Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
An. bras. dermatol ; 94(4): 458-460, July-Aug. 2019. tab, graf
Article in English | LILACS | ID: biblio-1038300

ABSTRACT

Abstract: Melanoma is widely known as the most lethal skin cancer. Specific tumor-related mortality can be significantly reduced if diagnosis and treatment are properly performed during initial phases of the disease. The current search for biomarkers in early-stage melanomas is a high-priority challenge for physicians and researchers. We aimed to assess the immunoexpression of BRAFV600E and KIT in a case series consisting of 44 early-stage melanomas. Formalin-fixed paraffin-embedded samples were systematically evaluated using a semi-quantitative method based on scores of percentage and intensity for immunostained tumor cells. We observed significant concordance between BRAFV600E and KIT immunoexpression in thin invasive melanomas. Our findings corroborate previous evidence showing abnormal expression of proteins associated with MAPK intracellular signaling pathway in early-stage melanomas.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Skin Neoplasms/pathology , Proto-Oncogene Proteins c-kit/analysis , Proto-Oncogene Proteins B-raf/analysis , Melanoma/pathology , Immunohistochemistry , Retrospective Studies , Disease Progression , Proto-Oncogene Proteins c-kit/genetics , Mitogen-Activated Protein Kinases/analysis , Proto-Oncogene Proteins B-raf/genetics , Mutation , Neoplasm Staging
2.
Article in Chinese | WPRIM | ID: wpr-819052

ABSTRACT

OBJECTIVE@#To investigate the effect and mechanism of mechanical stress on cartilage repair in inflammatory environment.@*METHODS@#The chondrogenic progenitor cells (CPCs) were isolated from the knee joint cartilage of patients with osteoarthritis (OA) undergoing total knee arthroplasty. The CPCs were cultured and expanded in a 3-D scaffold constructed with alginate. Intermittent hydrostatic pressure (IHP) was applied in a inflammatory environment induced by IL-1β, and Western blot was used to detect the expression of MAPK signaling pathway proteins. Cell proliferation was detected by CCK-8 method, and the expression of related genes like matrix metallo-proteinases 13 (MMP-13) and a disintegrins and metalloproteinase with thrombospondin motif 5 (ADAMTS-5) was detected by real-time RT-PCR. The anterior cruciate ligament of the rats was cut to construct the knee joint OA model, and the appropriate mechanical stress was constructed with external fixation to distract the knee joint in order to observe the repair of the cartilage and to explore its mechanism.@*RESULTS@#Adding 0.01 ng/ml IL-1β in cell culture inhibited the proliferation of CPCs. After IHP application, the expression of MAPK pathway protein was decreased, the mRNA expression of MMP-13 and ADAMTS-5 was reduced. The inhibition of IL-1β on CPCs was counteracted by IHP. Four weeks after the anterior cruciate ligament resected, the articular cartilage degeneration was observed in rats. The Mankin score in the OA treatment (joint distraction) group was lower, and the cartilage repair was better than that of the control group (<0.01). Animal experiments found that the suitable mechanical stress reduced the expression of P-p38, MMP-13 and COLL-X, inhibited cartilage cells apoptosis and promoted the repair of OA cartilage.@*CONCLUSIONS@#Mechanical stress can promote the proliferation of CPCs, reduce the expression of matrix degrading enzymes, and promote the repair of OA cartilage by inhibiting MAPK signaling pathway.


Subject(s)
Animals , Anterior Cruciate Ligament , Pathology , General Surgery , Cartilage, Articular , Pathology , Cells, Cultured , Chondrocytes , Cell Biology , Disease Models, Animal , Gene Expression Profiling , Humans , Mitogen-Activated Protein Kinases , Genetics , Osteoarthritis , Pathology , Polymerase Chain Reaction , Rats , Signal Transduction , Genetics , Stress, Mechanical
3.
Chinese Journal of Traumatology ; (6): 166-171, 2019.
Article in English | WPRIM | ID: wpr-771615

ABSTRACT

PURPOSE@#To evaluate the clinico-radiological outcome of complex tibial plateau fractures treated with Ilizarov external fixation with or without minimal internal fixation.@*METHODS@#This retrospective review was conducted on all the cases of Schatzker types V and VI tibial plateau fractures treated by Ilizarov external fixation between July 2006 and December 2015 with the minimum follow-up duration of one year. There were 30 patients: 24 males and 6 females, mean age 43.33 years, and mean follow-up 3.6 years. Three of them were open fractures; 15 cases were Schatzkertype V fractures and the other 15 type VI. According to AO/OTA classification, there were 11 type C1, 12 C2 and 7 type C3 fractures. Outcome assessment was made with American Knee Society Score (AKSS) and Rasmussen's Radiological Score (RRS) at final follow-up.@*RESULTS@#Out of the 30 cases, mini-open reduction was performed in 7, bone graft in 4, minimal internal fixation in 10 and knee temporary immobilisation in 11 patients. Mean duration of external fixation was 11.8 weeks. All fractures united. Pin tract infections in 7 and common peroneal neuropathy in 2 patients were self-limiting. Two patients had axial misalignment of less than 10°. At final follow-up, the mean knee range of motion was 114.7, mean AKSS 81.5 and mean RRS 16.7. On statistical analysis, Schatzker type of fractures, use of minimal internal fixation and knee-spanning did not influence the final outcome.@*CONCLUSION@#Ilizarov external fixator with or without minimal internal fixation provides acceptable outcome for complex tibial plateau fractures. Care must be taken to look for minor loss of alignment, especially in Type VI Schatzker fractures after removal of the fixator. However small sample size precludes firm conclusions.


Subject(s)
Adult , Antigens, Neoplasm , Female , Follow-Up Studies , Fracture Fixation, Internal , Methods , Fractures, Bone , Therapeutics , Humans , Ilizarov Technique , Knee , Male , Middle Aged , Mitogen-Activated Protein Kinases , Retrospective Studies , Tibia , Wounds and Injuries , Time Factors , Treatment Outcome , Young Adult
4.
Article in English | WPRIM | ID: wpr-776886

ABSTRACT

Atractylenolide III (ATL-III), a sesquiterpene compound isolated from Rhizoma Atractylodis Macrocephalae, has revealed a number of pharmacological properties including anti-inflammatory, anti-cancer activity, and neuroprotective effect. This study aimed to evaluate the cytoprotective efficiency and potential mechanisms of ATL-III on corticosterone injured rat phaeochromocytoma (PC12) cells. Our results demonstrate that ATL-III increases cell viability and reduces the release of lactate dehydrogenase (LDH). The results suggest that ATL-III protects PC12 cells from corticosterone-induced injury by inhibiting the intracellular Ca overloading, inhibiting the mitochondrial apoptotic pathway and modulating the MAPK/NF-ΚB inflammatory pathways. These findings provide a novel insight into the molecular mechanism by which ATL-III protected the PC12 cells against corticosterone-induced injury for the first time. Our results provide the evidence that ATL-III may serve as a therapeutic agent in the treatment of depression.


Subject(s)
Animals , Apoptosis , Calcium , Metabolism , Cell Survival , Corticosterone , Toxicity , Inflammation Mediators , Metabolism , L-Lactate Dehydrogenase , Metabolism , Lactones , Pharmacology , Mitochondria , Metabolism , Mitogen-Activated Protein Kinases , Metabolism , NF-kappa B , Metabolism , Neuroprotective Agents , Pharmacology , PC12 Cells , Phosphorylation , Rats , Sesquiterpenes , Pharmacology , Signal Transduction
5.
Article in Chinese | WPRIM | ID: wpr-776063

ABSTRACT

Mitogen-activated protein kinases(MAPKs)are Ser/Thr kinases consisting of extracellular regulated protein kinases(ERK)1/2,c-Jun N-terminal kinase 1/2/3,p38 isoforms(α,β,γ,and δ),and ERK5,which mediate a range of cellular activities including proliferation,differentiation,apoptosis,immunity,and inflammation. Pain sensitization is a remodeling mechanism of central and peripheral nociceptor. A growing number of evidences have indicated that MAPKs are extensively activated in the spinal dorsal cord and dorsal root ganglions in the animal models of diabetic neuropathic pain(DNP)and play an important role in the central and peripheral sensitization of DNP. In addition,some drugs can alleviate DNP by suppressing MAPKs activation of central and peripheral nervous system. This article summarizes the research progress of MAPKs in central and peripheral sensitization of DNP.


Subject(s)
Animals , Diabetic Neuropathies , Ganglia, Spinal , Mitogen-Activated Protein Kinases , Neuralgia , p38 Mitogen-Activated Protein Kinases
6.
Article in English | WPRIM | ID: wpr-719618

ABSTRACT

BACKGROUND: Transforming growth factor β (TGF-β), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-β1. METHODS: A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-β1 and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-β1 and Smad3 were evaluated at 1 and 3 weeks. RESULTS: When A549 cells were pre-stimulated with TGF-β1 prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-β1 stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-β1 failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-β1-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-β1 and Smad3 at 1 and 3 weeks. CONCLUSION: RA had inhibitory effects on the phosphorylation of Smad induced by TGF-β1 in vitro, and RA also decreased the expression of TGF-β1 at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-β1/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-β1-induced lung injury and fibrosis.


Subject(s)
Animals , Apoptosis , Bleomycin , Blotting, Western , Cell Differentiation , Epithelial Cells , Fibroblasts , Fibrosis , In Vitro Techniques , Lung Injury , Mice , Mitogen-Activated Protein Kinase Kinases , Mitogen-Activated Protein Kinases , Models, Animal , p38 Mitogen-Activated Protein Kinases , Phosphorylation , Protein Kinases , Smad Proteins , Transforming Growth Factor beta , Transforming Growth Factors , Tretinoin
7.
Article in Korean | WPRIM | ID: wpr-766388

ABSTRACT

There have been no published studies concerning the anti-inflammatory effects of corn silk on colon cancer cells. Thus, this study was conducted to investigate the effect of corn silk extract containing high levels of maysin on inflammation and its mechanism of action in colon cancer cells. SW 480 human colon cancer cells were treated with 1 µg/mL of lipopolysaccharide (LPS) to induce inflammation, and next they were treated with different concentrations of corn silk extract (0, 5, 10 and 15 µg/mL). The concentrations of nitric oxide (NO) were determined. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β) and interleukin-6 (IL-6), were determined. Western blot analysis was performed to determine the protein expressions of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases, and the latter consists of extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 MAP kinase (p38). The concentration of NO and the mRNA expression of iNOS were significantly and dose-dependently decreased in the corn silk-treated groups (P<0.05). The mRNA expression of TNF-α, IL-1β and IL-6 were significantly increased in the LPS-treated group (P<0.05), but these expressions were significantly and dose-dependently decreased in the corn silk treated groups (P<0.05). The protein expressions of NF-κB (in a dose-dependent fashion), ERK (at 10 and 15 µg/mL), JNK (at 15 µg/mL) and p38 (at 10 and 15 µg/mL) were significantly decreased with corn silk treatments (P<0.05). In conclusion, corn silk extract containing high levels of maysin seems to inhibit the LPS-induced inflammatory responses in SW480 colon cancer cells via the NF-κB pathway.


Subject(s)
Blotting, Western , Colon , Colonic Neoplasms , Cyclooxygenase 2 , Cytokines , Gene Expression , Humans , Inflammation , Interleukin-1beta , Interleukin-6 , Mitogen-Activated Protein Kinases , Nitric Oxide , Nitric Oxide Synthase Type II , p38 Mitogen-Activated Protein Kinases , Phosphotransferases , RNA, Messenger , Saccharin , Silk , Tumor Necrosis Factor-alpha , Zea mays
8.
Biol. Res ; 52: 41, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019505

ABSTRACT

BACKGROUND: Di-N-butyl-phthalate (DBP) is an endocrine disrupting substance. We investigated the adverse effect of DBP on testis of male rat and reveal its potential mechanism of MAPK signaling pathway involved this effect in vivo and in vitro. Gonadal hormone, sperm quality, morphological change and the activation status of JNK, ERK1/2 and p38 was determined in vivo. Primary Sertoli cell was established and cultivated with JNK, ERK1/2 inhibitors, then determine the cell viability, apoptosis and the expression of p-JNK, p-ERK1/2. Data in this study were presented as mean ± SD and determined by one-way analysis of variance (ANOVA) followed by Bonferroni's test. Difference was considered statistically significant at P < 0.05. RESULTS: In vivo experiment, DBP impaired the normal structure of testicular tissue, reduced testosterone levels in blood serum, decreased sperm count and increased sperm abnormality, p-ERK1/2 and p-JNK in rat testicular tissue increased in a dose-dependent manner. In vitro studies, DBP could decrease the viability of Sertoli cells and increase p-ERK1/2 and p-JNK. Cell apoptosis in SP600125 + DBP group was significantly lower than in DBP group (P < 0.05). p-JNK was not significantly decreased in SP600125 + DBP group, while p-ERK1/2 was significantly decreased in U0126 + DBP group. CONCLUSIONS: These results suggest that DBP can lead to testicular damage and the activation of ERK1/2 and JNK pathways, the JNK signaling pathway may be primarily associated with its effect.


Subject(s)
Animals , Male , Rats , Testis/injuries , Testis/metabolism , Signal Transduction/physiology , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology , JNK Mitogen-Activated Protein Kinases/metabolism , Dibutyl Phthalate/pharmacology , Testis/drug effects , Rats, Sprague-Dawley , Mitogen-Activated Protein Kinases/physiology , JNK Mitogen-Activated Protein Kinases/physiology
9.
São Paulo; s.n; s.n; 2019. 108 p. ilus, graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1008521

ABSTRACT

Os inibidores de BRAF (iBRAFs) e de MEK (iMEK), inauguraram uma nova classe de medicamentos, a terapia direcionada, no combate ao melanoma metastático. Entretanto, os pacientes adquirem resistência ao tratamento em poucos meses. Além disso, a imunoterapia vem ganhando espaço no tratamento do câncer, incluindo o melanoma, porém, com alguns aspectos inexplorados. Dentro deste tema, a enzima IDO vem despertando um grande interesse pela participação nos mecanismos de imunotolerância, imunoescape e progressão tumoral. A IDO é responsável pelo consumo e depleção do triptofano, produzindo a quinurenina. Ela está presente em diversos tipos celulares, incluindo células do sistema imune e células tumorais. Este trabalho objetivou avaliar a expressão de IDO durante a progressão da doença - desde do nevo até o melanoma metastático e também avaliar a regulação de IDO induzido por IFN-γ após tratamento com iBRAF em linhagens parentais e resistentes ao iBRAF, buscando-se os mecanismos moleculares. Por fim, objetivou-se entender os efeitos do 1-metil-triptofano (1-MT), um inibidor de IDO, tanto na sua capacidade de inibir a atividade de IDO quanto na sua influência na capacidade clonogênica. O estudo de bioinformática sobre o repositório público GSE12391 mostrou que o nível de expressão gênica de IDO foi superior nos estágios mais avançado da doença. Além disso, todas amostras de melanoma primário de pacientes apresentaram a imunomarcação de IDO, enquanto que nenhuma amostra de nevo apresentou tal marcação. Adicionalmente, a ocorrência de IDO se deu nos infiltrados linfoides, em células mononucleares do sistema imune. Duas análises de bioinformática de expressão gênica demonstraram que a IDO estava expressa positivamente na fase de resistência ao iBRAF. Ademais, os resultados de expressão proteica mostraram que a inibição de via MAPK (tanto por iBRAF quanto por iMEK) conseguiu modular a expressão de IDO, sendo que a maioria das linhagens apresentou uma diminuição de IDO. A atividade de IDO, medida através da produção de quinurenina, por HPLC se mostrou em consonância com os resultados de expressão proteica, exceto pela linhagem WM164 que não apresentou atividade enzimática, embora a proteína estivesse presente. Por fim, o 1-MT conseguiu inibir de maneira eficiente a enzima IDO, bloqueando a produção de quinurenina. Além de que, o 1-MT reduziu a capacidade clonogênica de maneira dose-dependente. Portanto, conclui-se que a expressão de IDO é crescente conforme a progressão do melanoma, que a inibição da via MAPK regulou a expressão de IDO e que o 1-MT reduz a capacidade clonogênica, além da sua função primária de inibir IDO


BRAF and MEK inhibitors (BRAFi and MEKi) has launched a new class of medication, the target therapy, to combat metastatic melanoma. Nevertheless, patients acquired resistance to the treatment in few months. Additionally, immunotherapy has been gaining space in cancer treatment, including melanoma, but some aspects need to be explored. Inside this theme, IDO enzyme has called the attention due to its participation in the mechanisms of immune tolerance, scape and tumor progression. IDO is responsible for tryptophan consume e depletion, producing kynurenine. It is present in different cells, including cells from immune system and tumor cells. This work purposed evaluate IDO expression during disease progression - since nevus until metastatic melanoma and also, evaluate IFN-γ-induced IDO regulation after BRAFi treatment in parental and resistant melanoma cell lines, seeking the molecular mechanisms. Lastly, it was evaluated the effects of 1-methyltryptopahn (1-MT), an IDO inhibitor, by its ability to inhibit IDO and also by its influency on the clonogenic capability. Bioinformatic study performed on GSE12391 showed that gene expression level of IDO was superior in the most advanced stages of the disease. Additionally, all sample of patient's primary melanoma presented IDO immunostaining, whereas, no nevus samples presented such staining. Besides, IDO occurrence was in the lymphoid infiltrates, in mononuclear cells from immune system. Two bioinformatic analysis of gene expression demonstrated that IDO was differentially overexpressed during BRAFi resistance stage. Moreover, protein expression results presented that MAPK pathway inhibition (both by BRAFi and by MEKy) was able to modulate IDO expression, and most of the cell lines presented an IDO downregulation. IDO activity, measured through kynurenine production, by HPLC was consonant with protein expression results, except by WM164 cell line, which did not present enzymatic activity, albeit the protein was present. By the end, 1-MT could inhibit efficiently IDO enzyme, blocking kynurenine production. Furthermore, 1-MT reduced clonogenic capability in a dosedependent manner. Therefore, it was concluded that IDO expression increases along with melanoma progression, MAPK pathway inhibition regulated IDO expression and 1-MT reduced clonogenic capability, besides its primary function of IDO inhibitor


Subject(s)
Disease Progression , Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Melanoma/prevention & control , Computational Biology/instrumentation , Mitogen-Activated Protein Kinases/analysis
10.
Anatomy & Cell Biology ; : 312-323, 2019.
Article in English | WPRIM | ID: wpr-762231

ABSTRACT

Cyclosporin A (CsA) does not only exert a toxic effect on kidney parenchymal cells, but also protects them against necrotic cell death by inhibiting opening of mitochondrial permeability transition pore. However, whether CsA plays a role in hydrogen peroxide-induced kidney proximal tubular cell death is currently unclear. In the present study, treatment with CsA further increased apoptosis and necrosis in HK-2 human kidney proximal tubule epithelial cells during exposure to hydrogen peroxide. In addition, hydrogen peroxide-induced p53 activation and BH3 interacting-domain death agonist (BID) expression were higher in CsA-treated cells than those in non-treated cells, whereas hydrogen peroxide-induced activation of mitogen-activated protein kinases including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase and activation of protein kinase B were not significantly altered by treatment with CsA. In oxidant-antioxidant system, reactive oxygen species (ROS) production induced by hydrogen peroxide was further enhanced by treatment with CsA. However, expression levels of antioxidant enzymes including manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase were not altered by treatment with hydrogen peroxide or CsA. Treatment with CsA further enhanced mitochondrial membrane potential induced by exposure to hydrogen peroxide, although it did not alter endoplasmic reticulum stress based on expression of glucose-regulated protein 78 and 94. Taken together, these data suggest that CsA can aggravate hydrogen peroxide-induced cell death through p53 activation, BID expression, and ROS production.


Subject(s)
Apoptosis , Catalase , Cell Death , Cyclosporine , Endoplasmic Reticulum Stress , Epithelial Cells , Humans , Hydrogen Peroxide , Hydrogen , JNK Mitogen-Activated Protein Kinases , Kidney , Membrane Potential, Mitochondrial , Mitogen-Activated Protein Kinases , Necrosis , Permeability , Phosphotransferases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Superoxide Dismutase
11.
West Indian med. j ; 67(2): 98-104, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-1045825

ABSTRACT

ABSTRACT Objective: To explore the application methods of mitogen-activated protein kinase signal pathway inhibitors SP600125 and SB203580 in long-term in vivo experiments. Methods: A total of 55 healthy New Zealand rabbits were randomly divided into blank control group, model control group, SP low dose group, SP high dose group, SP blank group, SB low dose group, SB high dose group, SB blank group, dimethyl sulfoxide (DMSO) control group, DMSO blank group, and positive control group. Since the first day of the experiment, each group was administered the corresponding treatment for four weeks continuously. Then, the myocardial c-Jun N-terminal kinase (JNK) and the total protein of p38, protein phosphorylation and its gene expression levels were detected. Results: After intravenous treatment with adriamycin, the myocardial phosphorylate-JNK (p-JNK) and phosphorylate-p38 (p-p38) levels in all groups were increased to varying degrees, of which the model control group increased the most significantly (p < 0.05). Compared with the model control group, the myocardial p-JNK and p-p38 increased more slowly in the SP low dose group, SP high dose group, SB low dose group, SB high dose group and positive control group (p < 0.05), of which the increase in the SP high dose group and the SB high dose group was the slowest (p < 0.05). After four weeks, the total protein and messenger ribonucleic acid of the myocardial JNK and p38 in all groups had no statistically significant difference (p > 0.05). Conclusion: The continuous intravenous injection of SP600125 and SB203580 for four weeks significantly reduced the protein phosphorylation levels of JNK and p38, which provides a practical avenue for the long-term study in vivo.


RESUMEN Objetivo: Explorar los métodos de aplicación de los inhibidores SP600125 y SB203580 de la vía de señalización de la proteína quinasa activada por mitógeno en experimentos in vivo a largo plazo. Métodos: Un total de 55 conejos sanos de Nueva Zelandia fueron divididos aleatoriamente en los grupos siguientes: grupo de control en blanco, grupo de control modelo, grupo de dosis baja SP, grupo de dosis alta SP, grupo en blanco SP, grupo de dosis baja SB, grupo de dosis alta SB, grupo en blanco SB, grupo de control dimetilsulfóxido (DMSO), grupo en blanco DMSO, y grupo de control positivo. Desde el primer día del experimento, a cada grupo se le administró el tratamiento correspondiente por cuatro semanas continuas. Entonces, se detectaron la quinasa c-Jun N-terminal (JNK) miocárdica y la proteína p38 total, así como la fosforilación proteica y sus niveles de expresión génica. Resultados: Después del tratamiento intravenoso con adriamicina, los niveles de fosfo-JNK (p-JNK) y fosfo-p38 (p-p38) del miocardio aumentaron en todos los grupos en diversos grados, siendo el aumento del grupo de control modelo el más significativo (p < 0.05). En comparación con el grupo de control modelo, p-JNK y p-p38 miocárdicos aumentaron más lentamente en el grupo de dosis baja SP, el grupo de dosis alta SP, el grupo de dosis baja SB, el grupo de dosis alta SB, y el grupo de control positivo (p < 0.05). De estos, el aumento en el grupo de dosis alta SP y el grupo de dosis alta SB fue el más lento (p < 0.05). Después de cuatro semanas, la proteína total y el ácido ribonucleico mensajero de JNK y p38 miocárdicos en todos los grupos, no tuvieron diferencias significativas (p > 0.05). Conclusión: La inyección intravenosa continua de SP600125 y SB203580 durante cuatro semanas redujo significativamente los niveles de fosforilación proteica de JNK y p38, lo que proporciona una vía práctica para el estudio a largo plazo in vivo.


Subject(s)
Humans , Male , Rabbits , Doxorubicin/pharmacology , Mitogen-Activated Protein Kinases/drug effects , Protein Kinase Inhibitors/pharmacology , Phosphorylation/drug effects , Time Factors , Signal Transduction/drug effects , Random Allocation , Gene Expression
12.
Article in English | WPRIM | ID: wpr-773593

ABSTRACT

Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.


Subject(s)
Animals , Anti-Inflammatory Agents , Pharmacology , Cyclooxygenase 2 , Genetics , Cytokines , Metabolism , Dendrobium , Chemistry , Gene Expression Regulation, Enzymologic , Inflammation , Drug Therapy , Lipopolysaccharides , Macrophages , Mice , Mitogen-Activated Protein Kinases , Genetics , Metabolism , Nitric Oxide , Nitric Oxide Synthase Type II , Genetics , Phosphorylation , Plant Extracts , Pharmacology , Signal Transduction
13.
Article in English | WPRIM | ID: wpr-773569

ABSTRACT

The present study was designed to evaluate protective activity of an ethanol extract of the stems of Schisandra chinensis (SCE) and explore its possible molecular mechanisms on acetaminophen (APAP) induced hepatotoxicity in a mouse model. The results of HPLC analysis showed that the main components of SCE included schisandrol A, schisandrol B, deoxyschisandrin, schisandrin B, and schisandrin C and their contents were 5.83, 7.11, 2.13, 4.86, 0.42 mg·g, respectively. SCE extract was given for 7 consecutive days before a single hepatotoxic dose of APAP (250 mg·kg) was injected to mice. Our results showed that SCE pretreatment ameliorated liver dysfunction and oxidative stress, which was evidenced by significant decreases in aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) contents and elevations in reduced glutathione (GSH) and superoxide dismutase (SOD) levels. These findings were associated with the result that the SCE pretreatment significantly decreased expression levels of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT). SCE also significantly decreased the expression levels of Bax, mitogen- activated protein kinase (MAPK), and cleaved caspase-3 by APAP exposure. Furthermore, supplementation with SCE suppressed the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), suggesting alleviation of inflammatory response. In summary, these findings from the present study clearly demonstrated that SCE exerted significant alleviation in APAP-induced oxidative stress, inflammation and apoptosis mainly via regulating MAPK and caspase-3 signaling pathways.


Subject(s)
Acetaminophen , Alanine Transaminase , Metabolism , Animals , Apoptosis , Aspartate Aminotransferases , Metabolism , Caspase 3 , Genetics , Metabolism , Chemical and Drug Induced Liver Injury , Genetics , Metabolism , Drugs, Chinese Herbal , Chemistry , Glutathione , Metabolism , Humans , Liver , Metabolism , Male , Malondialdehyde , Metabolism , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinases , Chemistry , Genetics , Metabolism , Oxidative Stress , Schisandra , Chemistry , Signal Transduction
14.
Article in English | WPRIM | ID: wpr-812382

ABSTRACT

Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.


Subject(s)
Animals , Anti-Inflammatory Agents , Pharmacology , Cyclooxygenase 2 , Genetics , Cytokines , Metabolism , Dendrobium , Chemistry , Gene Expression Regulation, Enzymologic , Inflammation , Drug Therapy , Lipopolysaccharides , Macrophages , Mice , Mitogen-Activated Protein Kinases , Genetics , Metabolism , Nitric Oxide , Nitric Oxide Synthase Type II , Genetics , Phosphorylation , Plant Extracts , Pharmacology , Signal Transduction
15.
Article in English | WPRIM | ID: wpr-812358

ABSTRACT

The present study was designed to evaluate protective activity of an ethanol extract of the stems of Schisandra chinensis (SCE) and explore its possible molecular mechanisms on acetaminophen (APAP) induced hepatotoxicity in a mouse model. The results of HPLC analysis showed that the main components of SCE included schisandrol A, schisandrol B, deoxyschisandrin, schisandrin B, and schisandrin C and their contents were 5.83, 7.11, 2.13, 4.86, 0.42 mg·g, respectively. SCE extract was given for 7 consecutive days before a single hepatotoxic dose of APAP (250 mg·kg) was injected to mice. Our results showed that SCE pretreatment ameliorated liver dysfunction and oxidative stress, which was evidenced by significant decreases in aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) contents and elevations in reduced glutathione (GSH) and superoxide dismutase (SOD) levels. These findings were associated with the result that the SCE pretreatment significantly decreased expression levels of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT). SCE also significantly decreased the expression levels of Bax, mitogen- activated protein kinase (MAPK), and cleaved caspase-3 by APAP exposure. Furthermore, supplementation with SCE suppressed the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), suggesting alleviation of inflammatory response. In summary, these findings from the present study clearly demonstrated that SCE exerted significant alleviation in APAP-induced oxidative stress, inflammation and apoptosis mainly via regulating MAPK and caspase-3 signaling pathways.


Subject(s)
Acetaminophen , Alanine Transaminase , Metabolism , Animals , Apoptosis , Aspartate Aminotransferases , Metabolism , Caspase 3 , Genetics , Metabolism , Chemical and Drug Induced Liver Injury , Genetics , Metabolism , Drugs, Chinese Herbal , Chemistry , Glutathione , Metabolism , Humans , Liver , Metabolism , Male , Malondialdehyde , Metabolism , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinases , Chemistry , Genetics , Metabolism , Oxidative Stress , Schisandra , Chemistry , Signal Transduction
16.
Article in English | WPRIM | ID: wpr-713532

ABSTRACT

BACKGROUND/AIMS: To define the effect of statins on interleukin 1β (IL-1β)-induced osteoclastogenesis and elucidate the underlying mechanisms. METHODS: Bone marrow cells were obtained from 5-week-old male ICR (Institute for Cancer Research) mice, and they were cultured to differentiate them into osteoclasts with macrophage colony-stimulating factor and the receptor activator of nuclear factor (NF)-κB ligand in the presence or absence of IL-1β or atorvastatin. The formation of osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and resorption pit assay with dentine slice. The molecular mechanisms of the effects of atorvastatin on osteoclastogenesis were investigated using reverse transcription polymerase chain reaction and immunoblotting for osteoclast specific molecules. RESULTS: Atorvastatin significantly reduced the number of TRAP-positive multinucleated cells as well as the bone resorption area. Atorvastatin also downregulated the expression of the NF of activated T-cell c1 messenger RNA and inhibited the expression of osteoclast-specific genes. A possible underlying mechanism may be that atorvastatin suppresses the degradation of the inhibitors of NF-κB and blocks the activation of the c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; thus, implicating the NF-κB and mitogen-activated protein kinases pathway in this process. CONCLUSIONS: Atorvastatin is a strong inhibitor of inflammation-induced osteoclastogenesis in inflammatory joint diseases.


Subject(s)
Acid Phosphatase , Animals , Atorvastatin , Bone Marrow Cells , Bone Resorption , Dentin , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Immunoblotting , Interleukins , JNK Mitogen-Activated Protein Kinases , Joint Diseases , Macrophage Colony-Stimulating Factor , Male , Mice , Mitogen-Activated Protein Kinases , Osteoclasts , Osteoprotegerin , Phosphotransferases , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , T-Lymphocytes
17.
National Journal of Andrology ; (12): 436-441, 2018.
Article in Chinese | WPRIM | ID: wpr-689737

ABSTRACT

<p><b>Objective</b>To investigate the effects of Qiangjing Tablets (QJT) on sperm quality and the MAPK signaling pathway in the SD rat model of asthenospermia (AS).</p><p><b>METHODS</b>A total of 100 male SD rats were randomly divided into five groups of equal number, blank control, AS model control, high-dose QJT, medium-dose QJT, and low-dose QJT. All the rats were intragastrically administered ORN at 200 mg/kg/d for establishment of the AS model except those in the blank control group, which were given 1% CMC sodium solution at 1 ml/100 g by gavage. Meanwhile the animals of the high-, medium-, and low-dose QJT groups were gavaged with QJT at 6700, 3300 and 1700 mg/kg/d, respectively, qd 6 days a week for 20 days. Then the testis issue and the apoptosis of the testicular cells were observed under the electron microscope, the expression of vimentin in the testis was determined with the immunohistochemical SP method, that of ERK1/2 detected by Western blot, and the concentration of TGF-β1 in the semen measured by ELISA.</p><p><b>RESULTS</b>The AS model controls showed round nuclei of spermatocytes, homogeneously distributed chromatins, broken or lost mitochondria, and expanded rough endoplasmic reticulum in the testis tissue. In comparison, the rats of the high-, medium-, and low-dose QJT groups exhibited round nuclei of spermatocytes, homogeneously distributed chromatins, and well-structured mitochondria, rough endoplasmic reticulum and ribosome, which were all similar those of the blank controls. Compared with the blank controls, the AS model rats manifested significantly increased expressions of ERK1/2 (1.00 ± 0.00 vs 1.26 ± 0.10, P<0.01) and vimentin (0.16 ± 0.01 vs 0.17 ± 0.01, P<0.01) and apoptosis rate of cells in the testis tissue ([9.20 ± 3.07] vs [42.20 ± 9.17] %, P<0.01), but decreased level of TGF-β1 in the semen ([627.67 ± 26.07] vs [566.73 ± 68.44] ng/ml, P<0.05). In comparison with the model controls, the rats of the high- and medium- -dose QJT groups presented remarkably down-regulated expressions of ERK1/2 (1.26 ± 0.10 vs 1.14 ± 0.08, P<0.01; 1.26 ± 0.10 vs 1.18 ± 0.05, P<0.05) and vimentin (0.17 ± 0.01 vs 0.16 ± 0.01, P<0.01; 0.17 ± 0.01 vs 0.17 ± 0.09, P<0.05) and decreased rate of cell apoptosis ([42.20 ± 9.17] vs [21.60 ± 5.94] %, P<0.01; [42.20 ± 9.17] vs [33.95 ± 6.39] %, P<0.05). The concentration of TGF-β1 in the semen was markedly lower in the high-dose QJT than in the AS model control group ([621.78 ± 30.80] vs [566.73 ± 68.44] ng/ml, P < 0.05).</p><p><b>CONCLUSIONS</b>Qiangjing Tablets could improve semen quality in asthenospermia rats by acting against oxidative stress.</p>


Subject(s)
Animals , Apoptosis , Asthenozoospermia , Drugs, Chinese Herbal , Pharmacology , Male , Mitogen-Activated Protein Kinase 3 , Metabolism , Mitogen-Activated Protein Kinases , Metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Semen , Semen Analysis , Signal Transduction , Spermatozoa , Testis , Metabolism , Transforming Growth Factor beta1 , Metabolism , Vimentin , Metabolism
18.
National Journal of Andrology ; (12): 442-446, 2018.
Article in Chinese | WPRIM | ID: wpr-689736

ABSTRACT

The MAPK signaling pathway plays a key role in the differentiation, proliferation and apoptosis of cells, and its family members mainly include extracellular signal-regulated kinase (ERK), stress-activated protein kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK). Recent studies have shown that the ERK, JNK and p38MAPK signaling pathways are closely associated with the development and progression of erectile dysfunction (ED). This review focuses on the correlation between the MAPK signaling pathway and ED.


Subject(s)
Apoptosis , Cell Differentiation , Cell Proliferation , Erectile Dysfunction , Metabolism , Humans , JNK Mitogen-Activated Protein Kinases , Metabolism , MAP Kinase Signaling System , Male , Mitogen-Activated Protein Kinases , Metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases , Metabolism
19.
Article in English | WPRIM | ID: wpr-715824

ABSTRACT

OBJECTIVE: This study examined the anti-inflammatory and chondroprotective effects of compound K (CK), a ginsenoside metabolite, on chondrocytes from osteoarthritis (OA) patients following stimulation with interleukin (IL)-1β. METHODS: Articular cartilage samples were obtained from six OA patients undergoing total knee replacement surgery. Nitric oxide (NO) production was measured by the Griess reaction. Subsequently, the mRNA and protein levels of matrix metalloproteinases (MMPs), inducible NO synthase (iNOS), and mitogen-activated protein kinases (MAPKs) were examined by a reverse transcription-polymerase chain reaction and western blot analysis. Cartilage degradation was assessed using a glycosaminoglycan (GAG) assay. RESULTS: CK inhibited IL-1β-induced NO production and iNOS expression in a dose-dependent manner. In addition, it inhibited the IL-1 β-stimulated release of MMP-1, -3, and -13 and tissue inhibitor of matrix metalloproteinase-1 from OA patient chondrocytes. In addition, CK effectively suppressed the IL-1β-induced phosphorylation of p38, extracellular signal-regulated kinase-1/2, and c-Jun N-terminal kinase MAPKs. Moreover, the IL-1β-mediated release of GAG was inhibited by CK in a dose-dependent manner. CONCLUSION: CK inhibited the IL-1β-induced expression of inflammatory mediators and MMPs by, at least in part, inhibiting MAPK activation, and has potential as a therapeutic agent for the treatment of OA.


Subject(s)
Arthroplasty, Replacement, Knee , Blotting, Western , Cartilage , Cartilage, Articular , Chondrocytes , Ginsenosides , Humans , Interleukin-1 , Interleukins , JNK Mitogen-Activated Protein Kinases , Matrix Metalloproteinase 1 , Matrix Metalloproteinases , Mitogen-Activated Protein Kinases , Nitric Oxide , Nitric Oxide Synthase , Osteoarthritis , Panax , Phosphorylation , Protein Kinases , RNA, Messenger
20.
Annals of Dermatology ; : 645-652, 2018.
Article in English | WPRIM | ID: wpr-719028

ABSTRACT

BACKGROUND: Adiponectin, an adipokine secreted from adipocytes, affects energy metabolism and also shows anti-diabetic and anti-inflammatory properties. Recent studies have reported that adiponectin plays a role in regulating skin inflammation. OBJECTIVE: This study aimed to investigate the effect of adiponectin on the expression of filaggrin (FLG) in normal human epidermal keratinocytes (NHEKs). METHODS: NHEKs were serum-starved for 6h before being treated with adiponectin. Afterward, cell viability was assessed by MTT assay. We also treated with calcium, interleukin (IL)-4, and IL-13 to provide positive and negative comparative controls, respectively. Gene mRNA expression was quantified using real time reverse transcription polymerase chain reaction, and protein expression was evaluated using Western blot. To evaluate the relationship among mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and FLG, we also treated cells with inhibitors for MAPKs JNK, p38, and ERK1/2. RESULTS: FLG and FLG-2 mRNA expression in NHEKs significantly increased after treatment with 10 µg/ml adiponectin. Adiponectin also restored FLG and FLG-2 mRNA expression that was otherwise inhibited by treatment with IL-4 and IL-13. Adiponectin induced FLG expression via AP-1 and MAPK signaling. CONCLUSION: Adiponectin positively regulated the expression of FLG and could be useful as a therapeutic agent to control diseases related to disrupted skin barrier function.


Subject(s)
Adipocytes , Adipokines , Adiponectin , Blotting, Western , Calcium , Cell Differentiation , Cell Survival , Energy Metabolism , Humans , Inflammation , Interleukin-13 , Interleukin-4 , Interleukins , Keratinocytes , Mitogen-Activated Protein Kinases , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , Skin , Transcription Factor AP-1
SELECTION OF CITATIONS
SEARCH DETAIL