Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Int. j. morphol ; 41(6): 1887-1896, dic. 2023. ilus, graf
Article in English | LILACS | ID: biblio-1528807

ABSTRACT

SUMMARY: The therapeutic effect of a granulocyte-colony stimulating factor (G-CSF) biosimilar drug, zarzio, on non-alcoholic fatty liver disease (NAFLD) in a rat model was investigated in this study. Thirty-two rats were randomly divided into four groups. Groups I and II were fed a standard laboratory diet, whereas groups III and IV were fed a high fat diet (HFD) for 14 weeks. After 12 weeks of feeding, groups I and III were administered normal saline, and groups II and IV were intraperitoneally administered zarzio (200 mg/kg/day) for two consecutive weeks. Hematoxylin-eosin (H&E) staining was used to assess hepatic and pancreatic morphology in all groups, oil red O (ORO) staining for lipid accumulation, Masson's staining for fibrosis, and immunohistochemistry assay for hepatic protein expression of insulin receptor substrate 1 (IRS1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumour necrosis factor alpha (TNF-α) and pancreatic caspase-3. The NAFLD rats (group III) developed hepatic steatosis with increased lipid accumulation, perisinusoidal fibrosis, upregulated IRS1, TNF-α (all P<0.05) without a significant increase in Nrf2 protein expression compared with normal control. In comparison, model rats treated with zarzio (group IV) showed significant rejuvenation of the hepatic architecture, reduction of fat accumulation, and fibrosis. This was accompanied by the upregulation of Nrf2, downregulation of IRS1 and TNF-α protein expression (all P<0.05). No correlation was detected between NAFLD and non-alcoholic fatty pancreas disease (NAFPD). However, the pancreatic β-cells in group III showed increased caspase-3 expression, which was decreased (P<0.05) in group IV. In conclusion, zarzio ameliorates NAFLD by improving the antioxidant capacity of liver cells, reducing hepatic IRS1, TNF-α protein expression and pancreatic β-cells apoptosis, suggesting that zarzio could be used as a potential therapy for NAFLD.


En este estudio se investigó el efecto terapéutico de un fármaco biosimilar del factor estimulante de colonias de granulocitos (G-CSF), zarzio, sobre la enfermedaddel hígado graso no alcohólico (NAFLD) en un modelo de rata. Treinta y dos ratas se dividieron aleatoriamente en cuatro grupos. Los grupos I y II fueron alimentados con una dieta estándar de laboratorio, mientras que los grupos III y IV fueron alimentados con una dieta alta en grasas (HFD) durante 14 semanas. Después de 12 semanas de alimentación, a los grupos I y III se les administró solución salina normal, y a los grupos II y IV se les administró zarzio por vía intraperitoneal (200 mg/kg/ día) durante dos semanas consecutivas. Se utilizó tinción de hematoxilina-eosina (H&E) para evaluar la morfología hepática y pancreática en todos los grupos, tinción con rojo aceite O (ORO) para la acumulación de lípidos, tinción de Masson para la fibrosis y ensayo de inmunohistoquímica para la expresión de la proteína hepática del sustrato 1 del receptor de insulina (IRS1), factor nuclear eritroide 2 relacionado con el factor 2 (Nrf2), factor de necrosis tumoral alfa (TNF-α) y caspasa-3 pancreática. Las ratas NAFLD (grupo III) desarrollaron esteatosis hepática con aumento de la acumulación de lípidos, fibrosis perisinusoidal, IRS1 y TNF-α regulados positivamente (todos P <0,05) sin un aumento significativo en la expresión de la proteína Nrf2 en comparación con el control normal. En comparación, las ratas modelo tratadas con zarzio (grupo IV) mostraron un rejuvenecimiento significativo de la arquitectura hepática, una reducción de la acumulación de grasa y fibrosis. Esto estuvo acompañado por la regulación positiva de Nrf2, la regulación negativa de la expresión de la proteína IRS1 y TNF-α (todas P <0,05). No se detectó correlación entre NAFLD y la enfermedad del páncreas graso no alcohólico (NAFPD). Sin embargo, las células β pancreáticas en el grupo III mostraron una mayor expresión de caspasa-3, que disminuyó (P <0,05) en el grupo IV. En conclusión, zarzio mejora la NAFLD al mejorar la capacidad antioxidante de las células hepáticas, reduciendo el IRS1 hepático, la expresión de la proteína TNF-α y la apoptosis de las células β pancreáticas, lo que sugiere que zarzio podría usarse como una terapia potencial para la NAFLD.


Subject(s)
Animals , Male , Rats , Granulocyte Colony-Stimulating Factor/administration & dosage , Biosimilar Pharmaceuticals/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Immunohistochemistry , Tumor Necrosis Factor-alpha/drug effects , Disease Models, Animal , Insulin-Secreting Cells/drug effects , NF-E2-Related Factor 2 , Caspase 3 , Diet, High-Fat/adverse effects
2.
Braz. J. Anesth. (Impr.) ; 73(2): 177-185, March-Apr. 2023. graf
Article in English | LILACS | ID: biblio-1439592

ABSTRACT

Abstract Background The precise underlying mechanism of antioxidant effects of dexmedetomidine-induced neuroprotection against cerebral ischemia has not yet been fully elucidated. Activation of Nuclear factor erythroid 2-related factor (Nrf2) and Heme Oxygenase-1 (HO-1) represents a major antioxidant-defense mechanism. Therefore, we determined whether dexmedetomidine increases Nrf2/HO-1 expression after global transient cerebral ischemia and assessed the involvement of Protein Kinase C (PKC) in the dexmedetomidine-related antioxidant mechanism. Methods Thirty-eight rats were randomly assigned to five groups: sham (n = 6), ischemic (n = 8), chelerythrine (a PKC inhibitor; 5 mg.kg-1 IV administered 30 min before cerebral ischemia) (n = 8), dexmedetomidine (100 µg.kg-1 IP administered 30 min before cerebral ischemia (n = 8), and dexmedetomidine + chelerythrine (n = 8). Global transient cerebral ischemia (10 min) was applied in all groups, except the sham group; histopathologic changes and levels of nuclear Nrf2 and cytoplasmic HO-1 were examined 24 hours after ischemia insult. Results We found fewer necrotic and apoptotic cells in the dexmedetomidine group relative to the ischemic group (p< 0.01) and significantly higher Nrf2 and HO-1 levels in the dexmedetomidine group than in the ischemic group (p< 0.01). Additionally, chelerythrine co-administration with dexmedetomidine attenuated the dexmedetomidine-induced increases in Nrf2 and HO-1 levels (p< 0.05 and p< 0.01, respectively) and diminished its beneficial neuroprotective effects. Conclusion Preischemic dexmedetomidine administration elicited neuroprotection against global transient cerebral ischemia in rats by increasing Nrf2/HO-1 expression partly via PKC signaling, suggesting that this is the antioxidant mechanism underlying dexmedetomidine-mediated neuroprotection.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Brain Ischemia , Protein Kinase C/metabolism , Protein Kinase C/pharmacology , Ischemic Attack, Transient , Oxidative Stress , Neuroprotective Agents/pharmacology , Dexmedetomidine/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Heme Oxygenase (Decyclizing)/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology
3.
Journal of Southern Medical University ; (12): 577-584, 2023.
Article in Chinese | WPRIM | ID: wpr-986964

ABSTRACT

OBJECTIVE@#To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.@*METHODS@#Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.@*RESULTS@#Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).@*CONCLUSION@#Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.


Subject(s)
Rats , Male , Animals , Testis , Quercetin/pharmacology , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Testosterone/pharmacology , Superoxide Dismutase/metabolism , Follicle Stimulating Hormone , Luteinizing Hormone
4.
Chinese Journal of Burns ; (6): 91-95, 2023.
Article in Chinese | WPRIM | ID: wpr-971156

ABSTRACT

Wound healing is one of the common pathophysiological processes in the body. How to improve the condition of wound healing to promote rapid wound healing has always been a hotspot in research. Oxidative stress is one of the important factors affecting wound healing. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a classic antioxidant stress factor as well as a factor with great potential in facilitating wound healing. The activation of Nrf2 can regulate the downstream antioxidant stress elements and play roles of anti-apoptosis and cell homeostasis maintaining, which improves wound healing environment and promotes wound repair. This paper summarized the common agonists and inhibitors of Nrf2 and reviewed the roles of Nrf2 in promoting skin wound healing including diabetic ulcers, radiation injury, and ischemia-reperfusion injury, etc.


Subject(s)
Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Wound Healing/physiology
5.
Journal of Experimental Hematology ; (6): 247-253, 2023.
Article in Chinese | WPRIM | ID: wpr-971132

ABSTRACT

OBJECTIVE@#To investigate the changes and roles of reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) related antioxidases during erythroid development.@*METHODS@#Flow cytometry was used to detect the sensibility of peripheral red blood cells of wild-type mice to a strong oxidant hydrogen peroxide (H2O2). Erythroid cells from different developmental stages in bone marrow (BM) were obtained using fluorescence-activated cell sorter and the ROS levels were detected by flow cytometry. RT-qPCR was used to detect the changes of expression levels of Nrf2 and related antioxidases in erythroid cells from different developmental stages in BM. The ROS levels of the peripheral blood and BM nucleated erythrocytes in Nrf2 knockout mice were further examined. The expression level of Nrf2 in erythroid precursors isolated from 14.5 d embryonic liver of wild-type mice during differentiation and culture in vitro was detected.@*RESULTS@#In the peripheral blood of wild-type mice, the ROS level of reticulocytes and mature erythrocytes treated with H2O2 increased about 4 times and 7 times, respectively (P<0.01). In BM erythrocytes, the ROS level gradually decreased as the cells matured (r=0.85), while the expression level of Nrf2 and its related anti-oxidative genes increased (r=0.99). The ROS levels in peripheral blood erythrocytes and BM nucleated erythrocytes of Nrf2 knockout mice were significantly increased compared with wild-type mice (P<0.01). The expression of Nrf2 increased during the early erythroid development after embryonic liver cell sorting (P<0.01).@*CONCLUSION@#The expression levels of Nrf2 and its related factors vary during erythropoiesis. Nrf2 at physiological level plays an important antioxidant role during the erythroid development.


Subject(s)
Animals , Mice , Hydrogen Peroxide , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
6.
Chinese Journal of Contemporary Pediatrics ; (12): 193-201, 2023.
Article in Chinese | WPRIM | ID: wpr-971059

ABSTRACT

OBJECTIVES@#To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism.@*METHODS@#A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats.@*RESULTS@#Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05).@*CONCLUSIONS@#Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Subject(s)
Animals , Female , Pregnancy , Rats , Body Weight , Brain Injuries/prevention & control , Caspase 1 , Inflammation/drug therapy , Interleukin-6 , Interleukin-8 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Flavonoids/therapeutic use
7.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 161-167, 2023.
Article in Chinese | WPRIM | ID: wpr-970732

ABSTRACT

Objective: To investigate the role of Keap1/Nrf2/HO-1 signaling pathway in liver injury induced by neodymium oxide (Nd(2)O(3)) in mice. Methods: In March 2021, forty-eight SPF grade healthy male C57BL/6J mice were randomly divided into control group (0.9% NaCl), low dose group (62.5 mg/ml Nd(2)O(3)), medium dose group (125.0 mg/ml Nd(2)O(3)), and high dose group (250.0 mg/ml Nd(2)O(3)), each group consisted of 12 animals. The infected groups were treated with Nd(2)O(3) suspension by non-exposed tracheal drip and were killed 35 days after dust exposure. The liver weight of each group was weighed and the organ coefficient was calculated. The content of Nd(3+) in liver tissue was detected by inductively coupled plasma mass spectrometry (ICP-MS). HE staining and immunofluorescence was used to observe the changes of inflammation and nuclear entry. The mRNA expression levels of Keap1, Nrf2 and HO-1 in mice liver tissue were detected by qRT-PCR. Western blotting was used to detect the protein expression levels of Keap1 and HO-1. The contents of catalase (CAT), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) were detected by colorimetric method. The contents of interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determined by ELISA. The data was expressed in Mean±SD. Two-independent sample t-test was used for inter-group comparison, and one-way analysis of variance was used for multi-group comparison. Results: Compared with the control group, the liver organ coefficient of mice in medium and high dose groups were increased, and the Nd(3+) accumulation in liver of mice in all dose groups were significantly increased (P<0.05). Pathology showed that the structure of liver lobules in the high dose group was slightly disordered, the liver cells showed balloon-like lesions, the arrangement of liver cell cords was disordered, and the inflammatory exudation was obvious. Compared with the control group, the levels of IL-1β and IL-6 in liver tissue of mice in all dose groups were increased, and the levels of TNF-α in liver tissue of mice in high dose group were increased (P<0.05). Compared with the control group, the mRNA and protein expression levels of Keap1 in high dose group were significantly decreased, while the mRNA expression level of Nrf2, the mRNA and protein expression levels of HO-1 were significantly increased (P<0.05), and Nrf2 was successfully activated into the nucleus. Compared with the control group, the activities of CAT, GSH-Px and T-SOD in high dose group were significantly decreased (P<0.05) . Conclusion: A large amount of Nd(2)O(3) accumulates in the liver of male mice, which may lead to oxidative stress and inflammatory response through activation of Keap1/Nrf2/HO-1 signal pathway. It is suggested that Keap1/Nrf2/HO-1 signal pathway may be one of the mechanisms of Nd(2)O(3) expose-induced liver injury in mice.


Subject(s)
Mice , Male , Animals , NF-E2-Related Factor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Oxidative Stress , Liver/metabolism , Metals, Rare Earth , Signal Transduction , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism
8.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 112-117, 2023.
Article in Chinese | WPRIM | ID: wpr-970721

ABSTRACT

Objective: To investigate the effect of oxidative stress caused by heat exposure on the blood pressure increase of treadmill rats and the intervention of antioxidants. Methods: In June 2021, Twenty-four healthy SD male rats were randomly divided into four groups: normal temperature feeding, normal temperature treadmill, high temperature treadmill and high temperature treadmill supplementation with vitamin C groups, 6 rats in each group. The rats run on the platform in normal temperature or heat exposure environment for 30 min in the morning and in the afternoon daily, 6 days per week. The daily vitamin C supplement dose of high temperature treadmill supplementation with vitamin C group was 10 mg/kg. BP recordings were done at the end of the week. The rat vascular lipofuscin (LF) was detected by ELISA, the rat serum nitric oxide (NO) was detected by nitrate reductase method, the serum malondialdehyde (MDA) was detected by thibabituric acid method, the serum glutathione peroxidase (GPx) and superoxide dismutase (SOD) were detected by chemiluminescence method, and the serum catalase (CAT) was detected by ammonium molybdate method. The total antioxidant capacity (T-AOC) of serum was measured by iron reduction/antioxidant capacity method, and the content of nuclear erythroid 2-related factor 2 (Nrf2) in vascular tissue was measured by Western blot. The intra-group mean was compared by repeated measurement analysis of variance, and the inter-group mean was compared by single-factor analysis of variance and post-event LSD-t test. Results: Compared with the previous time point, the systolic BP and diastolic BP of the high temperature treadmill group were significantly increased at 7, 14 and 21 d, and decreased at 28 d which were higher than the initial level (P<0.05), and the systolic BP and diastolic BP values at each experimental time point were significantly higher than those of normal temperature treadmill group (P<0.001). The changes of thickening of the artery wall, no smoothing of the endodermis and irregular arrangement of muscle cells in high temperature treadmill group were observed. Compared with the normal temperature treadmill group, the content of MDA in serum, and LF in vascular tissue were significantly increased, the activities of SOD, CAT, T-AOC, the content of NO in serum, and the expression of Nrf2 in vascular tissue were significantly decreased in high temperature treadmill group (P<0.05). Compared with the high temperature treadmill group, the systolic BP and diastolic BP values at 7, 14, 21 and 28 d, the content of serum MDA and LF in vascular tissue were significantly decreased, the activities of CAT and T-AOC, and the expression of Nrf2 in vascular tissue significantly increased (P<0.05), the histopathological changes of the artery wall improved in high temperature treadmill supplementation with vitamin C group. Conclusion: Heat exposure has effect on oxidative stress, which may be related to the increase of BP. Vitamin C as an anti-oxidative enhancer can prevent those negative effects, which could alleviate the pathological changes of vessel intima in heat-exposed rats. And the Nrf2 may be a regulated factor to vascular protection.


Subject(s)
Male , Animals , Rats , Ascorbic Acid , Antioxidants/pharmacology , Blood Pressure , Hot Temperature , NF-E2-Related Factor 2 , Oxidative Stress , Fever
9.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 2-7, 2023.
Article in Chinese | WPRIM | ID: wpr-970702

ABSTRACT

Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.


Subject(s)
Rats , Animals , Matrix Metalloproteinase 9/metabolism , NF-E2-Related Factor 2/metabolism , Tight Junction Proteins/metabolism , Occludin/pharmacology , Choroid Plexus/metabolism , Reactive Oxygen Species/metabolism , Lanthanum/pharmacology , Epithelial Cells , Zonula Occludens-1 Protein/metabolism , Phosphoproteins/pharmacology
10.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 516-526, 2023.
Article in English | WPRIM | ID: wpr-982721

ABSTRACT

Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.


Subject(s)
Animals , Rats , AMP-Activated Protein Kinases/genetics , Diabetes Mellitus , Diabetic Nephropathies/prevention & control , Eucommiaceae/metabolism , Lignans/therapeutic use , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Tandem Mass Spectrometry
11.
Chinese Critical Care Medicine ; (12): 598-603, 2023.
Article in Chinese | WPRIM | ID: wpr-982639

ABSTRACT

OBJECTIVE@#To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.@*METHODS@#A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.@*RESULTS@#Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].@*CONCLUSIONS@#SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.


Subject(s)
Animals , Male , Rats , Actins/metabolism , Chemical and Drug Induced Liver Injury, Chronic , Heme Oxygenase-1/metabolism , Interleukin-6 , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , RNA, Messenger , Sepsis/metabolism , Signal Transduction , Sirtuin 1/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Journal of Zhejiang University. Science. B ; (12): 632-649, 2023.
Article in English | WPRIM | ID: wpr-982404

ABSTRACT

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.


Subject(s)
Animals , Rabbits , Atrial Fibrillation/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , NF-E2-Related Factor 2/pharmacology , Molecular Docking Simulation , Oxidative Stress , Energy Metabolism , Mitochondria/metabolism , Inflammation/metabolism , Heme Oxygenase-1
13.
Journal of Zhejiang University. Science. B ; (12): 496-509, 2023.
Article in English | WPRIM | ID: wpr-982390

ABSTRACT

Engineered probiotics can serve as therapeutics based on their ability of produce recombinant immune-stimulating properties. In this study, we built the recombinant Bacillus subtilis WB800 expressing antimicrobial peptide KR32 (WB800-KR32) using genetic engineering methods and investigated its protective effects of nuclear factor-E2-related factor 2 (Nrf2)‍-Kelch-like ECH-associated protein 1 (Keap1) pathway activation in intestinal oxidative disturbance induced by enterotoxigenic Escherichia coli (ETEC) K88 in weaned piglets. Twenty-eight weaned piglets were randomly distributed into four treatment groups with seven replicates fed with a basal diet. The feed of the control group (CON) was infused with normal sterilized saline; meanwhile, the ETEC, ETEC+WB800, and ETEC+WB800-KR32 groups were orally administered normal sterilized saline, 5×1010 CFU (CFU: colony forming units) WB800, and 5×1010 CFU WB800-KR32, respectively, on Days 1‍‒‍14 and all infused with ETEC K88 1×1010 CFU on Days 15‍‒‍17. The results showed that pretreatment with WB800-KR32 attenuated ETEC-induced intestinal disturbance, improved the mucosal activity of antioxidant enzyme (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) and decreased the content of malondialdehyde (MDA). More importantly, WB800-KR32 downregulated genes involved in antioxidant defense (GPx and SOD1). Interestingly, WB800-KR32 upregulated the protein expression of Nrf2 and downregulated the protein expression of Keap1 in the ileum. WB800-KR32 markedly changed the richness estimators (Ace and Chao) of gut microbiota and increased the abundance of Eubacterium_rectale_ATCC_33656 in the feces. The results suggested that WB800-KR32 may alleviate ETEC-induced intestinal oxidative injury through the Nrf2-Keap1 pathway, providing a new perspective for WB800-KR32 as potential therapeutics to regulate intestinal oxidative disturbance in ETEC K88 infection.


Subject(s)
Animals , Swine , Enterotoxigenic Escherichia coli , Kelch-Like ECH-Associated Protein 1 , Bacillus subtilis , NF-E2-Related Factor 2 , Antioxidants , Oxidative Stress
14.
China Journal of Chinese Materia Medica ; (24): 1927-1935, 2023.
Article in Chinese | WPRIM | ID: wpr-981412

ABSTRACT

This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.


Subject(s)
Animals , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Oxidative Stress , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Parkinson Disease/genetics , bcl-2-Associated X Protein/metabolism , Neuroprotective Agents/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Drosophila/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Superoxide Dismutase/metabolism , Adenosine Triphosphate/pharmacology
15.
China Journal of Chinese Materia Medica ; (24): 2184-2192, 2023.
Article in Chinese | WPRIM | ID: wpr-981349

ABSTRACT

To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.


Subject(s)
Rats , Male , Animals , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Nerve Growth Factor/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Serotonin/metabolism , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Hippocampus/metabolism , Superoxide Dismutase/metabolism , Sugars/pharmacology , Depression/genetics , Stress, Psychological/metabolism
16.
China Journal of Chinese Materia Medica ; (24): 2176-2183, 2023.
Article in Chinese | WPRIM | ID: wpr-981348

ABSTRACT

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Subject(s)
Humans , Ferroptosis , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/pharmacology , Signal Transduction , Epithelial Cells/metabolism , Glutathione
17.
Journal of Zhejiang University. Science. B ; (12): 157-171, 2023.
Article in English | WPRIM | ID: wpr-971477

ABSTRACT

The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.


Subject(s)
Animals , Dogs , Antioxidants/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/drug therapy , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Metabolic Networks and Pathways , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polysaccharides/pharmacology , Lycium/chemistry
18.
Acta cir. bras ; 38: e380723, 2023. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429534

ABSTRACT

Purpose: Stroke is an acute cerebrovascular disease. Astragaloside IV (AS-IV) is an active ingredient extracted from Astragalus membranaceus with an established therapeutic effect on central nervous system diseases. This study examined the neuroprotective properties and possible mechanisms of AS-IV in stroke-triggered early brain injury (EBI) in a rat transient middle cerebral artery occlusion (MCAO) model. Methods: The neurological scores and brain water content were analyzed. 2,3,5-triphenyl tetrazolium chloride (TTC) staining was utilized to determine the infarct volume, neuroinflammatory cytokine levels, and ferroptosis-related genes and proteins, and neuronal damage and molecular mechanisms were evaluated by terminal deoxynucleotidyl transferase dutp nickend labeling (TUNEL) staining, western blotting, and real-time polymerase chain reaction. Results: AS-IV administration decreased the infarct volume, brain edema, neurological deficits, and inflammatory cytokines TNF-α, interleukin-1ß (IL-1ß), IL-6, and NF-κB, increased the levels of SLC7A11 and glutathione peroxidase 4 (GPX4), decreased lipid reactive oxygen species (ROS) levels, and prevented neuronal ferroptosis. Meanwhile, AS-IV triggered the Nrf2/HO-1 signaling pathway and alleviated ferroptosis due to the induction of stroke. Conclusion: Hence, the findings of this research illustrate that AS-IV administration can improve delayed ischemic neurological deficits and decrease neuronal death by modulating nuroinflammation and ferroptosis via the Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Rats , Saponins , Brain Injuries/therapy , Plant Extracts/administration & dosage , Astragalus Plant/chemistry , NF-E2-Related Factor 2/analysis , Neuroimmunomodulation , Stroke/complications , Ferroptosis
19.
Chinese Medical Journal ; (24): 1977-1989, 2023.
Article in English | WPRIM | ID: wpr-980990

ABSTRACT

BACKGROUND@#Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism.@*METHODS@#GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis.@*RESULTS@#B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02).@*CONCLUSIONS@#B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.


Subject(s)
Humans , Cell Line, Tumor , Neoplasm Recurrence, Local , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach Neoplasms
20.
Biol. Res ; 55: 30-30, 2022. ilus, tab, graf
Article in English | LILACS | ID: biblio-1403569

ABSTRACT

BACKGROUND: Xenotransplantation has been primarily performed using fresh donor tissue to study testicular development for about 20 years, and whether the cultured tissue would be a suitable donor is unclear. In this study, we combined testicular culture and xenotransplantation into an integrative model and explored whether immature testicular tissue would survive and continue to develop in this model. METHODS: In the new integrative model group, the testes of neonatal rats on postnatal day 8 (PND 8) were cultured for 4 days ex vivo and then were transplanted under the dorsal skin of castrated nude mice. The xenografted testes were resected on the 57th day after xenotransplantation and the testes of rats in the control group were harvested on PND 69. The survival state of testicular tissue was evaluated from morphological and functional perspectives including H&E staining, immunohistochemical staining of 8-OH-dG, immunofluorescence staining, TUNEL assay, ultrastructural study, gene expression and protein analysis. RESULTS: (a) We found that complete spermatogenesis was established in the testes in the new integrative model group. Compared with the control in the same stage, the seminiferous epithelium in some tubules was a bit thinner and there were vacuoles in part of the tubules. Immunofluorescence staining revealed some ACROSIN-positive spermatids were present in seminiferous tubule of xenografted testes. TUNEL detection showed apoptotic cells and most of them were germ cells in the new integrative model group. 8-OH-dG immunohistochemistry showed strongly positive-stained in the seminiferous epithelium after xenotransplantation in comparison with the control group; (b) Compared with the control group, the expressions of FOXA3, DAZL, GFRα1, BOLL, SYCP3, CDC25A, LDHC, CREM and MKI67 in the new integrative model group were significantly elevated (P < 0.05), indicating that the testicular tissue was in an active differentiated and proliferative state; (c) Antioxidant gene detection showed that the expression of Nrf2, Keap1, NQO1 and SOD1 in the new integrative model group was significantly higher than those in the control group (P < 0.05), and DNA methyltransferase gene detection showed that the expression of DNMT3B was significantly elevated as well (P < 0.05). CONCLUSION: The new integrative model could maintain the viability of immature testicular tissue and sustain the long-term survival in vivo with complete spermatogenesis. However, testicular genes expression was altered, vacuolation and thin seminiferous epithelium were still apparent in this model, manifesting that oxidative damage may contribute to the testicular development lesion and it needs further study in order to optimize this model.


Subject(s)
Animals , Male , Mice , Rats , Testis/metabolism , NF-E2-Related Factor 2/metabolism , Spermatogenesis , Acrosin/metabolism , Superoxide Dismutase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Methyltransferases/metabolism , Antioxidants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL