVELD1 expression in WHO IV was significantly enhanced compared to that in WHO II and WHO III. Furthermore, the functional analysis of MARVELD1 in vitro revealed that knockdown of MARVELD1 in U251 cells restrained cell proliferation, migration, and invasion, while up-regulation of MARVELD1 in U87 cells presented opposite outcomes. Finally, we found that JAK/STAT signaling pathway mediated the function of MARVELD1 in glioma. MARVELD1 contributed to promoting the malignant progression of glioma, which is the key driver of activation of JAK/STAT signaling pathway in gliomas.


Subject(s)
Humans , Animals , Rats , Brain Neoplasms , Glioma , Phenotype , Signal Transduction , Gene Expression Regulation, Neoplastic , Up-Regulation , Cell Movement , Cell Line, Tumor , Cell Proliferation , MARVEL Domain-Containing Proteins , Membrane Proteins , Mice, Nude , Microtubule-Associated Proteins
3.
Braz. j. med. biol. res ; 54(6): e10754, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285670

ABSTRACT

Epidermal growth factor receptor (EGFR) signaling and components of the fibrinolytic system, including urokinase-type plasminogen activator (uPA) and thrombomodulin (TM), have been implicated in tumor progression. In the present study, we employed cBioPortal platform (http://www.cbioportal.org/), cancer cell lines, and an in vivo model of immunocompromised mice to evaluate a possible cooperation between EGFR signaling, uPA, and TM expression/function in the context of cervical cancer. cBioPortal analysis revealed that EGFR, uPA, and TM are positively correlated in tumor samples of cervical cancer patients, showing a negative prognostic impact. Aggressive human cervical cancer cells (CASKI) presented higher gene expression levels of EGFR, uPA, and TM compared to its less aggressive counterpart (C-33A cells). EGFR induces uPA expression in CASKI cells through both PI3K-Akt and MEK1/2-ERK1/2 downstream effectors, whereas TM expression induced by EGFR was dependent on PI3K/Akt signaling alone. uPA induced cell-morphology modifications and cell migration in an EGFR-dependent and -independent manner, respectively. Finally, treatment with cetuximab reduced in vivo CASKI xenografted-tumor growth in nude mice, and decreased intratumoral uPA expression, while TM expression was unaltered. In conclusion, we showed that EGFR signaling regulated expression of the fibrinolytic system component uPA in both in vitro and in vivo settings, while uPA also participated in cell-morphology modifications and migration in a human cervical cancer model.


Subject(s)
Humans , Animals , Female , Rats , Uterine Cervical Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Prognosis , Cell Movement , Cell Line, Tumor , ErbB Receptors , Mice, Nude
4.
Braz. j. med. biol. res ; 54(4): e10117, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153531

ABSTRACT

The long noncoding RNA (lncRNA) H19 is involved in the pathogenesis of endometriosis by modulating the proliferation and invasion of ectopic endometrial cells in vitro, but related in vivo studies are rare. This study aimed to investigate the role of lncRNA H19 in a nude mouse model of endometriosis. Ectopic endometrial stromal cells (ecESCs) were isolated from ectopic endometrium of patients with endometriosis and infected with lentiviruses expressing short hairpin RNA (shRNA) negative control (LV-NC-shRNA) or lncRNA-H19 shRNA (LV-H19-shRNA). The ecESCs infected with LV-NC-shRNA and LV-H19-shRNA were subcutaneously implanted into forty 6- to 8-week-old female nude mice. The size and weight of the endometriotic implants were measured at 1, 2, 3, and 4 weeks after implantation and compared, and lncRNA H19 levels in endometriotic implants were evaluated using real-time polymerase chain reaction (RT-PCR). All nude mice survived the experimental period, and no significant differences in body weight were observed between the experimental group and the control group. All nude mice developed histologically confirmed subcutaneous endometriotic lesions with glandular structures and stroma after 1 week of implantation. The subcutaneous lesions in the LV-NC-shRNA group after 1, 2, 3, and 4 weeks of implantation were larger than those in the LV-H19-shRNA group, and lncRNA H19 levels in subcutaneous lesions in the LV-NC-shRNA group were significantly higher than those in the LV-H19-shRNA group. Knockdown of lncRNA H19 suppresses endometriosis in vivo. Further study is required to explore the underlying mechanism in the future.


Subject(s)
Humans , Animals , Female , Rabbits , Endometriosis/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Cell Proliferation/genetics , Endometrium , Mice, Nude
5.
Braz. j. med. biol. res ; 54(10): e10837, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285644

ABSTRACT

Circular RNAs (circRNAs) have been extensively elucidated with regard to their significant implications in oral squamous cell carcinoma (OSCC). This study performed the functional investigation of circRNA dehydrogenase E1 and transketolase domain containing 1 (circDHTKD1) in OSCC. RNA expression levels of different molecules were measured via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular behaviors were detected by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) for cell viability, colony formation assay for clonal capacity, flow cytometry for cell apoptosis, wound healing assay for migration, and transwell assay for migration/invasion. Western blot was used for analyzing protein expression. RNA pull-down and dual-luciferase reporter assays were applied to assess the binding between targets. A xenograft tumor model was established in nude mice for in vivo experiments. Our expression analysis revealed that circDHTKD1 was upregulated in OSCC tissues and cells. circDHTKD1 knockdown was shown to impede OSCC cell growth and metastasis but motivate apoptosis. Additionally, circDHTKD1 served as a microRNA-326 (miR-326) sponge and the function of circDHTKD1 was achieved by sponging miR-326 in OSCC cells. Also, miR-326 inhibited OSCC development via targeting GRB2-associated-binding protein 1 (GAB1). circDHTKD1 could sponge miR-326 to alter GAB1 expression. Furthermore, circDHTKD1 contributed to OSCC progression in vivo via the miR-326/GAB1 axis. These data disclosed a specific circDHTKD1/miR-326/GAB1 signal axis in governing the malignant progression of OSCC, showing the considerable possibility of circDHTKD1 as a predictive and therapeutic target for clinical diagnosis and treatment of OSCC.


Subject(s)
Animals , Rabbits , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Head and Neck Neoplasms , Cell Movement , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Squamous Cell Carcinoma of Head and Neck , Mice, Nude
6.
Article in English | WPRIM | ID: wpr-887754

ABSTRACT

OBJECTIVES@#To investigate the effects of circ_0005379 on the proliferation, apoptosis, migration, and invasion of oral squamous cell carcinoma (OSCC) cells and its mechanism.@*METHODS@#Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of circ_0005379 and miR-17-5p in OSCC tissues and SCC15 cell lines. Western blot was used to detect the expression levels of acyl-CoA oxidase 1 (ACOX1). The circ_0005379 overexpression vector was transfected into SCC15 cells. Methyl thiazolyl tetrazolium blue staining, flow cytometry, Transwell, and Western blot were used to detect the effects of circ_0005379 overexpression on the proliferation, apoptosis, migration, and invasion of SCC15 cells and the expression of E-cadherin, β-catenin, and Snail proteins. Dual luciferase reporter assay and RNA immunoprecipitation were used to examine the regulation of circ_0005379, miR-17-5p, miR-17-5p, and ACOX1 in SCC15 cells. A nude mouse xenograft model of SCC15 cells stably overexpressing circ_0005379 was established, and the effect of circ_0005379 overexpression on the growth of xenografts in nude mice was observed.@*RESULTS@#Compared with adjacent cancer tissues, the expression levels of circ_0005379 and ACOX1 proteins in OSCC tissues were decreased (@*CONCLUSIONS@#circ_0005379 may inhibit the proliferation, migration, and invasion of OSCC cells by downregulating the expression of miR-17-5p and upregulating ACOX1, which promote apoptosis and inhibit tumor growth


Subject(s)
Acyl-CoA Oxidase , Animals , Carcinoma, Squamous Cell/genetics , Cell Proliferation , Head and Neck Neoplasms , Humans , Mice , Mice, Nude , MicroRNAs , Mouth Neoplasms/genetics , RNA, Circular , Squamous Cell Carcinoma of Head and Neck
7.
Article in Chinese | WPRIM | ID: wpr-880834

ABSTRACT

OBJECTIVE@#To explore the mechanism by which ginsenoside 20(S)-Rg3 upregulates the expression of tumor suppressor von Hippel-Lindau (VHL) gene in ovarian cancer cells.@*METHODS@#Ovarian cancer cell line SKOV3 treated with 20(S)-Rg3 were examined for mRNA and protein levels of VHL, DNMT1, DNMT3A and DNMT3B by real-time PCR and Western blotting, respectively. The changes in VHL mRNA expression in SKOV3 cells in response to treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, were detected using real-time PCR. VHL gene promoter methylation was examined with methylation-specific PCR and VHL expression levels were determined with real-time PCR and Western blotting in non-treated or 20(S)-Rg3-treated SKOV3 cells and in 20(S)-Rg3-treated DNMT3A-overexpressing SKOV3 cells. VHL and DNMT3A protein levels were detected by immunohistochemistry in subcutaneous SKOV3 cell xenografts in nude mice.@*RESULTS@#Treatment of SKOV3 cells with 20(S)-Rg3 significantly upregulated VHL and downregulated DNMT3A expressions at both the mRNA and protein levels (@*CONCLUSIONS@#Ginsenoside 20(S)-Rg3 upregulates VHL expression in ovarian cancer cells by suppressing DNMT3A-mediated DNA methylation.


Subject(s)
Animals , Cell Line, Tumor , DNA Methylation , Female , Gene Expression , Ginsenosides/pharmacology , Humans , Mice , Mice, Nude , Ovarian Neoplasms/genetics , Promoter Regions, Genetic , Von Hippel-Lindau Tumor Suppressor Protein/genetics
8.
Article in Chinese | WPRIM | ID: wpr-888077

ABSTRACT

This study aimed to explore the effects of galangin on energy metabolism and autophagy in gastric cancer MGC803 cells and the underlying mechanism. Cell counting kit-8(CCK-8) was used to detect the effects of galangin at different concentrations on via-bility of MGC803 cells after 48 h intervention. Western blot was carried out to measure the effects of galangin on expression of proteins related to autophagy, nuclear factor-κB(NF-κB) pathway and energy metabolism, followed by the determination of its effects on mRNA expression of energy metabolism-related proteins by Real-time quantitative PCR(qPCR). The impact of galangin on autophagy was explored using AutophagyGreen dye reagent, with autophagosomes and lysosomes observed under the transmission electron microscope(TEM). Nude mice transplanted with gastric cancer MGC803 cells via subcutaneous injection were randomly divided into the following three groups: control(0.5% sodium carboxymethyl cellulose, once a day), 5-fluorouracil(5-FU, 50 mg·kg~(-1), twice a week), and galangin(120 mg·kg~(-1), once a day) groups. The body weight and tumor volume were measured once every three days with a vernier caliper at the same time point by the same person. After 21-d treatment, the tumor tissue was isolated and weighed for the calculation of the tumor-suppressing rate. The comparison with the control group revealed that galangin inhibited the viability of MGC803 cells, up-regulated the protein expression of microtuble-associated protein 1 light chain 3 B(LC3 B) Ⅱ, inhibited the phosphorylation of NF-κB pathway-related proteins, and promoted the formation of autophagosomes in MGC803 cells. However, it did not obviously affect the expression of energy metabolism-related proteins. Furthermore, galangin at 120 mg·kg~(-1) significantly reduced the tumor weight and volume in mice, enhanced LC3 BⅡ protein expression, and inhibited the phosphorylation of NF-κB pathway-related proteins. All these have suggested that galangin inhibited the growth of gastric cancer MGC803 cells both in vivo and in vitro, possibly by inhibiting the NF-κB pathway and enhancing autophagy.


Subject(s)
Animals , Autophagy , Flavonoids , Mice , Mice, Nude , NF-kappa B/genetics , Signal Transduction , Stomach Neoplasms/genetics
9.
Journal of Integrative Medicine ; (12): 408-417, 2021.
Article in English | WPRIM | ID: wpr-888767

ABSTRACT

OBJECTIVE@#Bufalin is an effective drug for the treatment of liver cancer. But its high toxicity, poor water-solubility, fast metabolism and short elimination half-life limit its use in tumor treatment. How to make the drug accumulate in the tumor and reduce side effects while maintaining its efficacy are urgent problems to be solved. The goal of this study is to solve these problems.@*METHODS@#A copolymer with tunable poly-N-isopropylacrylamide and polylactic acid was designed and synthesized. The corresponding dual targeting immunomicelles (DTIs) loaded with bufalin (DTIs-BF) were synthesized by copolymer self-assembly in an aqueous solution. The size and structure of DTIs-BF were determined by ZetaSizer Nano-ZS and transmission electron microscopy. Then, its temperature sensitivity, serum stability, critical micelle concentration (CMC), entrapment efficiency (EE), drug release and non-cytotoxicity of blank block copolymer micelles (BCMs) were evaluated. Next, the effects of DTIs-BF on cellular uptake, cytotoxicity, and tumor cell inhibition were evaluated. Finally, the accumulation of DTIs-fluorescein isothiocyanate (FITC) and the in vivo anti-tumor effect were observed using an interactive video information system.@*RESULTS@#DTIs-BF had a small size, spherical shape, good temperature sensitivity, high serum stability, low CMC, high EE, and slow drug release. The blank BCMs had very low cytotoxicity. Compared with free bufalin, the in vitro cellular internalization and cytotoxicity of DTIs-BF against SMMC-7721 cells were significantly enhanced, and the effects were obviously better at 40 °C than 37 °C. In addition, the therapeutic effect on SMMC-7721 cells was further enhanced by the programmed cell death specifically caused by bufalin. When DTIs-FITC were injected intravenously in BALB/c nude mice bearing liver cancer, the accumulation of FITC was significantly increased in tumors.@*CONCLUSION@#DTIs-BF is a potentially effective nano-formulation and has broad prospects in the clinical treatment of liver cancer.


Subject(s)
Animals , Antineoplastic Agents/pharmacology , Bufanolides , Cell Line, Tumor , Liver Neoplasms/drug therapy , Mice , Mice, Inbred BALB C , Mice, Nude
10.
Article in English | WPRIM | ID: wpr-922764

ABSTRACT

Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.


Subject(s)
Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Feedback , Female , HeLa Cells , Humans , Interleukin-6/genetics , Janus Kinase 1 , Mice , Mice, Nude , Quinolizidines , STAT3 Transcription Factor/genetics , Signal Transduction , Uterine Cervical Neoplasms/drug therapy
11.
Article in English | WPRIM | ID: wpr-922583

ABSTRACT

OBJECTIVES@#Lung cancer is one of the most common malignant tumors in the world, and its lethality ranks the first among many malignant tumors. For non-small cell lung cancer (NSCLC) patients, due to the high mortality rate, the overall 5-year survival rate is less than 15%. When NSCLC undergoes local invasion, the 5-year survival rate is only 20%, and it is even lower when distant metastasis occurs up to 4%. Almonertinib is an innovative drug independently researched and developed by China with independent intellectual property rights. As an epidermal growth factor receptor tyrosine kinase inhibitor, almonertinib is mainly used for locally advanced or metastatic NSCLC patients with epidermal growth factor receptor (EGFR) T790M mutation. This study aims to investigate the effects of almonertinib on the proliferation, invasion and migration of NSCLC cells in vitro.@*METHODS@#NSCLC cells H1975 and PC-9 were cultured in vitro. The effects of almonertinib on the proliferation, apoptosis, invasion, and migration of H1975 and PC-9 cells were detected by CCK-8 assay, apoptotic assay and Transwell assay. The expression of invasion and migration related proteins was detected by Western blotting.@*RESULTS@#The CCK-8 experiment showed that almonertinib inhibited the proliferation of H1975 and PC-9 cells in a time- and dose-dependent manner. The IC@*CONCLUSIONS@#Almonertinib can inhibit the proliferation, invasion, and migration of NSCLCH1975 and PC-9 cells in vitro and vivo, and promote the apoptosis of H1975 and PC-9 cells. The underlying mechanism may be related to the inhibition of tumor cell epithelial mesenchymal transformation and metalloproteinase expression.


Subject(s)
Acrylamides , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Humans , Indoles , Lung Neoplasms , Mice , Mice, Nude , Mutation , Protein Kinase Inhibitors/pharmacology , Pyrimidines
12.
Article in English | WPRIM | ID: wpr-922471

ABSTRACT

Human dental pulp stem cells (hDPSCs) are easily obtained multipotent cells, however, their potential value in regenerative medicine is hindered by the phenotypic and functional changes after conventional monolayer expansion. Here, we employed single-cell RNA sequencing (scRNA-seq) to comprehensively study the transcriptional difference between the freshly isolated and monolayer cultured DPSCs. The cell cluster analysis based on our scRNA-seq data showed that monolayer culture resulted in a significant cellular composition switch compared to the freshly isolated DPSCs. However, one subpopulation, characterized as MCAM(+)JAG(+)PDGFRA(-), maintained the most transcriptional characteristics compared to their freshly isolated counterparts. Notably, immunofluorescent staining revealed that the MCAM(+)JAG(+)PDGFRA(-) hDPSCs uniquely located in the perivascular region of human dental pulp tissue. Flow-cytometry analysis confirmed that their proportion remained relatively stable (~2%) regardless of physiological senescence or dental caries. Consistent with the annotation of scRNA-seq data, MCAM(+)JAG(+)PDGFRA(-) hDPSCs showed higher proliferation capacity and enhanced in vitro multilineage differentiation potentials (osteogenic, chondrogenic and adipogenic) compared with their counterparts PDGFRA(+) subpopulation. Furthermore, the MCAM(+)JAG(+)PDGFRA(-) hDPSCs showed enhanced bone tissue formation and adipose tissue formation after 4-week subcutaneous implantation in nude mice. Taken together, our study for the first time revealed the cellular composition switch of monolayer cultured hDPSCs compared to the freshly isolated hDPSCs. After in vitro expansion, the MCAM(+)JAG(+)PDGFRA(-) subpopulation resembled the most transcriptional characteristics of fresh hDPSCs which may be beneficial for further tissue regeneration applications.


Subject(s)
Animals , Cell Differentiation , Dental Caries , Dental Pulp , Humans , Mice , Mice, Nude , Stem Cells
13.
Journal of Experimental Hematology ; (6): 1387-1393, 2021.
Article in Chinese | WPRIM | ID: wpr-922270

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effects of novel phosphodiesterase 4 inhibitor ZL-n-91 to the proliferation of leukemia cells L1210 and K562.@*METHODS@#CCK-8 method was used to detect the effect of ZL-n-91 to the proliferation of L1210 and K562 cells, and the proliferation rate, IC@*RESULTS@#ZL-n-91 showed a significant inhibitory effect to the proliferation of leukemia cells L1210 and K562 in a dose-dependent manner (P<0.001). After treated by ZL-n-91, the leukemia cells L1210 and K562 in the S-phase in cell cycle decreased significantly compared with those in control group (P<0.01). The apoptosis of leukemia cells L1210 and K562 could be induced by ZL-n-91 (P<0.001), and the expression level of apoptosis related protein BAX significantly increased. In the animal experiment, the result showed that ZL-n-91 could significantly inhibit the growth of subcutaneously transplantation tumor (P<0.05).@*CONCLUSION@#The novel phosphodiesterase 4 inhibitor ZL-n-91 can effectively inhibit the proliferation of leukemia cells L1210 and K562, which has the potential of anti-leukemia drug development.


Subject(s)
Animals , Cell Proliferation , Humans , K562 Cells , Leukemia , Mice , Mice, Nude , Phosphodiesterase 4 Inhibitors/pharmacology
14.
Chinese Medical Journal ; (24): 194-204, 2021.
Article in English | WPRIM | ID: wpr-921247

ABSTRACT

BACKGROUND@#Despite improvements in disease diagnosis, treatment, and prognosis, breast cancer is still a leading cause of cancer death for women. Compelling evidence suggests that targeting cancer stem cells (CSCs) have a crucial impact on overcoming the current shortcomings of chemotherapy and radiotherapy. In the present study, we aimed to study the effects of T cells and a critical anti-tumor cytokine, interferon-gamma (IFN-γ), on breast cancer stem cells.@*METHODS@#BALB/c mice and BALB/c nude mice were subcutaneously injected with 4T1 tumor cells. Tumor growth and pulmonary metastasis were assessed. ALDEFLOUR™ assays were performed to identify aldehyde dehydrogenasebright (ALDHbr) tumor cells. ALDHbr cells as well as T cells from tumor-bearing BALB/c mice were analyzed using flow cytometry. The effects of CD8+ T cells on ALDHbr tumor cells were assessed in vitro and in vivo. The expression profiles of ALDHbr and ALDHdim 4T1 tumor cells were determined. The levels of plasma IFN-γ were measured by enzyme-linked immunosorbent assay, and their associations with the percentages of ALDHbr tumor cells were evaluated. The effects of IFN-γ on ALDH expression and the malignancy of 4T1 tumor cells were analyzed in vitro.@*RESULTS@#There were fewer metastatic nodules in tumor-bearing BALB/c mice than those in tumor-bearing BALB/c nude mice (25.40 vs. 54.67, P < 0.050). CD8+ T cells decreased the percentages of ALDHbr 4T1 tumor cells in vitro (control vs. effector to target ratio of 1:1, 10.15% vs. 5.76%, P < 0.050) and in vivo (control vs. CD8+ T cell depletion, 10.15% vs. 21.75%, P < 0.001). The functions of upregulated genes in ALDHbr 4T1 tumor cells were enriched in the pathway of response to IFN-γ. The levels of plasma IFN-γ decreased gradually in tumor-bearing BALB/c mice, while the percentages of ALDHbr tumor cells in primary tumors increased. IFN-γ at a concentration of 26.68 ng/mL decreased the percentages of ALDHbr 4T1 tumor cells (22.88% vs. 9.88%, P < 0.050) and the protein levels of aldehyde dehydrogenase 1 family member A1 in 4T1 tumor cells (0.86 vs. 0.49, P < 0.050) and inhibited the abilities of sphere formation (sphere diameter <200 μm, 159.50 vs. 72.0; ≥200 μm, 127.0 vs. 59.0; both P < 0.050) and invasion (89.67 vs. 67.67, P < 0.001) of 4T1 tumor cells.@*CONCLUSION@#CD8+ T cells and IFN-γ decreased CSC numbers in a 4T1 mouse model of breast cancer. The application of IFN-γ may be a potential strategy for reducing CSCs in breast cancer.


Subject(s)
Aldehydes , Animals , Breast Neoplasms , Cell Line, Tumor , Female , Humans , Interferon-gamma , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells
15.
Chinese Medical Journal ; (24): 2340-2352, 2021.
Article in English | WPRIM | ID: wpr-921125

ABSTRACT

BACKGROUND@#Emerging evidence indicates that the sineoculis homeobox homolog 1-eyes absent homolog 1 (SIX1-EYA1) transcriptional complex significantly contributes to the pathogenesis of multiple cancers by mediating the expression of genes involved in different biological processes, such as cell-cycle progression and metastasis. However, the roles of the SIX1-EYA1 transcriptional complex and its targets in colorectal cancer (CRC) are still being investigated. This study aimed to investigate the roles of SIX1-EYA1 in the pathogenesis of CRC, to screen inhibitors disrupting the SIX1-EYA1 interaction and to evaluate the efficiency of small molecules in the inhibition of CRC cell growth.@*METHODS@#Real-time quantitative polymerase chain reaction and western blotting were performed to examine gene and protein levels in CRC cells and clinical tissues (collected from CRC patients who underwent surgery in the Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, between 2016 and 2018, n = 24). In vivo immunoprecipitation and in vitro pulldown assays were carried out to determine SIX1-EYA1 interaction. Cell proliferation, cell survival, and cell invasion were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, clonogenic assay, and Boyden chamber assay, respectively. The Amplified Luminescent Proximity Homogeneous Assay Screen (AlphaScreen) method was used to obtain small molecules that specifically disrupted SIX1-EYA1 interaction. CRC cells harboring different levels of SIX1/EYA1 were injected into nude mice to establish tumor xenografts, and small molecules were also injected into mice to evaluate their efficiency to inhibit tumor growth.@*RESULTS@#Both SIX1 and EYA1 were overexpressed in CRC cancerous tissues (for SIX1, 7.47 ± 3.54 vs.1.88 ± 0.35, t = 4.92, P = 0.008; for EYA1, 7.61 ± 2.03 vs. 2.22 ± 0.45, t = 6.73, P = 0.005). The SIX1/EYA1 complex could mediate the expression of two important genes including cyclin A1 (CCNA1) and transforming growth factor beta 1 (TGFB1) by binding to the myocyte enhancer factor 3 consensus. Knockdown of both SIX1 and EYA1 could decrease cell proliferation, cell invasion, tumor growth, and in vivo tumor growth (all P < 0.01). Two small molecules, NSC0191 and NSC0933, were obtained using AlphaScreen and they could significantly inhibit the SIX1-EYA1 interaction with a half-maximal inhibitory concentration (IC50) of 12.60 ± 1.15 μmol/L and 83.43 ± 7.24 μmol/L, respectively. Administration of these two compounds could significantly repress the expression of CCNA1 and TGFB1 and inhibit the growth of CRC cells in vitro and in vivo.@*CONCLUSIONS@#Overexpression of the SIX1/EYA1 complex transactivated the expression of CCNA1 and TGFB1, causing the pathogenesis of CRC. Pharmacological inhibition of the SIX1-EYA1 interaction with NSC0191 and NSC0933 significantly inhibited CRC cell growth by affecting cell-cycle progression and metastasis.


Subject(s)
Animals , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Homeodomain Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Nude , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics
16.
Braz. j. med. biol. res ; 53(2): e8901, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055498

ABSTRACT

The objective of this study was to explore the role of the SULF2-mediated ERK/AKT signaling pathway in cervical cancer. SULF2 expression was detected in tumor tissues and tumor-adjacent normal tissues from cervical cancer patients. HeLa cells were divided into six groups: control group, NC group, SULF2 siRNA group, SULF2 group, SULF2 + LY294002 group, and SULF2 + U0125 group. In each group, HeLa cells received the corresponding treatment, followed by measurement of the cellular biological characteristics and expression of the ERK/AKT signaling pathway. We also confirmed the effect of SULF2 in vivo using a xenograft model in nude mice. SULF2 was upregulated in cervical cancer tissues, which was specifically associated with the clinical stage, histological differentiation, and lymphatic metastasis. Compared to the control group, the SULF2 siRNA group displayed decreased expression of SULF2, concomitant with reduced proliferation, migration, and invasion, but there was an increase in the apoptosis rate of HeLa cells, as well as downregulation of the p-Akt/Akt, p-ERK/ERK, and Bax/Bcl-2 ratios and cyclin D1. Additionally, tumor growth was significantly inhibited in the xenograft model of nude mice. The results in the SULF2 group were quite the opposite in which SULF2 facilitated the growth of cervical cancer cells, which was reversed by LY294002 or U0126. SULF2 is highly expressed in cervical cancer, and thus, downregulation of SULF2 can inhibit the ERK1/2 and AKT signaling pathways to suppress the proliferation, invasion, and migration of cervical cancer cells while facilitating apoptosis.


Subject(s)
Humans , Animals , Female , Adult , Middle Aged , Aged , Rabbits , Sulfatases/metabolism , Uterine Cervical Neoplasms/metabolism , Apoptosis , MAP Kinase Signaling System/physiology , Sulfatases/genetics , Immunohistochemistry , HeLa Cells , Signal Transduction , Case-Control Studies , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System/genetics , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Real-Time Polymerase Chain Reaction , Mice, Nude , Neoplasm Staging
17.
Article in Chinese | WPRIM | ID: wpr-880808

ABSTRACT

OBJECTIVE@#To investigate the effect of exosomes derived from Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (NPC) cells on lymphangiogenesis and lymph node metastasis of NPC.@*METHODS@#Exosomes from NP69 cells and EBV-positive HK1 (HK1-EBV) cells were obtained by ultracentrifugation and identified by Western blotting and nanoparticle tracking analysis. Dio dye phagocytosis test was performed to observe exosome uptake by lymphatic endothelial cells. Lymphatic endothelial cells were treated with exosomes from nasopharyngeal epithelium (NP69), HK1-EBV, and C666-1 cells or exosome-free supernatant of HK1-EBV and C666-1 cells, and tube formation and migration of the cells were observed. In a nude mouse model of popliteal lymph node metastasis of NPC, the effects of normal saline, NP69 cell-derived exosomes, HK1-EBV cell-derived exosomes, exosome-free supernatant of HK1-EBV cells, and HK1-EBV exosome-free supernatant protein on lymphangiogenesis and lymph node metastasis of the tumor were observed.@*RESULTS@#The exosomes obtained by ultracentrifugation contained abundant exosome-specific proteins and showed a normal size range. The exosomes from NPC cells and NP69 cells could be taken up by lymphatic endothelial cells. Compared with the blank control and exosomes form NP69 cells, exosomes derived from HK1-EBV and C666-1 cells significantly promoted tube formation and migration of lymphatic endothelial cells (@*CONCLUSIONS@#Exosomes from EBV-positive NPC cells can significantly promote lymphangiogenesis and lymph node metastasis of NPC.


Subject(s)
Animals , Cell Line, Tumor , Endothelial Cells , Epstein-Barr Virus Infections , Exosomes , Herpesvirus 4, Human , Humans , Lymphangiogenesis , Lymphatic Metastasis , Mice , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms
18.
Article in Chinese | WPRIM | ID: wpr-880764

ABSTRACT

OBJECTIVE@#To investigate the antitumor effect of ponatinib on the growth of cholangiocarcinoma xenograft derived from a clinical patient in a mouse model expressing FGFR2-CCDC6 fusion protein.@*METHODS@#Lung metastatic tumor tissue was collected from a patient with advanced intrahepatic cholangiocarcinoma and implanted subcutaneously a NOD/SCID/ Il2rg-knockout (NSG) mouse. The tumor tissues were harvested and transplanted in nude mice to establish mouse models bearing patient-derived xenograft (PDX) of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein. The PDX mouse models were divided into 4 groups for treatment with citrate buffer (control group), intragastric administration of 20 mg/kg ponatinib dissolved in citrate buffer (ponatinib group), weekly intraperitoneal injections of 50 mg/kg gemcitabine and 2.5 mg/ kg cisplatin (gemcitabine group), or ponatinib combined with gemcitabine and cisplatin at the same doses (10 mice in each group, and 9 mice were evaluated in ponatinib group). The expressions of p-FGFR, p-FRS2, p-AKT, p-ERK, CD31, and Ki-67 in the xenografts were evaluated with immunohistochemistry, and cell apoptosis was analyzed with cleaved caspase-3 (CC3) staining and TUNEL staining. Western blotting was used to detect the expressions of FGFR2, p-FGFR, AKT, p-AKT, ERK, p-ERK, FRS2 and p-FRS2 in the tumor tissues.@*RESULTS@#Compared with those in the control group, the mice in ponatinib group showed a significantly reduced tumor volume (@*CONCLUSIONS@#Ponatinib can regulate FGFR signaling to inhibit the proliferation and induce apoptosis of tumor cells in mice bearing patient-derived cholangiocarcinoma xenograft with FGFR2 fusion. FGFR inhibitor can serve as a treatment option for patients with cholangiocarcinoma with FGFR2 fusion.


Subject(s)
Animals , Bile Duct Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/genetics , Cytoskeletal Proteins , Heterografts , Humans , Imidazoles , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Pyridazines , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays
19.
Article in Chinese | WPRIM | ID: wpr-828507

ABSTRACT

OBJECTIVE@#To investigate the characteristics of growth and metabolism and the toxicity of under different conditions.@*METHODS@#We observed the growth of and under routine culture conditions and in different pH and salt concentrations, and compared their activities of sugar fermentation using microbiochemical reaction tubes. Four-week-old nude mice were randomized into infection group (=5), infection group (=5) and control group (=5) for intragastric administration of 0.3 mL suspension the two (5×10 cfu/mL) or 0.3 mL normal saline. Samples of the liver, kidney, intestine, feces and blood were taken for analysis of the distribution and toxicity of by fungal culture and histopathological examination.@*RESULTS@# exhibited logarithmic growth at 8-24 h after inoculation and showed stable growth after 24 h. showed optimal growth within the pH value range of 5-7 with a growth pattern identical to that of . grew better than in media containing 5% and 10% NaCl, and could ferment glucose, sucrose, trehalose and sorbitol. could be isolated from the feces, blood, liver and kidney of infected nude mice, and the liver had the highest fungal load (5.7 log cfu/g). could cause pathological changes in the liver and intestine of the mice, but with a lesser severity as compared with .@*CONCLUSIONS@# exhibits optimal growth in mildly acidic or neutral conditions with a high salt tolerance, and can potentially penetrate the intestinal barrier into blood and lead to tissue injuries in hosts with immunosuppression.


Subject(s)
Animals , Candida , Candida albicans , Candidiasis , Microbiology , Culture Media , Mice , Mice, Nude , Random Allocation
20.
Article in Chinese | WPRIM | ID: wpr-878866

ABSTRACT

Epithelial-mesenchymal transformation(EMT) exists in embryonic development and is closely related to cell migration and invasion. The increased EMT level in tumors showed that E-cadherin was replaced by N-cadherin, and the expression of interstitial markers such as α-SMA and vimentin was up-regulated. It has been reported that lupeol can reduce the expression of matrix metalloproteinase-2(MMP-2), matrix metalloproteinase-9(MMP-9) and N-cadherin to inhibit the metastasis of osteoma cells. However lupeol has been less studied in liver cancer. Therefore, this paper investigated the effect of lupanol on invasion and metastasis of human hepatoma cell line HepG2 and SK-HEP-1 and its possible mechanism. MTT assay and Annexin V/PI double staining were used to investigate the effect of lupeol on activity and apoptosis of HepG2 cells and SK-HEP-1 cells. Moreover, the effect of lupeol on the invasion of HepG2 cells and SK-HEP-1 cells were evaluated by Transwell assay. The expressions of E-cadherin, N-cadherin, α-SMA, vimentin and MMP-9 were measured by Western blot. The model of subcutaneous transplantation of nude mice and the lung metastasis model of H22 hepatocellular carcinoma cells were established to evaluate the efficacy of lupeol in vivo on tumor growth and lung metastasis by HE staining combined with immunohistochemical assay. The results showed that lupeol inhibited the activity and invasion of HepG2 cells and SK-HEP-1 cells in a dose-dependent manner and induced apoptosis. Western blot showed that the expression of E-cadherin, a landmark protein for EMT, was induced by lupeol, and the expressions of N-cadherin, α-SMA, vimentin and MMP-9 were decreased. In vivo experiments showed that lupeol inhibited tumor growth in mice bearing xenograft. In addition, immunohistochemical experiments confirmed that lupeol could up-regulate the expression of E-cadherin in tumor tissues of nude mice, reduce the expression of N-cadherin, and inhibit the metastasis of liver cancer H22 cells in the lungs of mice. The above results indicated that the mechanism of lupeol inhibiting the invasion and metastasis of HCC cells may be related to the regulation of EMT process.


Subject(s)
Animals , Carcinoma, Hepatocellular , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , Pentacyclic Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL