Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.454
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20007, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394052

ABSTRACT

Abstract The prolonged entry of large amounts of calcium into the mitochondria through the mitochondrial calcium uniporter complex (MCUC) may cause the permeability transition pore (mPTP) to open, which contributes to the pathogenesis of several diseases. Tissue-specific differences in mPTP opening due to variable expression of MCUC components may contribute to disease outcomes. We designed this study to determine differential mPTP opening in mitochondria isolated from different regions of mouse brain and kidney and to compare it with the expression of MCUC components. mPTP opening was measured using mitochondria isolated from the left/right brain hemispheres (LH/RH, respectively) and from kidney cortex/medulla, while the expression level of MCUC components was assessed from total cellular RNA. Interestingly, LH mitochondria showed less calcium-induced mPTP opening as compared to RH mitochondria at two different calcium concentrations. Conversely, mPTP opening was similar in the renal cortex and renal medulla mitochondria. However, the kidney mitochondria demonstrated bigger and faster mPTP opening as compared to the brain mitochondria. Furthermore, asymmetric mPTP opening in the LH and RH mitochondria was not associated with the expression of MCUC components. In brief, this study demonstrates thus far unreported asymmetric mPTP opening in mouse brain hemispheres that is not associated with the mRNA levels of MCUC components.


Subject(s)
Animals , Male , Female , Mice , Brain , Calcium/agonists , Cerebrum/abnormalities , Mitochondrial Permeability Transition Pore/analysis , Mice , Mitochondria , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Kidney Cortex
2.
Article in Chinese | WPRIM | ID: wpr-936296

ABSTRACT

OBJECTIVE@#To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS).@*METHODS@#Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting.@*RESULTS@#RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001).@*CONCLUSION@#MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.


Subject(s)
Apoptosis , Atherosclerosis/genetics , Ferroptosis , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Membrane Potential, Mitochondrial , MicroRNAs/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
3.
Protein & Cell ; (12): 180-202, 2022.
Article in English | WPRIM | ID: wpr-929176

ABSTRACT

Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.


Subject(s)
Animals , Caenorhabditis elegans/metabolism , Cation Transport Proteins/genetics , Homeostasis , Mitochondria/metabolism , Zinc/metabolism
4.
Neuroscience Bulletin ; (6): 373-385, 2022.
Article in English | WPRIM | ID: wpr-929118

ABSTRACT

Mitochondrial reactive oxygen species (mROS) that are overproduced by mitochondrial dysfunction are linked to pathological conditions including sensory abnormalities. Here, we explored whether mROS overproduction induces itch through transient receptor potential canonical 3 (TRPC3), which is sensitive to ROS. Intradermal injection of antimycin A (AA), a selective inhibitor of mitochondrial electron transport chain complex III for mROS overproduction, produced robust scratching behavior in naïve mice, which was suppressed by MitoTEMPO, a mitochondria-selective ROS scavenger, and Pyr10, a TRPC3-specific blocker, but not by blockers of TRPA1 or TRPV1. AA activated subsets of trigeminal ganglion neurons and also induced inward currents, which were blocked by MitoTEMPO and Pyr10. Besides, dry skin-induced chronic scratching was relieved by MitoTEMPO and Pyr10, and also by resveratrol, an antioxidant. Taken together, our results suggest that mROS elicit itch through TRPC3, which may underlie chronic itch, representing a potential therapeutic target for chronic itch.


Subject(s)
Animals , Antioxidants/pharmacology , Mice , Mitochondria , Pruritus/chemically induced , Reactive Oxygen Species/metabolism , TRPA1 Cation Channel
5.
Neuroscience Bulletin ; (6): 235-248, 2022.
Article in English | WPRIM | ID: wpr-929091

ABSTRACT

Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell (IHC). This feature is believed to be critical for audition over a wide dynamic range, but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear. By means of three-dimensional electron microscopy and artificial intelligence-based algorithms, we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice. We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization. Moreover, our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.


Subject(s)
Animals , Artificial Intelligence , Cochlea/metabolism , Hair Cells, Auditory, Inner , Mice , Mitochondria , Synapses/metabolism
6.
Article in English | WPRIM | ID: wpr-928962

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.


Subject(s)
Acupuncture Therapy , Aged , Alzheimer Disease/drug therapy , Apoptosis , Humans , Mitochondria/metabolism
7.
Article in English | WPRIM | ID: wpr-939848

ABSTRACT

Immunoglobulin G4-related sialadenitis (IgG4-RS) is an immune-mediated fibro-inflammatory disease and the pathogenesis is still not fully understood. The aim of this study was to explore the role and mechanism of interleukin-13 (IL-13) in the cellular senescence during the progress of IgG4-RS. We found that the expression of IL-13 and IL-13 receptor α1 (IL-13Rα1) as well as the number of senescent cells were significantly higher in the submandibular glands (SMGs) of IgG4-RS patients. IL-13 directly induced senescence as shown by the elevated activity of senescence-associated β-galactosidase (SA-β-gal), the decreased cell proliferation, and the upregulation of senescence markers (p53 and p16) and senescence-associated secretory phenotype (SASP) factors (IL-1β and IL-6) in SMG-C6 cells. Mechanistically, IL-13 increased the level of phosphorylated signal transducer and activator of transcription 6 (p-STAT6) and mitochondrial-reactive oxygen species (mtROS), while decreased the mitochondrial membrane potential, ATP level, and the expression and activity of superoxide dismutase 2 (SOD2). Notably, the IL-13-induced cellular senescence and mitochondrial dysfunction could be inhibited by pretreatment with either STAT6 inhibitor AS1517499 or mitochondria-targeted ROS scavenger MitoTEMPO. Moreover, IL-13 increased the interaction between p-STAT6 and cAMP-response element binding protein (CREB)-binding protein (CBP) and decreased the transcriptional activity of CREB on SOD2. Taken together, our findings revealed a critical role of IL-13 in the induction of salivary gland epithelial cell senescence through the elevated mitochondrial oxidative stress in a STAT6-CREB-SOD2-dependent pathway in IgG4-RS.


Subject(s)
Cellular Senescence/genetics , Humans , Immunoglobulin G/metabolism , Interleukin-13/pharmacology , Mitochondria/metabolism , Sialadenitis/metabolism
8.
Article in English | WPRIM | ID: wpr-939820

ABSTRACT

The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.


Subject(s)
Acetylation , Animals , Cold-Shock Response , Epigenesis, Genetic , Macrophages/metabolism , Mice , Mitochondria/metabolism
9.
Chinese Journal of Hepatology ; (12): 447-451, 2022.
Article in Chinese | WPRIM | ID: wpr-935965

ABSTRACT

Mitochondrial DNA is the mitochondria's own genetic material located within the mitochondrial matrix and is involved in cellular metabolism and energy supply. Mitochondrial DNA damage exacerbates oxidative stress by increasing the release of reactive oxygen species, while mitochondrial DNA release also triggers apoptosis and activates immune inflammatory responses through damage-related molecular patterns. Mitochondrial autophagy regulates mitochondrial DNA damage and release through a negative feedback mechanism to maintain intracellular homeostasis. Recent studies have shown that the occurrence and development of chronic liver disease are closely related to mitochondrial DNA-mediated immune inflammatory responses and oxidative stress.


Subject(s)
Apoptosis , Autophagy , DNA, Mitochondrial/metabolism , Humans , Liver Diseases , Mitochondria , Oxidative Stress , Reactive Oxygen Species/metabolism
10.
Chinese Journal of Hepatology ; (12): 45-51, 2022.
Article in Chinese | WPRIM | ID: wpr-935901

ABSTRACT

Objective: To compare the effects of artesunate (Art) and fuzheng huayu decoction on mitochondrial autophagy in the treatment of schistosomiasis liver fibrosis. Methods: Eighty C57BL/6 female mice were randomly divided into healthy control group, infection group, Art treatment group and Fuzheng Huayu Decoction treatment group, with 20 mice in each group. Mice in the infection group and treatment group were infected with 16 Schistosoma japonicum cercariae. After 6 weeks, praziquantel (300 mg/kg) was used for 2 days to kill the worms. The Art treatment group was treated with intraperitoneal injection of 100 mg/kg/day, while the Fuzheng Huayu Decoction treatment group was fed 16g of fuzheng huayu decoction per 1kg per day. After 6 weeks, fresh liver tissues of the four groups were collected. Masson staining and Western blot were used to observe the succinate dehydrogenase subunit A (SDHA) and malate dehydrogenase (MDH2), citrate synthase (CS), ketoglutarate dehydrogenase (OGDH), and target of rapamycin 1 (mTORC1) pathway involved in mitochondrial tricarboxylic acid cycle in liver tissues. The relative expression levels of adenylate activated protein kinase (AMPK) and mitochondrial autophagy pathway kinase (PINK1) were detected. Liver tissue samples were extracted from each group to detect the mitochondrial oxygen consumption rate. Two-way ANOVA was used to compare the significance and difference between two sets of samples. Results: Masson staining showed that the infection group mice had significantly higher liver fibrosis area than the healthy control group, while the Art treatment group and Fuzheng Huayu Decoction treatment group mice had lower liver fibrosis area than the infection group. Western blot analysis showed that the infection group (0.82 ± 0.05) had significantly lower relative expression of SDHA protein than the healthy control group (1.00 ± 0.05) (t = 11.23, P = 0.0035), while the Art treatment group (0.73 ± 0.05) had significantly higher relative expression of SDHA protein than the infection group (t = 10.79, P = 0.0073). However, there was no significant change in Fuzheng Huayu Decoction treatment group (0.98±0.05) (t = 1.925, P = 0.1266). The relative expression of p-AMPK protein was significantly higher in the infection group (1.15 ±0.05) than in the healthy control group (0.98 ± 0.07, t = 12.18, P = 0.0029), and the expression of p-AMPK in the Art treatment group (0.50 ± 0.05) was significantly lower than the infection group (t = 11.78, P = 0.0032). The relative protein expression of AMPK was significantly lower in the infection group (0.80 ± 0.05) than in the healthy control group (1.00 ± 0.05, t = 10.53, P = 0.0046). The expression of AMPK was significantly lower in the Art treatment group (0.54 ± 0.05) than in the infection group (T = 13.98, P = 0.0036). The relative expression of p-mTORC1 protein (0.93 ± 0.08) was not significantly different in the infection group than in the healthy control group (t = 2.28, P = 0.065), while the Art treatment group (0.63 ± 0.05) had significantly lower relative expression of p-mTORC1 protein than the infection group (t = 10.58, P = 0.029). The expression of p-mTORC1/ m-TORC1 was not significantly different in the infection group (0.98 ± 0.03) than in the healthy control group (0.97 ± 0.03, t = 0.98, P = 0.085), while the Art treatment group (0.63 ± 0.05) had significantly lower relative expression of p-mTORC1/ m-TORC1 than the infection group (t = 14.58, P = 0. 009). The relative protein expression of PINK1 was significantly lower in the infection group (0.55 ± 0.05) than in the healthy control group (1.00 ± 0.03, t = 13.49, P = 0.0011), while the Art treatment group (1.21 ± 0.05, t = 9.98, P = 0.0046) and Fuzheng Huayu Decoction treatment group (1.31 ±0.35, t = 6.98, P = 0.027) had significantly higher relative protein expression of PINK1 than the infection group. Mitochondrial function tests showed that after adding substrate complex II, the oxygen consumption of the infection group was lower than the healthy control group, while the Art treatment group and the Fuzheng Huayu Decoction treatment group had higher oxygen consumption than the infection group. The oxygen consumption was significantly lower after adding the substrate complex III in the infection group than the healthy control group, while the Art treatment group and Fuzheng Huayu Decoction treatment group had higher oxygen consumption than the infection group. Conclusion: Art can alleviate schistosomiasis liver fibrosis by inhibiting AMPK/mTORC1 signaling pathway activity and enhancing mitochondrial oxygen consumption, autophagy and SDHA expression.


Subject(s)
Animals , Artesunate , Drugs, Chinese Herbal/therapeutic use , Female , Liver Cirrhosis/drug therapy , Mice , Mice, Inbred C57BL , Mitochondria , Schistosomiasis
11.
Article in Chinese | WPRIM | ID: wpr-935735

ABSTRACT

Objective: To study the effects of vibration on the expression of mitochondrial fusion and fission genes and ultrastructure of skeletal muscle in rabbits. Methods: Thirty-two 3.5-month-old New Zealand rabbits were randomly divided into low-intensity group, medium-intensity group, high-intensity group and control group, with 8 rabbits in each group. The rabbits in the experimental group were subjected to hind limb vibration load test for 45 days. The vibration intensity of the high intensity group was 12.26 m/s(2), the medium intensity group was 6.13 m/s(2), and the low intensity group was 3.02 m/s(2) according to the effective value of weighted acceleration[a(hw (4))] for 4 hours of equal energy frequency. The control group was exposed to noise only in the same experimental environment as the medium-intensity group. The noise levels of each group were measured during the vibration load experiment. After the test, the mRNA expression of mitochondrial fusion gene (Mfn1/Mfn2) and fission gene (Fis1, Drp1) by RT-PCR in the skeletal muscles were measured and the ultrastructure of the skeletal muscles were observed in high intensity group. Results: The mRNA expression of mitochondrial in the skeletal muscle tissues of control group, low intensity group, medium intensity group and high intensity group were Mfn1: 3.25±1.36, 3.85±1.90, 4.53±2.31 and 11.63±7.68; Mfn2: 0.68±0.25, 1.02±0.40, 0.94±0.33 and 1.40±0.45; Fis1: 1.05±0.62, 1.15±0.59, 1.53±1.06 and 2.46±1.51 and Drp1: 3.72±1.76, 2.91±1.63, 3.27±2.01 and 4.21±2.46, respectively. Compared with the control group, the expressions of Mfn1 mRNA, Mfn2 mRNA and Fis1 mRNA in the high-intensity group increased significantly (P<0.05) , and the expressions of Mfn2 mRNA in the medium-intensity group and the low-intensity group increased significantly (P<0.05) . Compared with the control group, the ultrastructure of skeletal muscle of high intensity group showed mitochondrial focal accumulation, cristae membrane damage, vacuole-like changes; Z-line irregularity of muscle fibers, and deficiency of sarcomere. Conclusion: Vibration must be lead to the abnormal mitochondrial morphology and structure and the disorder of energy metabolism due to the expression imbalance of mitochondrial fusion and fission genes in skeletal muscles of rabbits, which may be an important target of vibration-induced skeletal muscle injury.


Subject(s)
Animals , Hindlimb/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/pharmacology , Muscle, Skeletal , Rabbits , Vibration/adverse effects
12.
Article in Chinese | WPRIM | ID: wpr-928711

ABSTRACT

In recent years, studies have found that mitochondrial transfer between leukemic cells and different types of cells in their bone marrow microenvironment, especially mesenchymal stem cells, plays a key role in the occurrence, development and drug resistance of hematological malignant tumors. This paper mainly introduces the role and latest research progress of mitochondrial transfer in acute and chronic myeloid leukemia, acute lymphoblastic leukemia and multiple myeloma, and briefly describes the mechanism of drug resistance caused by mitochondrial transfer in leukemic cells during chemotherapy. The aim is to provide a new idea and theoretical basis for using intercellular mitochondrial transfer as a potential therapeutic target.


Subject(s)
Bone Marrow , Hematologic Neoplasms/metabolism , Humans , Mesenchymal Stem Cells , Mitochondria , Multiple Myeloma/metabolism , Tumor Microenvironment
13.
Article in Chinese | WPRIM | ID: wpr-928665

ABSTRACT

OBJECTIVE@#To investigate the effect of monoammonium glycyrrhizinate on the stem cell-like characteristics, oxidative stress and mitochondrial function of acute promyelocytic leukemia cells NB4.@*METHODS@#CCK-8 method was used to detect the viability of acute promyelocytic leukemia cells NB4, and the appropriate dose was screened; Cloning method was used to detect the proliferation rate of NB4 cell; Western blot was used to detect the expression of cell cycle-related protein; flow cytometry was used to detect cell apoptosis and sort NB4 stem cells positive (CD133+); Stem cell markers (Oct4, ABCG2, Dclk1) were detected by RT-PCR; ROS was detected by fluorescence; The kit was used to detect the level of oxidative stress markers (MDA); The flow cytometry was used to detect the change of mitochondrial membrane potential; Western blot was used to detect the expression of mitochondrial damage index-related proteins (Bax/BCL-2).@*RESULTS@#Compared with the control group, if the concentration of MAG was less than 5 μmol/L, the cell NB4 viability showed no significant difference; if the concentration was higher than 5 μmol/L, the inhibitory effect on the growth of cell NB4 increased and showed significant difference (P<0.05), according to the results of CCK-8 experiment, four groups were set based on the concentration of MAG 0 μmol/L, MAG 5 μmol/L, MAG 10 μmol/L, and MAG 20 μmol/L; compared with the control group (MAG 0 μmol/L), the cells in MAG 5 μmol/L group showed no significant difference, while the proliferation rate, cyclin expression, mitochondrial membrane potential, stem cell CD133+ ratio, and marker mRNA level ( Oct4, ABCG2, Dclk1) of NB4 cell were significantly reduced (P<0.05); the apoptosis rate, reactive oxygen species, MDA content and Bax/BCL-2 expression of NB4 cell significantly increased (P<0.05).@*CONCLUSION@#Monoammonium glycyrrhizinate has a significant inhibitory effect on acute promyelocytic leukemia cells NB4, which may be related to the regulation of stem cell-like characteristics, oxidative stress and mitochondrial function.


Subject(s)
Apoptosis , Cell Line, Tumor , Doublecortin-Like Kinases , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Promyelocytic, Acute , Mitochondria , Oxidative Stress , Protein Serine-Threonine Kinases , Stem Cells
14.
Article in Chinese | WPRIM | ID: wpr-928130

ABSTRACT

A high-throughput screening machine learning model for mitochondrial function was constructed, and compounds of Aco-niti Lateralis Radix Praeparata were predicted. Deoxyaconitine with the highest score and benzoylmesaconine with the lowest score among the compounds screened by the model were selected for mitochondrial mechanism analysis. Mitochondrial function data were collected from PubChem and Tox21 databases. Random forest and gradient boosted decision tree algorithms were separately used for mo-deling, and ECFP4(extended connectivity fingerprint, up to four bonds) and Mordred descriptors were employed for training, respectively. Cross-validation test was carried out, and balanced accuracy(BA) and overall accuracy were determined to evaluate the performance of different combinations of models and obtain the optimal algorithm and hyperparameters for modeling. The data of Aconiti Lateralis Radix Praeparata compounds in TCMSP database were collected, and after prediction and screening by the constructed high-throughput screening machine learning model, deoxyaconitine and benzoylmesaconine were selected to measure mitochondrial membrane potential, reactive oxygen species(ROS) level and protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax) and peroxisome proliferator-activated receptor-γ-coactivator 1α(PGC-1α). The results showed that the model constructed using gradient boosted decision tree+Mordred algorithm performed better, with a cross-validation BA of 0.825 and a test set accuracy of 0.811. Deoxyaconitine and benzoylmesaconine changed the ROS level(P<0.001), mitochondrial membrane potential(P<0.001), and protein expression of Bcl-2(P<0.001, P<0.01) and Bax(P<0.001), and deoxyaconitine increased the expression of PGC-1α protein(P<0.01). The high-throughput screening model for mitochondrial function constructed by gradient boosted decision tree+Mordred algorithm was more accurate than that by random forest+ECFP4 algorithm, which could be used to build an algorithm model for subsequent research. Deoxyaconitine and benzoylmesaconine affected mitochondrial function. However, deoxyaconitine with higher score also affected mitochondrial biosynthesis by regulating PGC-1α protein.


Subject(s)
Aconitum/chemistry , Algorithms , Drugs, Chinese Herbal/chemistry , High-Throughput Screening Assays , Machine Learning , Mitochondria , Reactive Oxygen Species , bcl-2-Associated X Protein
15.
Chinese Medical Journal ; (24): 837-848, 2022.
Article in English | WPRIM | ID: wpr-927571

ABSTRACT

BACKGROUND@#Pulmonary microvascular endothelial cells (PMVECs) were not complex, and the endothelial barrier was destroyed in the pathogenesis progress of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Previous studies have demonstrated that hepatocyte growth factor (HGF), which was secreted by bone marrow mesenchymal stem cells, could decrease endothelial apoptosis. We investigated whether mTOR/STAT3 signaling acted in HGF protective effects against oxidative stress and mitochondria-dependent apoptosis in lipopolysaccharide (LPS)-induced endothelial barrier dysfunction and ALI mice.@*METHODS@#In our current study, we introduced LPS-induced PMEVCs with HGF treatment. To investigate the effects of mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway in endothelial oxidative stress and mitochondria-dependent apoptosis, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 were, respectively, used to inhibit mTOR/STAT3 signaling. Moreover, lentivirus vector-mediated mTORC1 (Raptor) and mTORC2 (Rictor) gene knockdown modifications were introduced to evaluate mTORC1 and mTORC1 pathways. Calcium measurement, reactive oxygen species (ROS) production, mitochondrial membrane potential and protein, cell proliferation, apoptosis, and endothelial junction protein were detected to evaluate HGF effects. Moreover, we used the ALI mouse model to observe the mitochondria pathological changes with an electron microscope in vivo.@*RESULTS@#Our study demonstrated that HGF protected the endothelium via the suppression of ROS production and intracellular calcium uptake, which lead to increased mitochondrial membrane potential (JC-1 and mitochondria tracker green detection) and specific proteins (complex I), raised anti-apoptosis Messenger Ribonucleic Acid level (B-cell lymphoma 2 and Bcl-xL), and increased endothelial junction proteins (VE-cadherin and occludin). Reversely, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 could raise oxidative stress and mitochondria-dependent apoptosis even with HGF treatment in LPS-induced endothelial cells. Similarly, mTORC1 as well as mTORC2 have the same protective effects in mitochondria damage and apoptosis. In in vivo experiments of ALI mouse, HGF also increased mitochondria structural integrity via the mTOR/STAT3 pathway.@*CONCLUSION@#In all, these reveal that mTOR/STAT3 signaling mediates the HGF suppression effects to oxidative level, mitochondria-dependent apoptosis, and endothelial junction protein in ARDS, contributing to the pulmonary endothelial survival and barrier integrity.


Subject(s)
Animals , Apoptosis , Calcium/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Hepatocyte Growth Factor/metabolism , Lipopolysaccharides/pharmacology , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Respiratory Distress Syndrome, Newborn , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
16.
Arq. bras. cardiol ; 117(3): 476-483, Sept. 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1339188

ABSTRACT

Resumo Fundamento: A doença cardiovascular é a principal causa de morte em todo o mundo. A apoptose mediada por hipóxia em cardiomiócitos é uma das principais causas de distúrbios cardiovasculares. O tratamento com a proteína do fator de crescimento endotelial vascular (VEGF, do inglês vascular endothelial growth factor) foi testado, mas as dificuldades operacionais limitaram seu uso. Entretanto, com os avanços da terapia gênica, aumentou o interesse na terapia gênica baseada no VEGF em doenças cardiovasculares. No entanto, o mecanismo preciso pelo qual a reposição de VEGF resgata os danos pós-hipóxia em cardiomiócitos não é conhecido. Objetivos: Investigar o efeito da expressão de VEGF121 pós-hipóxia utilizando cardiomiócitos de ratos neonatos. Métodos: Cardiomiócitos isolados de ratos neonatos foram utilizados para estabelecer um modelo in vitro de lesão cardíaca induzida por hipóxia. O efeito da superexpressão de VEGF, isolado ou em conjunto com inibidores de moléculas pequenas que têm como alvo os canais de cálcio, receptores sensíveis ao cálcio (CaSR, do inglês calcium-sensitive receptors) e calpaína, no crescimento e proliferação celular em lesão de cardiomiócitos induzidos por hipóxia, foram determinados com ensaio de MTT, coloração TUNEL, coloração com Anexina V/PI, lactato desidrogenase e atividade da caspase. Para análise estatística, um valor de p<0,05 foi considerado significativo. Resultados: Verificou-se que o efeito do VEGF121 foi mediado por CaSR e calpaína, mas não foi dependente dos canais de cálcio. Conclusões: Nossos resultados, mesmo em um ambiente in vitro, estabelecem as bases para uma validação futura e testes pré-clínicos da terapia gênica baseada em VEGF em doenças cardiovasculares.


Abstract Background: Cardiovascular disease is the major cause of death worldwide. Hypoxia-mediated apoptosis in cardiomyocytes is a major cause of cardiovascular disorders. Treatment with vascular endothelial growth factor (VEGF) protein has been tested but operational difficulties have limited its use. However, with the advancements of gene therapy, interest has risen in VEGF-based gene therapy in cardiovascular disorders. However, the precise mechanism by which VEGF replenishment rescues post-hypoxia damage in cardiomyocytes is not known. Objectives: To investigate the effect of post-hypoxia VEGF121 expression using neonatal rat cardiomyocytes. Methods: Cardiomyocytes isolated from neonatal rats were used to establish an in vitro model of hypoxia-induced cardiac injury. The effect of VEGF overexpression, alone or in combination with small-molecule inhibitors targeting calcium channel, calcium sensitive receptors (CaSR), and calpain on cell growth and proliferation on hypoxia-induced cardiomyocyte injury were determined using an MTT assay, TUNEL staining, Annexin V/PI staining, lactate dehydrogenase and caspase activity. For statistical analysis, a value of P<0.05 was considered to be significant. Results: The effect of VEGF121 was found to be mediated by CaSR and calpain but was not dependent on calcium channels. Conclusions: Our findings, even though using an in vitro setting, lay the foundation for future validation and pre-clinical testing of VEGF-based gene therapy in cardiovascular diseases.


Subject(s)
Animals , Rats , Vascular Endothelial Growth Factor A/metabolism , Receptors, Calcium-Sensing/metabolism , Peptide Hydrolases/metabolism , Myocytes, Cardiac/metabolism , Hypoxia , Mitochondria
17.
Rev. med. vet. zoot ; 68(1): 11-18, ene.-abr. 2021. graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1352089

ABSTRACT

RESUMEN El ácido alfa lipoico (AAL) ha sido caracterizado como un antioxidante eficiente. Se ha propuesto como un agente terapéutico potencial en el tratamiento o prevención de diferentes alteraciones que pueden estar relacionadas con un desequilibrio del estado celular oxidoreductor. El objetivo de este trabajo fue analizar la sensibilidad a la peroxidación no enzimática (PNE) (ascorbato-Fe++ dependiente) en mitocondrias de corazón y cerebro de ratas incubadas con una solución de AAL. La PNE fue evaluada por el método de quimioluminiscencia (QL). Cuando se compararon las muestras control (sin el agregado del ascorbato-Fe++) con las muestras ascorbato-Fe++ dependientes, se observó un incremento significativo en la emisión lumínica. Simultáneamente, se incubaron las mitocondrias de ambos órganos con diferentes concentraciones de AAL (0,05, 0,15 y 0,25 mg/ml) observándose una protección diferencial. Las mitocondrias de cerebro de rata incubadas con dosis de 0,15 y 0,25 mg/ml de AAL fueron protegidas de los efectos de la PNE, mientras que, en las mitocondrias cardíacas, solo se observó protección con la dosis más alta de AAL (0,25 mg/ml). El análisis de QL indicó que las mitocondrias de cerebro fueron protegidas de manera más eficiente que las mitocondrias de corazón de rata. En este último caso, será necesario probar nuevas dosis de AAL para demostrar los efectos en estas membranas. En conclusión, AAL actuó como un antioxidante protector de las membranas de ambos órganos contra el daño peroxidativo.


ABSTRACT Alphalipoc acid (ALA) has been characterized as an efficient antioxidant. It has been proposed as a potential therapeutic agent in the treatment or prevention of different pathologies that may be related to an imbalance of the oxido reductive cell state. The objective of this work was to analyze the sensitivity to non-enzymatic peroxidation (NEP) (ascorbate-Fe++ dependent) in heart and brain mitochondria of rats incubated with an ALA solution. NEP was evaluated by the chemiluminescence method (CL). When the control samples (without the addition of ascorbate-Fe++) were compared with the ascorbate-Fe++ dependent samples, a significant increase in the light emission. Simultaneously, the mitochondria of both organs were incubated with different concentrations of ALA (0.05, 0,15 and 0,25 mg/ml), observing a differential protection. Rat brain mitochondria incubated with doses of 0.15 and 0,25 mg/ml of ALA were protected from the effects of NEP, while in cardiac mitochondria, protection was only observed with the highest dose of ALA (0,25 mg/ml). The CL analysis indicated that rat brain mitochondria were protected more efficiently than rat heart mitochondria. In the latter case, it will be necessary to test new doses of ALA to demonstrate the effects on these membranes. In conclusion, ALA acted as a protective antioxidant of the membranes of both organs against peroxidative damage.


Subject(s)
Animals , Rats , Rats , Thioctic Acid , Cerebrum , Heart , Mitochondria, Heart , Antioxidants , Therapeutic Uses , Luminescence , Mitochondria
18.
Electron J Biotechnol ; 49: 29-33, Jan. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1291632

ABSTRACT

BACKGROUND: Agkistrodon acutus, a traditional Chinese medicine, clinically used in the treatment of rheumatism, tumor, and cardiovascular and cerebrovascular diseases. Due to the unique medicinal value and the difficulty of artificial breeding of Agkistrodon acutus, the supply of Agkistrodon acutus on the market exceeds the demand, and a large number of its adulterants are found on the market. In this study, the cytb gene sequences of Agkistrodon acutus and 9 snakes were compared and analyzed, specific primers were designed, and specific PCR methods were established to detect Agkistrodon acutus medicinal samples on the market. RESULTS: This method was successfully applied to distinguish the snake from other adulterated species, and tested 18 Agkistrodon acutus samples randomly purchased from six cities. Twelve samples were counterfeit and six were genuine. The standard reference material of Agkistrodon acutus was cloned by molecular cloning and sequencing, and the gene sequence difference with other species was significant. It shows that the region could be used as the fingerprint region of the target species. CONCLUSIONS: The proposed method can be used as a species-specific marker and can be highly distinguished from other adulterated snake species, which is helpful to effectively avoid the problem of false sale of Agkistrodon acutus.


Subject(s)
Animals , Polymerase Chain Reaction/methods , Agkistrodon/genetics , Cytochromes b/genetics , Mitochondria/genetics , Snakes , Species Specificity , DNA/analysis , Cloning, Molecular , Medicine, Chinese Traditional
19.
Rev. Esc. Enferm. USP ; 55: e20200319, 2021. tab, graf
Article in English | LILACS, BDENF | ID: biblio-1340717

ABSTRACT

ABSTRACT Objective: We aimed to determine the effect of different low-temperature range interventions at different time-points in a rat model of pressure injury (PI) produced by Ischemia/Reperfusion (I/R) injury. Methods: Sprague-Dawley rats were randomly assigned to blank control, injury control, and temperature intervention groups. Rats in the injury control and temperature intervention groups (involving exposure to different temperature range at different time-points) were subjected to three cycles of I/R injury with 2-h ischemia and 0.5-h reperfusion to induce PI. Results: The muscle tissues exhibited degenerative changes after compression. Low temperature intervention of 16-18°C in the ischemia period resulted in the lowest degree of tissue damage and significantly decreased levels of Bcl-2-associated X protein (Bax), caspase-9, and caspase-3. Moreover, it resulted in the highest expression level of B-cell lymphoma 2 (Bcl-2) and lowest expression levels of Bax, caspase-9, and caspase-3 in muscle tissues among all intervention groups. Conclusion: Low-temperature intervention at 16-18°C during the ischemia period showed optimal effects on the expressions of apoptotic factors during the development of PI with I/R-induced tissue damage.


RESUMO Objetivo: Nosso objetivo foi determinar o efeito de diferentes intervenções na faixa de baixa temperatura em diferentes pontos do tempo em um modelo de lesão por pressão (IP) de rato produzida por lesão de isquemia/reperfusão (I/R). Métodos: Ratos Sprague-Dawley foram aleatoriamente designados para grupos de controle em branco, controle de lesão e intervenção por temperatura. Ratos nos grupos de controle de lesão e intervenção de temperatura (envolvendo exposição a diferentes faixas de temperatura em diferentes momentos) foram submetidos a três ciclos de lesão de I/R com isquemia de 2 h e reperfusão de 0,5 h para induzir IP. Resultados: Os tecidos musculares exibiram alterações degenerativas após a compressão. A intervenção em baixa temperatura de 16-18°C no período de isquemia resultou no menor grau de dano ao tecido e diminuiu significativamente os níveis de proteína X associada a Bcl-2 (Bax), caspase-9 e caspase-3. Além disso, resultou no nível de expressão mais alto de linfoma de células B 2 (Bcl-2) e níveis de expressão mais baixos de Bax, caspase-9 e caspase-3 em tecidos musculares entre todos os grupos de intervenção. Conclusão: A intervenção em baixa temperatura de 16-18°C durante o período de isquemia mostrou efeitos ótimos nas expressões de fatores apoptóticos durante o desenvolvimento de IP com dano tecidual induzido por I/R.


RESUMEN Objetivo: Nuestro objetivo fue determinar el efecto de diferentes intervenciones de rango de temperatura baja en diferentes puntos de tiempo en un modelo de rata de lesión por presión (IP) producida por lesión por isquemia/reperfusión (I/R). Métodos: Se asignaron aleatoriamente ratas Sprague-Dawley a grupos de control en blanco, control de lesiones e intervención de temperatura. Las ratas en los grupos de control de lesiones e intervención de temperatura (que implican exposición a diferentes rangos de temperatura en diferentes puntos de tiempo) se sometieron a tres ciclos de lesión I/R con isquemia de 2 h y reperfusión de 0,5 h para inducir IP. Resultados: Los tejidos musculares presentaron cambios degenerativos después de la compresión. La intervención a baja temperatura de 16-18°C en el período de isquemia resultó en el grado más bajo de daño tisular y niveles significativamente reducidos de proteína X asociada a Bcl-2 (Bax), caspasa-9 y caspasa-3. Además, dio como resultado el nivel de expresión más alto de linfoma de células B 2 (Bcl-2) y los niveles de expresión más bajos de Bax, caspasa-9 y caspasa-3 en los tejidos musculares entre todos los grupos de intervención. Conclusión: La intervención a baja temperatura a 16-18°C durante el período de isquemia mostró efectos óptimos sobre la expresión de factores apoptóticos durante el desarrollo de IP con daño tisular inducido por I/R.


Subject(s)
Temperature , Apoptosis , Pressure Ulcer , Reperfusion , Ischemia , Mitochondria
20.
Clinics ; 76: e2096, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153992

ABSTRACT

OBJECTIVES To determine the role of the RBP4/PiC/SIRT3 signaling pathway in the opening of the mitochondria permeability transition pore (mPTP) in offspring rats with hypothyroidism during pregnancy. METHODS Sixty Sprague-Dawley (SD) rats were employed in this study. Pregnancy was deemed successful when a sperm was found in the uterus. After one week of pregnancy, offspring rats were divided into the following groups: overall hypothyroidism group (OH group), subclinical hypothyroidism group (SCH group), and normal control group (CON group). The establishment of the hypothyroidism model was confirmed when the serum thyroid stimulating hormone (TSH) levels were higher than normal value and TT4 level was within the normal range. The renal mitochondria of offspring rats were extracted on the 14th postnatal day (P14) and 35th postnatal day (P35). RESULTS At P14, no significant differences in the degree of mPTP opening and expression of phosphoric acid carrier vector (PiC) were detected between the rats in the OH group and the SCH group. However, the expression level of silent mating-type information regulation 3 homolog (SIRT3) was markedly reduced. Retinol-binding protein 4 (RBP4) expression increased in the rats from the OH group, relative to that in those from the SCH group. At P35, the degree of mPTP opening and the expression levels of PiC and RBP4 in the OH group were higher than those in the SCH group. However, SIRT3 expression in the OH group was lower than that observed in the SCH group. CONCLUSION RBP4 plays an important role in early renal mitochondrial damage and renal impairment in rats suffering from hypothyroidism during pregnancy. The RBP4/PiC/SIRT3 pathway is thus involved in the opening of the renal mPTP in offspring rats with hyperthyroidism.


Subject(s)
Animals , Female , Pregnancy , Rats , Pregnancy Complications , Hypothyroidism/complications , Hypothyroidism/chemically induced , Kidney/metabolism , Kidney/pathology , Mitochondria , Permeability , Rats, Sprague-Dawley , Retinol-Binding Proteins, Plasma
SELECTION OF CITATIONS
SEARCH DETAIL