Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 175
Bol. latinoam. Caribe plantas med. aromát ; 19(6): 555-568, 2020. tab, ilus
Article in English | LILACS | ID: biblio-1284299


Despite the development of modern medicine, alternative medicine, which has not lost its timeliness, remains attractive for the treatment of various diseases. Glabridin, a major flavonoid of Glycyrrhiza glabra, is known for its antioxidant and anti-inflammatory activity. The aim of this study was: 1) to determine the possible protective role of glabridin against ischemia/reperfusion (I/R) injury of the intestine; 2) to evaluate the in vitrocontractile responses of ileum smooth muscles to acetylcholine after an intestinal I/R; and 3) to explain the underlying molecular mechanism of its effect. Rats were assigned to groups of six rats each; 1) I/R, 2) gla10, 3) gla20, 4) gla40, 5) N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester monohydrochloride (L-NAME)+gla40, and 6) Sham group. The healing effect of glabridin was abolished by L-NAME. Glabridin did not cause contractility of the smooth muscles to acetylcholine-induced contractile responses in intestinal I/R. Yet, it increased to spontaneous basal activity.

A pesar del desarrollo de la medicina moderna, la medicina alternativa, sin perder su vigencia, sigue siendo atractiva para el tratamiento de varias enfermedades. Glabradina, el flavonoide mayoritario de Glycyrrhiza glabra, es conocido por su actividad antioxidante y antiinflamatoria. Los propósitos de este estudio fueron: 1) Determinar el posible rol protector de glabradina ante daños intestinales por isquemia/reperfusion (I/R) 2) Evaluar in vitrolas respuestas de contracción de los músculos lisos del ileum ante acetilcolina después de I/R intestinal; y 3) Explicar el mecanismo molecular subyacente de este efecto. Se asignaron grupos de seis ratas: 1) I/R, 2) gla10, 3) gla20, 4) gla40, 5) N5-[imino(nitroamino)metil]-L-ornithina, metil ester monohidrochloruro (L-NAME)+gla40, y 6) Grupo testigo. El efecto curativo de glabridina fue abolido por L-NAME. Glabridina no causó contracción en el músculo liso como respuesta acetilcolina-inducida I/R. Además, incrementa la actividad basal expontánea.

Animals , Rats , Phenols/administration & dosage , Reperfusion Injury/drug therapy , Cyclic AMP/metabolism , Glycyrrhiza , Isoflavones/administration & dosage , Phenols/pharmacology , Rats, Wistar , Cyclic AMP/analysis , Cyclic GMP/metabolism , Oxidative Stress/drug effects , NG-Nitroarginine Methyl Ester , Ileum/drug effects , Ileum/chemistry , Isoflavones/pharmacology , Malondialdehyde/analysis , Muscle, Smooth/drug effects
Acta cir. bras ; 35(3): e202000305, 2020. graf
Article in English | LILACS | ID: biblio-1130627


Abstract Purpose To evaluate the effect of chronic alcoholism on morphometry and apoptosis mechanism and correlate with miRNA-21 expression in the corpus cavernosum of rats. Methods Twenty-four rats were divided into two experimental groups: Control (C) and Alcoholic group (A). After two weeks of an adaptive phase, rats from group A received only ethanol solution (20%) during 7 weeks. The morphometric and caspase-3 immunohistochemistry analysis were performed in the corpus cavernosum. The miRNA-21 expression was analyzed in blood and cavernous tissue. Results Chronic ethanol consumption decreased cavernosal smooth muscle area of alcoholic rats. The protein expression of caspase 3 in the corpus cavernosum was higher in A compared to the C group. There was no difference in the expression of miRNA-21 in serum and cavernous tissue between the groups. Conclusion Chronic ethanol consumption reduced smooth muscle area and increased caspase 3 in the corpus cavernosum of rats, without altered serum and cavernosal miR-21 gene expression.

Animals , Male , Penis/drug effects , Penis/pathology , Apoptosis/drug effects , Alcoholism/complications , Reference Values , Immunohistochemistry , Gene Expression , Rats, Wistar , MicroRNAs/analysis , Disease Models, Animal , Caspase 3/analysis , Erectile Dysfunction/chemically induced , Erectile Dysfunction/pathology , Muscle, Smooth/drug effects
Bol. latinoam. Caribe plantas med. aromát ; 18(2): 204-222, mar. 2019. ilus
Article in English | LILACS | ID: biblio-1007819


To explore the mechanistic basis behind smooth muscle relaxant prospective of Bismarckia nobilis in gastrointestinal, respiratory and cardiovascular ailments. The methanolic extract of B. nobilis and sub-fractions have been evaluated in vitro rabbit isolated tissues, in vivo castor oil-induced diarrhea in rats and charcoal meal activity in mice. The B. nobilis extract relaxed spontaneous and K+(80 mM)- induced contractions in rabbit isolated jejunum preparations, CCh (1 µM) and K+ (80 mM)-induced contractions in tracheal and bladder preparations, PE (1 µM) and K+ (80 mM)-induced concentrations in aorta preparations, likewise verapamil. Spasmolytic activity of dichloromethane fraction is stronger as compared to aqueous fraction. In vivo castor oil-induced diarrhea in rats and charcoal meal activity in mice further supported spasmolytic activity. B. nobilis extract possess anti-spasmodic, anti-diarrheal, airway relaxant and vasodilator activities possible mediated through calcium channel blocking mechanism, justifying therapeutic utility of B. nobilis in diarrhea, asthma and hypertension.

El objetivo de trabajo fue explorar el mecanismo de acción relacionado con el efecto relajante del músculo liso inducido por Bismarckia nobilis (B. nobilis) en enfermedades gastrointestinales, respiratorias y cardiovasculares. El extracto metanólico de B. nobilis y subfracciones fue evaluado in vitro en tejidos aislados de conejos. Además se evaluó diarrea in vivo inducida con aceite de ricino en ratas y la actividad de harina de carbón vegetal en ratones. El extracto de B. nobilis relajó tanto las contracciones espontáneas como las inducidas por K+(80 mM) en preparaciones de yeyuno aisladas de conejos, las contracciones inducidas por PE (1 µM) y K+(80 mM) inducidas en preparaciones de aorta; de manera similar a verapamilo. La actividad espasmolítica de la fracción de diclorometano es más potente en comparación con la fracción acuosa. La diarrea inducida in vivo por el aceite de ricino en ratas y la actividad de la harina de carbón vegetal en ratones apoyaron aún más la actividad espasmolítica. El extracto de B. nobilis posee actividades antiespasmódicas, antidiarreicas, relajantes de las vías respiratorias y vasodilatadoras, posibles a través del mecanismo de bloqueo de los canales de calcio, lo que justifica la utilidad terapéutica de B. nobilis en la diarrea, el asma y la hipertensión.

Animals , Rabbits , Rats , Plant Extracts/pharmacology , Anti-Asthmatic Agents/pharmacology , Arecaceae , Antidiarrheals/pharmacology , Antihypertensive Agents/pharmacology , Aorta/drug effects , Asthma/metabolism , Trachea/drug effects , Calcium Channel Blockers/pharmacology , Diarrhea/metabolism , Methanol , Hypotension/metabolism , Jejunum/drug effects , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects
Braz. j. med. biol. res ; 49(2): e4800, 2016. tab, graf
Article in English | LILACS | ID: lil-766979


β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor-operated Ca2+ channels.

Animals , Male , Calcium Channel Blockers/pharmacology , Monoterpenes/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Trachea/drug effects , Analysis of Variance , Calcium Channel Blockers/administration & dosage , Enzyme Inhibitors/pharmacology , Indomethacin/pharmacology , Inhibitory Concentration 50 , Monoterpenes/administration & dosage , NG-Nitroarginine Methyl Ester/pharmacology , Parasympatholytics/administration & dosage , Rats, Wistar , Tetraethylammonium/pharmacology , Thapsigargin/pharmacology , Verapamil/pharmacology
Acta cir. bras ; 30(7): 478-483, 07/2015. tab, graf
Article in English | LILACS | ID: lil-754979


PURPOSE: To evaluate the penile morphological modifications of pubertal and adult rats chronically treated with supra-physiological doses of anabolic androgenic steroids. METHODS: Forty-eight male Wistar rats were distributed into four groups: two control groups, 105- and 65-day-old (C105 and C65, respectively) injected with peanut oil (vehicle); and two treated groups, 105- and 65-day-old (T105 and T65, respectively) injected with nandrolone decanoate at a dose of 10 mg Kg-1 of body weight. The rats were injected once a week for eight weeks. The rats were then killed and their penises were processed for histomorphometric analyses. The mean of each parameter was statistically compared. RESULTS: A corpus cavernosum reduction of 12.5% and 10.9% was observed in the T105 and T65 groups, respectively, when compared with their respective control groups. The cavernosum smooth muscle surface density diminished by 5.6% and 12.9% in the T65 and T105 groups, respectively, when compared with their controls. In contrast, the sinusoidal space increased by 17% in the T105 group and decreased by 9.6% in the T65 group. CONCLUSION: The use of supra-physiological doses of AAS promotes structural changes in the rat penis, by altering the proportions of corpus cavernosum tissues, in both pubertal and adult treated animals. .

Animals , Male , Anabolic Agents/adverse effects , Androgens/adverse effects , Penis/drug effects , Steroids/adverse effects , Age Factors , Anatomy, Cross-Sectional , Anabolic Agents/administration & dosage , Androgens/administration & dosage , Collagen/analysis , Muscle, Smooth/drug effects , Nandrolone/administration & dosage , Nandrolone/adverse effects , Nandrolone/analogs & derivatives , Penis/pathology , Rats, Wistar , Sexual Maturation/drug effects , Steroids/administration & dosage
Biol. Res ; 48: 1-6, 2015. graf, tab
Article in English | LILACS | ID: biblio-950792


BACKGROUND: Ruta graveolens L. (R. graveolens) is a medicinal plant employed in non-traditional medicines that has various therapeutic properties, including anthelmintic, and vasodilatory actions, among others. We evaluated the trachea-relaxant effects of hydroalcoholic extract of R. graveolens against potassium chloride (KCl)- and carbachol-induced contraction of rat tracheal rings in an isolated organ bath. RESULTS: The results showed that the airway smooth muscle contraction induced by the depolarizing agent (KCl) and cholinergic agonist (carbachol) was markedly reduced by R. graveolens in a concentration-dependent manner, with maximum values of 109 ± 7.9 % and 118 ± 2.6 %, respectively (changes in tension expressed as positive percentages of change in proportion to maximum contraction), at the concentration of 45 µg/mL (half-maximal inhibitory concentration IC50: 35.5 µg/mL and 27.8 µg/mL for KCl- and carbachol-induced contraction, respectively). Additionally, the presence of R. graveolens produced rightward parallel displacement of carbachol dose-response curves and reduced over 35 % of the maximum smooth muscle contraction. CONCLUSIONS: The hydroalcoholic extract of R. graveolens exhibited relaxant activity on rat tracheal rings. The results suggest that the trachea-relaxant effect is mediated by a non-competitive antagonistic mechanism. More detailed studies are needed to identify the target of the inhibition, and to determine more precisely the pharmacological mechanisms involved in the observed biological effects.

Animals , Rats , Parasympatholytics/pharmacology , Trachea/drug effects , Plant Extracts/pharmacology , Ruta/chemistry , Muscle, Smooth/drug effects , Neuromuscular Depolarizing Agents/pharmacology , Potassium Chloride/pharmacology , Furocoumarins/analysis , Quercetin/analysis , Rutin/analysis , Trachea/surgery , In Vitro Techniques , Carbachol/pharmacology , Plant Extracts/chemistry , Chromatography, Liquid , Rats, Sprague-Dawley , Cholinergic Agents/pharmacology , Inhibitory Concentration 50 , Plant Components, Aerial/chemistry , Muscle Contraction/drug effects , Muscle Tonus/drug effects
Braz. j. med. biol. res ; 47(12): 1068-1074, 12/2014. graf
Article in English | LILACS | ID: lil-727656


Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

Animals , Male , Jejunum/drug effects , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Myosins/metabolism , Taurine/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Atropine/pharmacology , Calcium Channel Blockers/pharmacology , Cimetidine/pharmacology , Diphenhydramine/pharmacology , Enteric Nervous System/drug effects , Histamine H1 Antagonists/pharmacology , /pharmacology , Jejunum/physiology , Muscarinic Antagonists/pharmacology , Myosin-Light-Chain Kinase/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/metabolism , Phosphorylation , Phentolamine/pharmacology , Propranolol/pharmacology , Rats, Sprague-Dawley , Taurine/antagonists & inhibitors , Tetrodotoxin/pharmacology , Verapamil/pharmacology
Braz. j. med. biol. res ; 47(10): 876-885, 10/2014. tab, graf
Article in English | LILACS | ID: lil-722165


The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F1α (6-keto-PGF1α; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM22-52, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K+ channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin (Ca2+-activated channel blocker) did not affect AM-induced relaxation. AM increased nitrate levels and 6-keto-PGF1α in rat CSM. The major new contribution of this research is that it demonstrated expression of AM and its receptor in rat CSM. Moreover, we provided evidence that AM-induced relaxation in this tissue is mediated by AM receptors by a mechanism that involves the nitric oxide-cGMP pathway, a vasodilator prostanoid, and the opening of voltage-dependent K+ channels.

Animals , Male , Adrenomedullin/pharmacology , Calcitonin Receptor-Like Protein/analysis , Muscle, Smooth/drug effects , Parasympatholytics/pharmacology , Penis/drug effects , Vasodilator Agents/pharmacology , /pharmacology , /analysis , Adrenomedullin/genetics , Adrenomedullin/metabolism , Blotting, Western , Calcitonin Receptor-Like Protein/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclooxygenase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Immunohistochemistry , Indazoles/pharmacology , Muscle Relaxation , Muscle, Smooth/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/analysis , Nitric Oxide/analogs & derivatives , Penis/metabolism , Potassium Channels, Voltage-Gated/metabolism , Rats, Wistar , Real-Time Polymerase Chain Reaction , RNA, Messenger/metabolism , Receptor Activity-Modifying Protein 1/genetics , Receptor Activity-Modifying Protein 1/metabolism , /metabolism , /genetics , /metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism
Int. braz. j. urol ; 40(3): 408-413, may-jun/2014. tab, graf
Article in English | LILACS | ID: lil-718257


Involuntary detrusor contractions play an important role in the development of urge incontinence. Also in an in-vitro situation contractions which develop spontaneously can be seen; a parallel with the in vivo observations is likely. In order to study this muscle overactivity we investigated the possibility to induce this phenomenon with oxidative stress using hypochlorous acid (HOCl). Materials and Methods Urinary bladder muscle strips from pigs were mounted in a custom made organ bath and incubated for 20 minutes in Krebs solution. Next HOCl (10µM) was added to the organ bath and the onset of overactive contractions was closely followed. Overactivity was defined as a development of more than 5 phasic detrusor contractions per minute without any other provocation in the 30 minutes following addition of HOCl to the organ bath. Results Of the 50 strips which were used 36 (72%) became overactive after exposure to HOCl during 30 minutes recording. In 76% of the overactive strips overactivity occurred within 5 minutes, in 19% between 5 and 15 minutes, and in 5% it took longer than 15 minutes. The overactivity could be stopped by washing out HOCl for 10 minutes after which still a significant contraction after EFS and ACh stimulation was seen. Conclusions It can be concluded that an oxidative stressor, like HOCl, is capable of inducing smooth muscle overactivity. This model can be used for the development and testing of new treatment modalities for the overactive detrusor. Furthermore, this study provides evidence for a causal relationship between oxidative stress and detrusor overactivity. .

Animals , Disease Models, Animal , Hypochlorous Acid/pharmacology , Oxidative Stress/drug effects , Urinary Bladder, Overactive/chemically induced , Urinary Bladder, Overactive/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Reproducibility of Results , Swine , Time Factors , Urinary Bladder, Overactive/physiopathology
Clinics ; 68(1): 101-106, Jan. 2013. ilus, tab
Article in English | LILACS | ID: lil-665925


OBJECTIVE: The aim of this study was to evaluate the effect of oral tamoxifen treatment on the number of myofibroblasts present during the healing process after experimental bile duct injury. METHODS: The sample consisted of 16 pigs that were divided into two groups (the control and study groups). Incisions and suturing of the bile ducts were performed in the two groups. Tamoxifen (20 mg/day) was administered only to the study group. The animals were sacrificed after 30 days. Quantification of myofibroblasts in the biliary ducts was made through immunohistochemistry analysis using anti-alpha smooth muscle actin of the smooth muscle antibody. Immunohistochemical quantification was performed using a digital image system. RESULTS: In the animals treated with tamoxifen (20 mg/day), there was a significant reduction in immunostaining for alpha smooth muscle actin compared with the control group (0.1155 vs. 0.2021, p = 0.046). CONCLUSION: Tamoxifen reduced the expression of alpha smooth muscle actin in the healing tissue after bile duct injury, suggesting a decrease in myofibroblasts in the scarred area of the pig biliary tract. These data suggest that tamoxifen could be used in the prevention of biliary tract stenosis after bile duct surgeries.

Animals , Female , Bile Ducts/injuries , Estrogen Antagonists/therapeutic use , Myofibroblasts/drug effects , Tamoxifen/therapeutic use , Wound Healing/drug effects , Actins/analysis , Actins/drug effects , Bile Ducts/drug effects , Cell Count , Immunohistochemistry , Muscle, Smooth/chemistry , Muscle, Smooth/drug effects , Reproducibility of Results , Swine , Treatment Outcome
Int. braz. j. urol ; 38(5): 687-694, Sept.-Oct. 2012. ilus
Article in English | LILACS | ID: lil-655997


PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH3)4(caffeine)(NO)]C13 (Rut-Caf) and sodium nitroprusside (SNP). MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE) (1 µM) and then concentration-response curves (10-12 - 10-4 M) were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM), oxyhemoglobin (10 µM), L-cysteine (100 µM), hydroxicobalamine (100 µM), glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50) and maximum effect (Emax). The substances showed activity through activation of the soluble guanylyl cyclase (sGC), because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09). There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.

Animals , Male , Rabbits , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Ruthenium Compounds/pharmacology , Cyclic GMP/biosynthesis , Cyclic GMP/chemistry , Cysteine/pharmacology , Guanosine Monophosphate/biosynthesis , Guanosine Monophosphate/chemistry , Muscle, Smooth/physiology , Nitric Oxide Donors/chemistry , Nitroprusside/chemistry , Potassium Channels/chemistry , Ruthenium Compounds/chemistry , Time Factors
Biocell ; 36(2): 73-81, Aug. 2012. graf, tab
Article in English | LILACS | ID: lil-662144


After depletion of intracellular Ca2+ stores the capacitative response triggers an extracellular Ca2+ influx through store-operated channels (SOCs) which refills these stores. Our objective was to explore if human umbilical artery smooth muscle presented this response and if it was involved in the mechanism of serotonin- and histamine-induced contractions. Intracellular Ca2+ depletion by a Ca2+-free extracellular solution followed by Ca2+ readdition produced a contraction in artery rings which was inhibited by the blocker of Orai and TRPC channels 2-aminoethoxydiphenyl borate (2-APB), suggesting a capacitative response. In presence of 2-APB the magnitude of a second paired contraction by serotonin or histamine was significantly less than a first one, likely because 2-APB inhibited store refilling by capacitative Ca2+ entry. 2-APB inhibition of sarcoplasmic reticulum Ca2+ release was excluded because this blocker did not affect serotonin force development in a Ca2+-free solution. The PCR technique showed the presence of mRNAs for STIM proteins (1 and 2), for Orai proteins (1, 2 and 3) and for TRPC channels (subtypes 1, 3, 4 and 6) in the smooth muscle of the human umbilical artery. Hence, this artery presents a capacitative contractile response triggered by stimulation with physiological vasoconstrictors and expresses mRNAs for proteins and channels previously identified as SOCs.

Humans , Boron Compounds/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , RNA, Messenger/genetics , Umbilical Arteries/drug effects , Vascular Capacitance/drug effects , Blotting, Western , Cells, Cultured , Calcium Channel Blockers/pharmacology , Calcium Channels/chemistry , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium/metabolism , Histamine Agonists/pharmacology , Histamine/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle, Smooth/cytology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Serotonin Receptor Agonists/pharmacology , Serotonin/pharmacology , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Umbilical Arteries/cytology , Umbilical Arteries/metabolism
Biol. Res ; 45(1): 67-73, 2012. ilus, tab
Article in English | LILACS | ID: lil-626749


In previous studies, the relaxant effect of Tymus vulgaris has been demonstrated on guinea pig tracheal chains. Therefore, in the present study, the relaxant effects of n-hexane, dichloromethane, methanol and aqueous fractions of Tymus vulgaris on tracheal chains of guinea pigs were examined. The relaxant effects of four cumulative concentrations of each fraction (0.4, 0.8, 1.2 and 1.6 g%) in comparison to saline as negative control and four cumulative concentrations of theophylline (0.2, 0.4, 0.6 and 0.8 mM) were examined for their relaxant effects on precontracted tracheal chains of guinea pig by 60 mM KCl (group 1) and 10 ìÌ methacholine (group 2, n = 7 for each group). In group 1, all concentrations of the n-hexane fraction and theophylline and three last concentrations (0.8, 1.2 and 1.6 g%) of dichloromethane and two higher concentrations (1.2 and 1.6 g%) of methanol fractions showed significant relaxant effects compared to that of saline (p<0.05 to p<0.001). In group 2, all concentrations of theophylline, n-hexane and dichloromethane fractions and three concentrations (0.8, 1.2 and 1.6 g%) of methanol and two higher concentrations (1.2 and 1.6 g%) of aqueous fractions showed significant relaxant effects compared to that of saline (p<0.05 to p<0.001). In addition, with group 1, the relaxant effect of all concentrations of all fractions except the n-hexane fraction, were significantly less than those of theophylline (p<0.05 to p<0.001). The n-hexane fraction showed higher relaxant effect than theophylline. The relaxant effect of all concentrations of the n-hexane fraction and the three last concentrations (0.8, 1.2 and 1.6 g%) of dichloromethane and aqueous fractions were significantly greater in group 2 than in group 1 (p<0.05 to p<0.001). There were significant positive correlations between the relaxant effects and concentrations for theophylline and all fractions (except aqueous fraction in group 1) in both groups, but a negative correlation for the aqueous fraction in group 1 (p<0.05 to p<0.001). These results showed a potent relaxant effect for n-hexane and weaker relaxant effect for other fractions from Tymus vulgaris on tracheal chains of guinea pigs.

Animals , Female , Guinea Pigs , Male , Bronchodilator Agents/pharmacology , Hexanes/pharmacology , Methylene Chloride/pharmacology , Plant Extracts/pharmacology , Thymus Plant/chemistry , Trachea/drug effects , Methanol/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Phytotherapy , Plant Oils/pharmacology , Solutions , Theophylline/pharmacology , Water/chemistry
Article in English | WPRIM | ID: wpr-210929


Effective drug to manage constipation has been unsatisfactory. We sought to determine whether methionine has effect on the human colon. Human colon tissues were obtained from the specimens of colon resection. Microelectrode recording was performed and contractile activity of muscle strips and the propagation of the contractions in the colon segment were measured. At 10 microM, methionine depolarized the resting membrane potential (RMP) of circular muscle (CM) cells. In the CM strip, methionine increased the amplitude and area under the curve (AUC) of contractions. In the whole segment of colon, methionine increased the amplitude and AUC of the high amplitude contractions in the CM. These effects on contraction were maximal at 10 microM and were not observed in longitudinal muscles in both the strip and the colon segment. Methionine reversed the effects of pretreatment with sodium nitroprusside, tetrodotoxin and Nw-oxide-L-arginine, resulting in depolarization of the RMP, and increased amplitude and AUC of contractions in the muscle strip. Methionine treatment affected the wave pattern of the colon segment by evoking small sized amplitude contractions superimposed on preexisting wave patterns. Our results indicate that a compound mimicking methionine may provide prokinetic functions in the human colon.

Area Under Curve , Arginine/pharmacology , Colon/drug effects , Humans , Membrane Potentials/drug effects , Methionine/pharmacology , Microelectrodes , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Nitroprusside/pharmacology , Tetrodotoxin/pharmacology
Acta cir. bras ; 26(supl.2): 74-78, 2011. tab
Article in English | LILACS | ID: lil-602648


PURPOSE: To assess in vitro the correlation between the number of neurons and the sensitivity to cholinergic drugs and acetylcholinesterase activity in chagasic patients. METHODS: A 3x1 cm strip of the muscle layer of the anterior part of the stomach, always close to the angular incisure, was removed from 10 chronic chagasic patients (6 men) submitted to megaesophagus or megacolon surgery and from 10 non-chagasic patients (4 men) submitted to other types of surgery (control group), aged on average 52.3 and 50.1 years, respectively, for histological and pharmacological studies. The action of cholinergic drugs was investigated in isolated preparations according to the superfusion method of Ferreira and Costa, and acetylcholinesterase activity was determined by the method of Ellman. For neuron count, the strips were cut into 8 µm sections according to the method standardized by Alcântara. RESULTS: There was a difference in number of neurons between the chagasic (5,6) and control (7,3) groups. Acetylcholinesterase activity, in moles of hydrolyzed substrate per minute per gram tissue, was reduced in chagasic patients (4,32) compared to the controls (7,30). No hypersensitivity of the gastric musculature to cholinergic drugs was detected, with a reduced maximum response to carbachol and betanechol in the chagasic group. CONCLUSIONS: The reduction of neurons in the myenteric plexus of the stomach of chronic chagasic patients can be demonstrated even in the absence of clinical chagasic gastropathy. The hypersensitivity of the gastric musculature to cholinergic drugs probably depends on intense denervation. The reduced acetylcholinesterase activity demonstrates the involvement of the cholinergic innervation in the stomach of chronic chagasic patients. There was no correlation between number of neurons, sensitivity to cholinergic drugs and acetylcholinesterase activity in the gastric musculature of chagasic and non-chagasic patients.

OBJETIVO: Avaliar in vitro a correlação entre o número de neurônios e a sensibilidade a drogas colinérgicas e a atividade da acetilcolinesterase em pacientes chagásicos. MÉTODOS: Em 10 pacientes chagásicos crônicos (6 homens) submetidos à cirurgia de megaesôfago ou de megacólon e em 10 pacientes não chagásicos (4 homens) submetidos a outros tipos de cirurgia (grupo controle), respectivamente com idade média de 52,3 e 50,1 anos, retirou-se uma tira de 3x1 cm da camada muscular da parede anterior do estômago, sempre junto á cisura angular, que serviu para os estudos histológicos e farmacológicos. A ação de drogas colinérgicas foi feita em preparação isolada de acordo com o método de superfusão de Ferreira e Costa, e a determinação da atividade da acetilcolinesterase pelo método de Ellman. Para a contagem de neurônios a tira muscular foi submetida a cortes de 8 micra segundo método padronizado por Alcântara. RESULTADOS: Houve diferença do número de neurônios entre os grupos chagásico (5,6) e controle (7,3). A atividade da acetilcolinesterase mostrou-se diminuída nos chagásicos (4,32) expressa como número de moles do substrato hidrolisado por minuto por grama de tecido, em relação aos controles (7,30). Não se encontrou hipersensibilidade da musculatura gástrica a drogas colinérgicas, encontrando-se inclusive efeito máximo reduzido ao carbacol e betanecol no grupo chagásico. CONCLUSÕES: A redução de neurônios no plexo mioentérico do estômago de pacientes chagásicos crônicos pode ser demonstrada mesmo na ausência de gastropatia chagásica clínica. A hipersensibilidade da musculatura gástrica a drogas colinérgicas provavelmente depende de desnervação intensa. A redução da atividade da acetilcolinesterase demonstra o comprometimento da inervação colinérgica no estômago de pacientes chagásicos crônicos. Não houve correlação entre número de neurônios, sensibilidade a drogas colinérgicas e atividade da acetilcolinesterase na musculatura gástrica de pacientes chagásicos ou não chagásicos.

Adult , Female , Humans , Male , Middle Aged , Acetylcholinesterase/metabolism , Chagas Disease/drug therapy , Cholinergic Agents/pharmacology , Muscle, Smooth/innervation , Myenteric Plexus/pathology , Stomach/innervation , Acetylcholine/pharmacology , Case-Control Studies , Cell Count , Carbachol/pharmacology , Chagas Disease/enzymology , Cholinergic Agonists/pharmacology , Esophageal Achalasia/pathology , Esophageal Achalasia/surgery , Muscle, Smooth/drug effects , Muscle, Smooth/enzymology , Neurons/cytology , Stomach/drug effects , Stomach/enzymology
Pakistan Journal of Pharmaceutical Sciences. 2011; 24 (4): 427-433
in English | IMEMR | ID: emr-137540


Marmin or 7-[6', 7'-dihydroxygeranyl-oxy] coumarin is a compound isolated from Aegle marmelos Correa. In the study, we examined the effects of marmin on the contraction of guinea pig-isolated trachea stimulated by several inducers, namely histamine, metacholine, compound 48/80. We also evaluated its action against contraction induced by extracellular or intracellular calcium ion. The possibility of marmin to potentiate the

elaxation effect of isoprenaline was also studied. Marmin added in the organ bath at 10 min prior to the agonist inhibited the contraction elicited by histamine and metacholine in a concentration-dependent manner. Moreover, marmin antagonized the histamine-induced contraction in competitive manner. Marmin mildly potentiated the relaxation effect of isoprenaline. In the study, marmin abrogated the contraction of tracheal smooth muscle induced by compound 48/80, an inducer of histamine release. Besides, marmin successfully inhibited CaCl[2-]-induced contraction in Ca[2+] -free Krebs solution. Marmin also inhibited two phases of contraction which were consecutively induced by metacholine and CaCl[2] in Ca[2+]-free Krebs solution. Based on the results we concluded that marmin could inhibit contraction of the guinea-pig tracheal smooth muscle, especially by interfering histamine receptor, inhibiting the histamine release from mast, inhibiting intracellular Ca[2+] release from the intracellular store and the Ca[2+] influx through voltage-dependent Ca[2+] channels

Animals, Laboratory , Male , Aegle/chemistry , Coumarins/isolation & purification , Trachea/drug effects , p-Methoxy-N-methylphenethylamine/pharmacology , Muscle, Smooth/drug effects , Muscle Relaxation/drug effects , Muscle Contraction/drug effects , Guinea Pigs
Pakistan Journal of Pharmaceutical Sciences. 2011; 24 (4): 553-558
in English | IMEMR | ID: emr-137559


Methanolic extract of Onosma grifflthii and its fractions were evaluated for possible effects on rabbits' jejunum preparations. Rabbits of either sex [weight 1.5-2.0 kg] were used in experiments. Studies were carried out on rabbits' jejunum preparations. Crude methanolic extract of Onosma griffithii [Meth.OG] was tried in concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 5.0 and 10.0 mg/ml on rabbits' jejunum preparations. Meth.OG was also tried on KCl-induced contractions to explain its possible mode of actions in the presence and absence of atropine [0.03 microM]. Fractions of Meth.OG were tried in similar manner. Calcium chloride curves were constructed for Meth.OG treated tissues that were compared with curves constructed for verapamil in same fashion. Preliminary phytochemical screening of the plant was also performed. Meth.OG increased the amplitude of spontaneous activity of rabbits' jejunum preparations at concentrations of 0.1, 0.3 and 1.0 mg/ml. However, spasmolytic effects were observed at higher concentrations 3.0, 5.0 and 10.0 mg/ml. Mean EC[50] values [mg/ml], respectively, in absence and presence of atropine were 7.5 +/- 0.25 [6.9-8.4, n=6] and 3.0 +/- 0.17 [2.3-3.5, n=6, P<0.05]. Mean EC[50] values, respectively, for effects on spontaneous and KCl-induced contractions were 7.5 +/- 0.25 [6.9-8.4, n=6] and 7.3 +/- 0.35 [6.25-8.2, n=6, p<0.05]. rc-Hexane, chloroform and ethyl acetate fractions showed their respective EC[50] values [mg/ml] 9.7 +/- 0.25 [8.6-10.2, n=6], 4.0 +/- 0.2 [3.5-4.6, n=6] and 1.07 +/- 0.093 [0.78-1.5, n=6]. EC[50] values for calcium chloride curves in presence of 0.3 mg/ml Meth.OG were - 2.27 +/- 0.038 [- 2.4 to - 2.10, n=6] vs. control - 2.78 +/- 0.04 [-2.9 to - 2.6, n=6,P<0.05] Log [Ca[++]]M. Comparing with curves of calcium chloride constructed in presence of 0.1 juM verapamil, the EC[50] [log [Ca[++]] M] values were - 1.82 +/- 0.087 [- 2.0 to - 1.65, n=6] vs. control - 2.64 +/- 0.089 [- 2.9 to - 2.4, n=6] demonstrated a right shift [p<0.05]. Meth.OG tested positive for terpenes, saponins, sterols, flavonoids and carbohydrates. We concluded that the relaxant effect of Meth.OG is exerted through blocking of calcium channels. However,

butanolic and aqueous fractions produced spasmogenic effects that require further work for isolation of pharmacologically active substances

Animals , Parasympatholytics/pharmacology , Parasympathomimetics/pharmacology , Plant Extracts/pharmacology , Muscle, Smooth/drug effects , Muscle Contraction/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Rabbits , Solvents/chemistry , Verapamil/pharmacology
Int. braz. j. urol ; 36(6): 749-758, Dec. 2010. graf
Article in English | LILACS | ID: lil-572403


PURPOSE: The etiology of obstructive bladder dysfunction includes free radical damage to mitochondria. Feeding rabbits a standardized grape suspension protects the ability of the bladder to contract and empty in part by preventing mitochondrial damage, thus maintaining smooth muscle and mucosal metabolism. The objective of the current study is to determine the direct effect of this grape suspension on the response of mitochondria to the oxidative effects of hydrogen peroxide. MATERIALS AND METHODS: Six male rabbits were anesthetized with sodium pentobarbital and the bladders excised. Four full thickness strips were obtained for contractile studies and the balance separated into smooth muscle and mucosa compartments by blunt dissection. The effect of hydrogen peroxide on the contractile response to field stimulation was quantitated. Each tissue was homogenized and the effects of increasing concentrations of hydrogen peroxide in the presence and absence of grape suspension on citrate synthase activity was determined. RESULTS: Citrate synthase activity was significantly higher in the mucosa than in the muscle. The grape suspension had no effect on control citrate synthase activity. However, the grape suspension provided significant protection of both smooth muscle and mucosal citrate synthase activity. CONCLUSIONS: These studies support the conclusion that the grape suspension provides direct protection of mitochondrial function.

Animals , Male , Rabbits , Citrate (si)-Synthase/metabolism , Hydrogen Peroxide/pharmacology , Mitochondria/metabolism , Urinary Bladder/drug effects , Vitis , Antioxidants/pharmacology , Hydrogen Peroxide/adverse effects , Mucous Membrane/drug effects , Mucous Membrane/enzymology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/enzymology , Urinary Bladder Neck Obstruction/enzymology , Urinary Bladder/enzymology
Iranian Journal of Basic Medical Sciences. 2010; 13 (3): 126-132
in English | IMEMR | ID: emr-105479


In the present study, the differences in the relaxant effects of aqueous, ethyl acetate and n-butanol fractions of Rosa damascena on tracheal smooth muscle of guinea pigs were examined. The relaxant effects of three cumulative concentrations of each fraction [0.1, 0.2 and 0.4 g%] in comparison with saline and three cumulative concentrations of theophylline [0.1, 0.2, and 0.4 mM] were examined on precontracted tracheal chains of guinea pig by 60 mM KCl [group 1, n=5] and 10 micro M methacholine [group 2, n=8]. In group 1, all concentrations of theophylline, ethyl acetate fraction and two final concentrations of n-butanol fraction showed significant relaxant effects in comparison with saline [p< 0.05 to P< 0.001]. In group 2, all concentrations of theophylline, ethyl acetate and aqueous fractions showed concentration dependent relaxant effects compared to that of saline [p< 0.01 to P< 0.001]. In addition, the effect of ethyl acetate fraction in group 1 was significantly higher than those of theophylline [p< 0.05 to p< 0.001]. However, the effects of other fractions were significantly lower than theophylline in both groups [p< 0.01 to p< 0.001]. There were significant correlations between the relaxant effects and concentrations for theophylline and all fractions [except aqueous fractions in group 1] in both groups. The results showed a potent relaxant effect for ethyl acetate fraction of R. damascena on tracheal smooth muscle comparable to that of theophylline but a relatively weak relaxant effect for aqueous and n-butanol fractions at concentrations used

Male , Animals, Laboratory , Bronchodilator Agents , Guinea Pigs , Plants, Medicinal , Plant Extracts , Butanols , Trachea/drug effects , Muscle, Smooth/drug effects
An. acad. bras. ciênc ; 81(3): 605-613, Sept. 2009. ilus
Article in English | LILACS | ID: lil-523984


The term functionomics (Amin 2003, Neumann et al. 2004) refers to a postgenomic integrated Systems Biology (Attur et al. 2002) using a multidimensional approach for cells, tissues and organs. It considers current or future involvement among genomics, proteomics or metabolomics, including the main factors that cause biological responses and modulation under different conditions. Our objective in the present review is to summarize the contemporary understanding of functionomics of smooth muscle pharmacology, based on the results obtained on the pregenomic era during several years in our laboratory. The present approach is based on the knowledge of the dynamics of the receptor system, which comprises a cascade of phenomena, leading from the drug administration to the final biological response. We will describe several conditions in which the final effect is modified, based on perturbations induced on drug absorption, distribution, metabolism, interaction with receptors and mobilization of second messengers, as well as by interactions with a second receptor system. We will also discuss the gaps that need to be fulfilled in order to obtain a clear and better understanding of the receptor system in smooth muscle, and to narrow the bridge between ourknowledge of the function of biological systems, genomics, and other recently introduced areas.

O termo funcionômica (Amin 2003, Neumann et al. 2004) refere-se a um estudo posgenômico de Biologia de Sistemas (Attur et al. 2002), usando um enfoque multidimensional, dinâmico e simultâneo para células, tecidos e órgãos. Considera o envolvimento presente e futuro da genômica, proteômica e metabolômica incluindo os principais fatores que causam a resposta biológica final e sua modulação em diferentes condições. Nosso objetivo na presente revisão é resumir o nosso conhecimento atual em relação à funcionômica da farmacologia da musculatura lisa, baseada em resultados que obtivemos ainda na era pregenômica, durante vários anos em nosso laboratório. O presente enfoque baseia-se no que sabemos hoje em dia sobre a dinâmica do sistema receptor, que compreende uma cascata de fenômenos, que vão desde a administração de uma droga até a resposta biológica. Descreveremos várias condições nas quais a resposta é modificada, com base em perturbações produzidas na absorção, distribuição e metabolismo de fármacos, interação com receptores, mobilização de segundos mensageiros, bem como interações com um segundo sistema receptor. Discutiremos também o papel da genômica e as inúmeras falhas que devem ser preenchidas, para que se chegue a um conhecimento integrado e cada vez melhor dos sistemas receptores na musculatura lisa e para encurtar a ponte entre as funções do sistema biológico, genômica e outras áreas recentemente introduzidas.

Animals , Humans , Genomics , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology