Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Clinics ; 76: e2484, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153996

ABSTRACT

OBJECTIVES: To investigate the role of miR-139-5p and the TLR4/MyD88/NF-κB signaling pathway in acute lung injury in septic mice. METHOD: A total of 140 healthy male SPF C57BL/6 mice were divided into seven groups, i.e., Normal, Control, NC, miR-139-5p mimic, miR-139-5p inhibitor, TAK-242, and miR-139-5p inhibitor+TAK-242 groups. The levels of miR-139-5p, proteins related to the TLR4/MyD88/NF-κB signaling pathway (TLR4, MyD88, and p-NF-κB p50), and MPO, SOD, GSH, and MDA in lung tissue were measured. The lung tissue wet-to-dry mass ratio (W/D), arterial oxygen partial pressure (PaO2), and carbon dioxide partial pressure (PaCO2) were measured. RESULTS: A web-based bioinformatic tool predicted that MyD88 was a target of miR-139-5p, which was verified by a dual luciferase reporter assay. Compared with those in the Normal group, the levels of miR-139-5p, PaO2, SOD, and GSH were significantly lower, while those of TLR4, MyD88, p-NF-κB p50, W/D, PaCO2, IL-1β, TNF-α, IL-6, MPO, and MDA were higher in all other groups. Moreover, compared with their levels in the Control group, these indicators exhibited contrasting results in the miR-139-5p mimic and TAK-242 groups, but were similar in the miR-139-5p inhibitor group. In the miR-139-5p inhibitor+TAK-242 group, acute lung injury, aggravated by miR-139-5p inhibitor, was partially rescued by TAK-242. CONCLUSION: miR-139-5p inhibits the TLR4/MyD88/NF-κB signaling pathway to alleviate acute lung injury in septic mice.


Subject(s)
Animals , Male , Rats , Sepsis/genetics , MicroRNAs/genetics , Acute Lung Injury/genetics , Signal Transduction , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice, Inbred C57BL
2.
Article in English | WPRIM | ID: wpr-922760

ABSTRACT

Danshen-Chuanxiongqin Injection (DCI) is a commonly used traditional Chinese medicine for the treatment of cerebral ischemic stroke in China. However, its underlying mechanisms remain completely understood. The current study was designed to explore the protective mechanisms of DCI against cerebral ischemic stroke through integrating whole-transcriptome sequencing coupled with network pharmacology analysis. First, using a mouse model of cerebral ischemic stroke by transient middle cerebral artery occlusion (tMCAO), we found that DCI (4.10 mL·kg


Subject(s)
Brain Ischemia/genetics , Drugs, Chinese Herbal , Humans , Infarction, Middle Cerebral Artery/genetics , Ischemic Stroke , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Stroke/genetics , Toll-Like Receptor 2 , Toll-Like Receptor 4/metabolism
3.
Frontiers of Medicine ; (4): 750-766, 2021.
Article in English | WPRIM | ID: wpr-922505

ABSTRACT

Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.


Subject(s)
Animals , Inflammation , Mice , NF-kappa B/metabolism , Particulate Matter/toxicity , Signal Transduction , Sirtuin 2/metabolism , Transcription Factor RelA/metabolism
4.
Article in English | WPRIM | ID: wpr-922102

ABSTRACT

OBJECTIVE@#To identify the prominent molecular signaling in acupoints and explore their roles in initiating the analgesia effect of manual acupuncture (MA).@*METHOD@#A three-step study was conducted, the experiment 1 was a genome-wide analysis of the tissue at acupoint Zusanli (ST 36), including 12 Wistar rats which were divided into control, control+MA1, and control+MA7 groups. In the experiment 2, the paw withdrawal latency (PWL), immunohistochemistry and Western blot analysis of phospho-nuclear factor kappa B (NFκB) p65 (p-p65), phospho-NFκB p50 (p-p50) at ST 36 were performed on rats of saline, saline+MA, and complete Freund's adjuvant (CFA)+MA groups (n=6). In experiment 3, 24 rats were divided into saline+DMSO, CFA+DMSO, CFA+DMSO+MA, and CFA+BAY 11-7082+MA groups, the PWL and immunofluorescence assay of NFκB p65 at ST 36 was conducted.@*RESULT@#(1) The gene: inhibitor of NFκB (Nfkbia), interleukin-1β (Il1b), interleukin-6 (Il6), chemokine c-x-c motif ligand 1 (Cxcl1), monocyte chemoattractant protein-1 (MCP-1/Ccl2) expressions in the control+MA7 group were significantly increased (P<0.05 or P<0.01), and the expression of NFκB p65 (Rela), NFκB p50 (Nfkb1) were increased in the control+MA7 group (P<0.05). (2) CFA+MA groups showed increased PWL from day 1 to 7 (P<0.01 vs. CFA), and the Western blot results were consistent with immunohistochemistry, the expression of NFκB p-p65 and NFκB p-p50 were significantly increased in the MA-related groups compared with control and CFA groups (P<0.05). (3) Compared with the CFA+DMSO+MA group, the PWL of the CFA+ BAY 11-7082+MA group decreased significantly and continued until day 5 and 7 (P<0.05 and P<0.01, respectively), and the NFκB p65 expression of CFA+BAY 11-7082+MA was significantly reduced compared with CFA+DMSO+MA (P<0.01).@*CONCLUSION@#Local NFκB signaling cascade in acupoint caused by MA is an important step in initiating the analgesic effect, which would provide new evidence for the initiation of MA-effect and improve the understanding of the scientific basis of acupuncture analgesia.


Subject(s)
Acupuncture Analgesia , Acupuncture Points , Animals , Electroacupuncture , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Signal Transduction
5.
Article in Chinese | WPRIM | ID: wpr-921754

ABSTRACT

To investigate the potential molecular markers and drug-compound-target mechanism of Mahuang Shengma Decoction(MHSM) in the intervention of acute lung injury(ALI) by network pharmacology and experimental verification. Databases such as TCMSP, TCMIO, and STITCH were used to predict the possible targets of MHSM components and OMIM and Gene Cards were employed to obtain ALI targets. The common differentially expressed genes(DEGs) were therefore obtained. The network diagram of DEGs of MHSM intervention in ALI was constructed by Cytoscape 3. 8. 0, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of target genes. The ALI model was induced by abdominal injection of lipopolysaccharide(LPS) in mice. Bronchoalveolar lavage fluid(BALF) was collected for the detection of inflammatory factors. Pathological sectioning and RT-PCR experiments were performed to verify the therapeutic efficacy of MHSM on ALI. A total of 494 common targets of MHSM and ALI were obtained. Among the top 20 key active compounds of MHSM, 14 from Ephedrae Herba were found to be reacted with pivotal genes of ALI [such as tumor necrosis factor(TNF), tumor protein 53(TP53), interleukin 6(IL6), Toll-like receptor 4(TLR4), and nuclear factor-κB(NF-κB)/p65(RELA)], causing an uncontrolled inflammatory response with activated cascade amplification. Pathway analysis revealed that the mechanism of MHSM in the treatment of ALI mainly involved AGE-RAGE, cancer pathways, PI3 K-AKT signaling pathway, and NF-κB signaling pathway. The findings demonstrated that MHSM could dwindle the content of s RAGE, IL-6, and TNF-α in the BALF of ALI mice, relieve the infiltration of inflammatory cells in the lungs, inhibit alveolar wall thickening, reduce the acute inflammation-induced pulmonary congestion and hemorrhage, and counteract transcriptional activities of Ager-RAGE and NF-κB p65. MHSM could also synergically act on the target DEGs of ALI and alleviate pulmonary pathological injury and inflammatory response, which might be achieved by inhibiting the expression of the key gene Ager-RAGE in RAGE/NF-κB signaling pathway and downstream signal NF-κB p65.


Subject(s)
Acute Lung Injury/genetics , Animals , Drugs, Chinese Herbal/pharmacology , Lipopolysaccharides , Lung/metabolism , Mice , NF-kappa B/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
6.
Article in Chinese | WPRIM | ID: wpr-921747

ABSTRACT

This study investigated the differential mechanisms of Rehmanniae Radix and Rehmanniae Radix Praeparata in improving diabetes in mice through AMPK-mediated NF-κB/NLRP3 signaling pathway. The diabetic mouse model was established with high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days), after which the mice were randomly divided into model group, low-dose(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-dose(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, catalpol group(250 mg·kg~(-1)), 5-hydroxymethylfurfural(5-HMF) group(250 mg·kg~(-1)), metformin group(250 mg·kg~(-1)), with the normal group also set. The organ indexes of heart,liver, spleen, lung, kidney and pancreas were calculated after four weeks of administration. The pathological changes and fibrosis of pancreas, kidney and liver in mice were observed by hematoxylin-eosin(HE) staining and Masson staining. Western blot was used to determine the expression levels of Toll-like receptor-4(TLR4), nuclear factor-κB(NF-κB), Nod-like receptor protein 3(NLRP3),interleukin-1β(IL-1β), adenosine monophosphate-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK) in the pancreas, kidney and liver of mice. Compared with the model group, the administration groups witnessed significant decrease in the liver,spleen, kidney, pancreas and fat indexes of diabetic mice, and there was no significant difference in heart and lung indexes. The pathological states and fibrosis of pancreatic, kidney and liver tissues were significantly improved after administration. Additionally, the expression levels of TLR4, NF-κB and NLRP3 in pancreas, kidney and liver of diabetic mice were significantly lowered. The expression levels of p-AMPK/AMPK were enhanced significantly in kidney and liver of mice in Rehmanniae Radix group while in pancreas, kidney and liver in Rehmanniae Radix Praeparata group. This suggests that Rehmanniae Radix and Rehmanniae Radix Praeparata differ in the mechanism of regulating energy metabolism of multiple organs and thereby exerting anti-inflammatory effects to alleviate symptoms of diabetic mice.


Subject(s)
AMP-Activated Protein Kinases/genetics , Animals , Diabetes Mellitus, Experimental/drug therapy , Diet, High-Fat/adverse effects , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Plant Extracts , Rehmannia , Signal Transduction , Streptozocin
7.
Article in Chinese | WPRIM | ID: wpr-921646

ABSTRACT

Polysaccharide is among the main active components of Ganoderma lucidum for tumor prevention and treatment. Howe-ver, it remains unclear whether it has synergy with tumor immunotherapy. This study evaluated the effect of G. lucidum polysaccharides(GLP) on the infiltration of T lymphocytes into tumor and the underlying mechanism, in order to provide a reference for its application in tumor immunotherapy. GLP were prepared by water extraction and alcohol precipitation combined with Sevag method and then given(intraperitoneal injection) to the mice bearing B16-F10 cells at 25, 50 and 100 mg kg~(-1), respectively, to evaluate the effect on tumor growth. The infiltration of CD3~+ and CD8~+ T cells and the expression of intercellular cell adhesion molecule-1(ICAM-1) in tumor were detected by immunohistochemistry. EA.hy926 cells were treated with 50, 100 and 200 μg·mL~(-1) GLP, and the expression of ICAM-1 was determined by Western blot. The adhesion of EA.hy926 cells treated with GLP was measured with fluorescence-labeled Jurkat cells. To analyze the mechanism based on NF-κB pathway, this study determined the protein levels of nuclear factor kappa-B(NF-κB) p65, alpha inhibitor of NF-κB(IκBα), p-NF-κB p65 and p-IκBα by Western blot. The results showed that GLP can significantly inhibit the tumor growth in mice bearing B16-F10 cells, promote the infiltration of CD3~+ and CD8~+ T cells in tumor, and increase the expression of ICAM-1 in tumor. Meanwhile, GLP could also enhance the expression of ICAM-1 in EA.hy926 cells, thus strengthen the adhesion to Jurkat cells, induce phosphorylation and protein degradation of IκBα, and raise the expression and phosphorylation level of NF-κB p65. These results suggested that GLP could promote the expression of ICAM-1 through NF-κB pathway and further enhance the infiltration of T lymphocytes into tumor, thereby inhibiting tumor growth. This study lays a foundation for the further application of GLP in tumor immunotherapy.


Subject(s)
Animals , Endothelial Cells/metabolism , Intercellular Adhesion Molecule-1/genetics , Mice , NF-kappa B/metabolism , Neoplasms , Polysaccharides , Reishi , Signal Transduction , T-Lymphocytes , Tumor Necrosis Factor-alpha
8.
Frontiers of Medicine ; (4): 292-301, 2021.
Article in English | WPRIM | ID: wpr-880958

ABSTRACT

The high- and the low-molecular weight hyaluronic acids (HMW-HA and LMW-HA, respectively) showed different biological activities in inflammation. However, the role of LMW-HA in inflammatory response is controversial. In this study, we aimed to investigate the effect of bioactive hyaluronan (B-HA) on lipopolysaccharide (LPS)-induced inflammatory responses in human macrophages and mice. B-HA was produced from HA treated with glycosylated recombinant human hyaluronidase PH20. Human THP-1 cells were induced to differentiate into macrophages. THP-1-derived macrophages were treated with B-HA, LPS, or B-HA + LPS. The mRNA expression and the production of inflammatory cytokines were determined using quantitative real-time PCR and enzyme-linked immunosorbent assay. The phosphorylation levels of proteins in the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and IRF-3 signaling pathways were measured using Western blot. The in vivo efficacy of B-HA was assessed in a mouse model of LPS-induced inflammation. Results showed that B-HA inhibited the expression of TNF-α, IL-6, IL-1, and IFN-β, and enhanced the expression of the antiinflammatory cytokine IL-10 in LPS-induced inflammatory responses in THP-1-derived macrophages and in vivo. B-HA significantly suppressed the phosphorylation of the TLR4 signaling pathway proteins p65, IKKα/β, IκBα, JNK1/2, ERK1/2, p38, and IRF-3. In conclusion, our results demonstrated that the B-HA attenuated the LPS-stimulated inflammatory response by inhibiting the activation of the TLR4 signaling pathway. B-HA could be a potential anti-inflammatory drug in the treatment of inflammatory disease.


Subject(s)
Animals , Cytokines , Hyaluronic Acid , Lipopolysaccharides , Mice , NF-kappa B/metabolism , Signal Transduction , Toll-Like Receptor 4
9.
Article in Chinese | WPRIM | ID: wpr-878948

ABSTRACT

Network pharmacology and liver fibrosis(LF) model in vitro were used to analyze the underly mechanism of anti-liver fibrosis effect that induced by Piperis Longi Fructus and its major active compounds. TCMSP and TCMIP were used to search for the chemical constituents of Piperis Longi Fructus, as well as the oral bioavailability(OB), drug-likeness(DL), intercellular permeability of intestinal epithelial cells(Caco-2) and Drug-likeness grading were set as limiting conditions. The related target genes of Piperis Longi Fructus were queried by TCMSP database, while related targets of LF were screened by GeneCards databases. Interaction network was constructed using Cytoscape 3.7.1. These above data were imported into STRING database for PPI network analysis. Enrichment of gene ontology(GO) and pathway analysis(KEGG) within Bioconductor database were utilized to note functions of related targets of Piperis Longi Fructus. Finally, the core targets and pathways were preliminarily verified by in vitro experiments. The effects of piperlongumine(PL), the major active component of Piperis Longi Fructus, on proliferation of rat liver stellate cells(HSC-T6) and expression of α smooth muscle actin(α-SMA) and collagen Ⅰ were investigated. The major factors TNF-α of tumor necrosis factor(TNF) pathway and NF-κB p65, IL-6 protein expressions of LF process were examined. A total of 12 active compounds such as PL were obtained by analyzing the bioavailability and drug-like properties, which inferred to 48 targets. The functional enrichment analysis of GO obtained 1 240 GO items, mainly involving in process of biology and molecular function. A total of 99 signaling pathways were enriched in the KEGG pathway enrichment analysis, including TNF signaling pathway, cGMP-PKG signaling pathway, calcium signaling pathways. CCK-8 assay showed that PL inhibited proliferation of HSC-T6 induced by transforming growth factor-β1(TGF-β1). Western blot analysis found that treated with PL suppressed the protein expressions of α-SMA, collagen Ⅰ, TNF-α and p65 in HSC-T6. Enzyme linked immunosorbent assay(ELISA) showed that PL inhibited the expressions of TNF-α and IL-6 in the cluture supertant of HSC-T6 cells. In conclusion, PL could play an anti-liver fibrosis role by regulating TNF/NF-κB signaling pathway. This study provided the mechanism basis of anti-LF effects induced by Piperis Longi Fructus and its major active compounds, which might help for the further study of the mechanism and key targets of Piperis Longi Fructus.


Subject(s)
Animals , Caco-2 Cells , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/genetics , NF-kappa B/metabolism , Rats , Signal Transduction
10.
Article in Chinese | WPRIM | ID: wpr-878923

ABSTRACT

This study aimed to assess whether chrysin(ChR) can inhibit epithelial-mesenchymal transition(EMT) of type Ⅱ alveolar epithelial cell and produce anti-pulmonary fibrosis effect by regulating the NF-κB/Twist 1 signaling pathway. Sixty rats were randomly divided into the control group, the bleomycin(BLC) group, BLC+ChR(50 mg·kg~(-1)) group and BLC+ChR(100 mg·kg~(-1)) group, with 15 rats in each group. The pulmonary fibrosis model was induced by intratracheal injection of BLC(7 500 U·kg~(-1)). Rats were orally administered with different doses of ChR after BLC injection for 28 days. The cells were divided into control group, TGF-β1 group(5 ng·mL~(-1)), and TGF-β1+ChR(1, 10, 100 μmol·L~(-1)) groups. The type Ⅱ alveolar epithelial cells were treated with TGF-β1 for 24 h, and then treated with TGF-β1 for 48 h in the presence or absence of different doses of ChR(1, 10 and 100 μmol·L~(-1)). The morphological changes and collagen deposition in lung tissues were analyzed by HE staining, Masson staining and immunohistochemistry. The mRNA and protein expression levels of collagen Ⅰ, E-cadherin, zonula occludens-1(ZO-1), vimentin, alpha smooth muscle actin(α-SMA), inhibitor of nuclear factor kappa B alpha(IκBα), nuclear factor-kappa B p65(NF-κB p65), phospho-NF-κB p65(p-p65) and Twist 1 in lung tissues and cells were detected by qPCR and Western blot, respectively. The animal experiment results showed that as compared with the BLC group, after administration of ChR for 28 days, bleomycin-induced pulmonary fibrosis in rats was significantly relieved, collagen Ⅰ expression in lung tissues was significantly reduced(P<0.05 or P<0.01), and EMT of alveolar epithelial cells was obviously inhibited [the expression levels of E-cadherin and ZO-1 were increased and the expression levels of vimentin and α-SMA were decreased(P<0.05 or P<0.01)], concomitantly with significantly reduced IκBα and p65 phosphorylation level in cytoplasm and decreased NF-κB p65 and Twist 1 expression in nucleus(P<0.05 or P<0.01). The cell experiment results showed that different doses of ChR(1, 10 and 100 μmol·L~(-1)) significantly reduced TGF-β1-induced collagen Ⅰ expression(P<0.05 or P<0.01), significantly inhibited EMT of type Ⅱ alveolar epithelial cells[the expression levels of E-cadherin and ZO-1 were increased and the expression levels of vimentin and α-SMA were decreased(P<0.05 or P<0.01)], and inhibited IκBα and p65 phosphorylation in cytoplasm and down-regulated NF-κB p65 and Twist 1 expression in nucleus induced by TGF-β1(P<0.05 or P<0.01). The results suggest that ChR can reverse EMT of type Ⅱ alveolar epithelial cell and alleviate pulmonary fibrosis in rats, and its mechanism may be associated with reducing IκBα phosphorylation and inhibiting NF-κB p65 phosphorylation and nuclear transfer, thus down-regulating Twist 1 expression.


Subject(s)
Alveolar Epithelial Cells/metabolism , Animals , Epithelial-Mesenchymal Transition , Flavonoids , NF-kappa B/metabolism , Rats , Signal Transduction , Transforming Growth Factor beta1/genetics
11.
Article in Chinese | WPRIM | ID: wpr-888189

ABSTRACT

The present study explored the mechanism of Fagopyri Dibotryis Rhizoma(FDR) and its main active components in the treatment of acute lung injury(ALI) based on the network pharmacology and the in vitro experiments. The main active components of FDR were obtained from the TCMSP database and screened by oral bioavailability and drug-likeness. The related target proteins of FDR were retrieved from the PubChem database, and the target genes related to ALI were screened out from the GeneCards database. A protein-protein interaction(PPI) network of compound target proteins and ALI target genes was constructed using STRING 11.0. Ingenuity Pathway Analysis(IPA) platform was used to analyze the common pathways of the potential compound target proteins of FDR and ALI target genes, thereby predicting the key targets and potential signaling pathways of FDR for the treatment of ALI. Finally, the potential pathways and key targets were verified by the in vitro experiments of lipopolysaccharide-induced RAW264.7 cells intervened by epicatechin(EC), the active component of FDR. The results of network pharmacology showed that 15 potential active components such as EC, procyanidin B1, and luteolin presumedly functioned in the treatment of ALI through nuclear transcription factor-κB(NF-κB) signaling pathway, transforming growth factor-β(TGF-β) signaling pathway, and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway through key targets, such as RELA(P65). The results of in vitro experiments showed that 25 μmol·L~(-1) EC had no toxicity to cells and could inhibit the expression of the p65-phosphorylated protein in the NF-κB signaling pathway to down-regulate the expression of downstream inflammatory cytokines, including tumor necrosis factor-α(TNF-α), IL-1β and nitric oxide(NO), and up-regulate the expression of IL-10. These results suggested that the therapeutic efficacy of FDR on ALI was achieved by inhibiting the phosphorylation of p65 protein in the NF-κB signaling pathway and down-regulating the level of proinflammatory cytokines downstream of the signaling pathways.


Subject(s)
Acute Lung Injury/genetics , Lipopolysaccharides , NF-kappa B/metabolism , Rhizome , Signal Transduction
12.
Article in Chinese | WPRIM | ID: wpr-888150

ABSTRACT

This study focused on the ameliorative effects of gypenosides(GPS) on insulin sensitivity and inflammatory factors in rats with type 2 diabetes mellitus(T2 DM) and explored their possible molecular mechanisms. After the successful establishment of T2 DM model, diabetic rats were randomly divided into four groups, including model group, GPS groups(200, 100 mg·kg~(-1)) and metformin group(100 mg·kg~(-1)), with healthy rats serving as the control. After 6-week intragastric administration, fasting blood glucose(FBG) and oral glucose tolerance were examined. The levels of insulin, C-peptide, tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) and C-reactive protein(CRP) in serum were examined. Then the homeostasis model assessment of insulin resistance(HOMA-IR) and insulin sensitivity index(ISI) were calculated. The protein expression levels of phosphorylated insulin receptor substrate-1(p-IRS-1) and phosphorylated protein kinase B(p-Akt) in skeletal muscle were measured by Western blot, as well as those of phosphorylated inhibitor of nuclear factor-κB(NF-κB) kinase β(p-IKKβ), phosphorylated alpha inhibitor of NF-κB(p-IκBα) and phosphorylated p65 subunit of NF-κB(p-p65) in adipose tissue. The relative expression levels of glucose transporter 4(GLUT4) mRNA in skeletal muscle and NF-κB mRNA in adipose tissue were measured by qRT-PCR, and the morphological changes of pancreatic tissue were observed. Compared with the model group, the GPS groups witnessed significant decrease in FBG, marked amelioration of impaired oral glucose tolerance and significant increase in ISI. Further, the high-dose GPS group saw significantly reduced HOMA-IR, TNF-α, IL-1β and CRP, significantly increased expression levels of p-IRS-1(Tyr), p-Akt and GLUT4, and markedly inhibited p-IRS-1(Ser), p-IKKβ, p-IκBα, p-p65 and NF-κB. The concentration of CRP and the expression levels of p-IRS-1(Ser), p-IKKβ, p-IκBα and NF-κB were remarkably reduced in the low-dose GPS group. However, GPS was found less effective in the regulation of serum insulin, C-peptide and IL-6 levels and the alleviation of pancreatic islet injury. The results indicated that GPS can reduce FBG and improve insulin sensitivity in diabetic rats possibly by regulating the NF-κB signaling pathway, inhibiting inflammation, and thereby regulating the expression of key proteins in the insulin signaling pathway.


Subject(s)
Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/genetics , Gynostemma , Insulin , Insulin Resistance , NF-kappa B/metabolism , Plant Extracts , Rats , Signal Transduction
13.
Article in Chinese | WPRIM | ID: wpr-878424

ABSTRACT

OBJECTIVES@#This study was performed to clarify the effects of sitagliptin on @*METHODS@#Healthy gingival samples were collected from the donors. HGFs were isolated with enzymic digestion method and identified. The effects of LPS and sitagliptin on cell viability were detected by cell-counting kit-8 (CCK8). The mRNA levels of inflammatory cytokines, namely, interleukin (IL)-6, IL-8, C-C motif ligand 2 (CCL2), and superoxide dismutase 2 (SOD2), were evaluated by quantity real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immune sorbent assay (ELISA) was used to measure the secretion protein levels of IL-6, IL-8, and CCL2. Western blot analysis was used to further investigate the activation of nuclear factor (NF)-κB signaling pathway. The effect of NF-κB pathway inhibitor BAY11-7082 on LPS-induced HGF inflammatory cytokines at the gene level was verified by qRT-PCR.@*RESULTS@#Low concentrations of sitagliptin (0.1, 0.25, and 0.5 µmol·L@*CONCLUSIONS@#Sitagliptin could significantly inhibit LPS-induced HGF inflammatory response by blocking the NF-κB signaling pathway activation.


Subject(s)
Fibroblasts , Gingiva/metabolism , Humans , Lipopolysaccharides , NF-kappa B/metabolism , Signal Transduction , Sitagliptin Phosphate
14.
Article in English | WPRIM | ID: wpr-878318

ABSTRACT

Objective@#Antimony (Sb) has recently been identified as a novel nerve poison, although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. This study aimed to assess the effects of the nuclear factor kappa B (NF-κB) signaling pathway on antimony-induced astrocyte activation.@*Methods@#Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of p65. The expression of protein in brain tissue sections was detected by immunohistochemistry. The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription-polymerase chain reaction (RT-PCR).@*Results@#Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), indicating that antimony induced astrocyte activation @*Conclusion@#Antimony activated astrocytes by activating the NF-κB signaling pathway.


Subject(s)
Animals , Antimony/toxicity , Astrocytes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Glial Fibrillary Acidic Protein/metabolism , MAP Kinase Kinase Kinases , Male , Mice, Inbred ICR , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Signal Transduction/drug effects
15.
Acta Physiologica Sinica ; (6): 26-34, 2021.
Article in Chinese | WPRIM | ID: wpr-878232

ABSTRACT

Intermittent hypoxia (IH) could induce cognitive impairment through oxidative stress and inflammation. However, the degree of cell damage is closely related to the IH stimulus frequency. IH stimulation with different frequencies also induces opposite results on neuronal cell lines. Therefore, this study was aimed to compare the effects of IH stimulation with three different frequencies on murine hippocampal neuronal HT22 cell activity, and to explore the molecular mechanism of the IH stimulus frequency-related neuron injury. HT22 cells were cultured and divided into control group and three IH stimulation groups with different frequencies. Oxygen concentration in the chamber was circulated between 21% and 1% (IH1 group, 6 cycles/h; IH2 group, 2 cycles/h; IH3 group, 0.6 cycle/h). Cell morphology was observed at 6, 12, 24 and 48 h of IH treatment. Cell viability was determined by the CCK-8 kit, lactate dehydrogenase (LDH) content in cell supernatant was determined by LDH kit, oxidative stress level was detected by the reactive oxygen species (ROS) probe, and protein expression levels of hypoxia inducible factor-1α (Hif-1α) and phosphorylated nuclear factor κB (p-NF-κB) were detected by Western blot. The results showed that, compared with control group, cell number and activity in the three IH groups were decreased, LDH content and ROS levels were increased with the prolongation of IH stimulation time, and the changes were most obvious in the IH1 group among those of the three IH groups. Hif-1α expression and the p-NF-κB/NF-κB ratio were also up-regulated with the prolongation of IH stimulation time, and the changes of IH1 group were the most significant. These results suggest that IH stimulation induces oxidative stress injury in HT22 cells, which is related to increased Hif-1α expression and NF-κB phosphorylation. Moreover, the higher frequency of IH stimulation induces more serious cell injury.


Subject(s)
Animals , Cell Hypoxia , Cell Survival , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , NF-kappa B/metabolism , Oxidative Stress , Reactive Oxygen Species
16.
Article in Chinese | WPRIM | ID: wpr-880827

ABSTRACT

OBJECTIVE@#To investigate the role of NDUFA13 inactivation in the pathogenesis of spontaneous hepatitis in mice and explore the possible mechanisms.@*METHODS@#Hepatocyte-specific NDUFA13 knockout (NDUFA13@*RESULTS@#Liver-specific NDUFA13 heterozygous knockout mice were successfully constructed as verified by PCR results. HE staining revealed severe liver damage in both 4- week-old and 2-year-old NDUFA13@*CONCLUSIONS@#Hepatocytes-specific NDUFA13 ablation can trigger spontaneous hepatitis in mice possibly mediated by the activation of ROS/NF-κB/NLRP3 signaling.


Subject(s)
Animals , Hepatitis , Inflammasomes , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction
17.
Article in English | WPRIM | ID: wpr-880639

ABSTRACT

Interleukin-33 (IL-33) is a new member of the IL-1 cytokine family which plays roles in the nucleus as a nuclear factor and is released by damaged or necrotic cells to act as a cytokine. It can be released via damaged or necrotic cells and functions as a cytokine. The released IL-33 activates the downstream NF-κB and MAPKs signaling pathways through the isomers of the specific receptor ST2 and the interleukin-1 receptor accessory protein (IL-1RAcP), resulting in danger signals and the activated multiple immune responses. IL-33 is abnormally expressed in various tumors and involves in tumorigenesis, development, and metastasis. Moreover, IL-33 can play both pro-tumor and anti-tumor roles in the same type of tumor.


Subject(s)
Cytokines , Humans , Interleukin-33/genetics , MAP Kinase Signaling System , NF-kappa B/metabolism , Neoplasms
18.
Article in Chinese | WPRIM | ID: wpr-880073

ABSTRACT

In recent years, it is found that the classical IKKα and IKKβ pathway were closely relates with hematological tumors, except the classical pathogenesis, moreover the classical IKKβ pathway is deeply studied. The studies indicated that the IKKβis activated to phosphorylate the NF-κB through multiple cascades under the effect of extracellular IL-6, TNF-α and other stimulating factors. At the cellular level, the classical IKKβcan promote the tumor cell survival and proliferation, reduce the cell apoptosis, and promote the angiogenesis and cell transfer. Although the classical IKKα plays a role in regulating IKKβ activity, but its role in non-classical pathway is more prominent. This review briefly summarizes the latest advance of researches on the pathogenesis of hematological malignancies in term of IKKα and IKKβpathway, so as to provide the theoretic basis for deeply understanding and studying the pathogenesis of hematologic tumors. At present, blocking the classical IKKα and IKKβ pathway has become a new target for treatment of hematological tumors, moreover, some specific inhibitor for IKKα and IKKβpathway have been developed, for example, LY2409881, BMS 345541 and so on. Most of these drugs are in clinical trials and display some good anti-tumor effects.


Subject(s)
Cell Survival , Hematologic Neoplasms , Humans , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha
19.
Int. braz. j. urol ; 46(3): 353-362, May-June 2020. tab, graf
Article in English | LILACS | ID: biblio-1090612

ABSTRACT

ABSTRACT Purpose: Testicular germ cells tumor (TGCT) are associated with a high cure rate and are treated with platinum-based chemotherapy. However, a group of testicular cancer patients may have a very unfavorable evolution and insensitivity to the main therapeutic agent chemotherapy (CT) cisplatin. The aim of this study was to evaluate the risk of recurrence and overall survival related to the expression of nuclear factor kappa-B (NF-κB), transglutaminase 2 (TG2) and excision repair cross-complementation group 1 (ERCC1) in patients with TGCT treated with platinum combinations. Patients and Methods: A retrospective study was performed with TGCT patients treated with platinum-based chemotherapy. Immunohistochemical analysis was performed and the expression was correlated with clinical and laboratory data. Results: Fifty patients were included, the mean age was 28.4 years (18 to 45), and 76% were non-seminoma. All patients were treated with standard cisplatin, etoposide and bleomycin or cisplatin, and etoposide. Patient's analyzed immunodetection for NF-κB, TG2, and ERCC1 were positive in 76%, 54% and 42%, respectively. Multivariate analysis identified that positive expressions to ERCC1 and NF-κB are independent risk factors for higher recurrence TGCT after chemotherapy (RR 2.96 and 3.16, respectively). Patients with positive expression of ERCC1 presented a poor overall survival rate for 10-year follow (p=0.001). Conclusions: The expression of ERCC1 and NF-κB give a worse prognosis for relapse, and only ERCC1 had an influence on the overall survival of TGCT patients treated with platinum-based chemotherapy. These may represent markers that predict poor clinical outcome and response to cisplatin.


Subject(s)
Humans , Male , Adult , Testicular Neoplasms , Transglutaminases/metabolism , NF-kappa B/metabolism , GTP-Binding Proteins/metabolism , Lung Neoplasms , Prognosis , Antineoplastic Combined Chemotherapy Protocols , Retrospective Studies , Cisplatin , Drug Resistance, Neoplasm/physiology , DNA-Binding Proteins , DNA Repair , Endonucleases
20.
Braz. j. med. biol. res ; 53(6): e9489, 2020. graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132521

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease of knee joints involving pain and inflammation. Rhoifolin is a plant flavonoid known to have antioxidant and anti-inflammatory properties. This study was taken to identify the effect of rhoifolin on complete Freund's adjuvant (CFA)-induced arthritis in the rat model. Treatment with rhoifolin (10 and 20 mg/kg) showed a significant improvement in the overall health parameters such as paw edema and weight loss. This improvement in morphological parameters corroborated the findings with gross morphological changes observed in the histopathological analysis. Rhoifolin treatment also caused a significant decrease in oxidative stress, evident from changes in intracellular levels of glutathione, glutathione peroxidase, malondialdehyde, and superoxide dismutase in the articular cartilage tissue. Moreover, proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin(IL)-1β, and IL-6 showed a significant downregulation of gene expression and intracellular protein concentration levels. The NF-κB pathway showed a significant attenuation as evident in the significant reduction in the levels of NF-κB p65 and p-IκB-α. These results indicated that rhoifolin can be a natural therapeutic alternative to the extant regimens, which include non-steroidal anti-inflammatory drugs and immunosuppressants. Additionally, the antioxidant and anti-inflammatory action of rhoifolin was probably mediated by the NF-κB pathway. However, the exact target molecules of this pathway need to be determined in further studies.


Subject(s)
Animals , Male , Rats , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Flavonoids/administration & dosage , Freund's Adjuvant/administration & dosage , Cytokines/blood , Oxidative Stress/drug effects , Disaccharides/administration & dosage , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Biomarkers/blood , NF-kappa B/drug effects , NF-kappa B/metabolism , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Interleukin-1beta/blood , Glycosides/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL