Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 512
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(2): 180-198, mar. 2024. ilus, tab, graf
Article in English | LILACS | ID: biblio-1538281

ABSTRACT

India's commercial advancement and development depend heavily on agriculture. A common fruit grown in tropical settings is citrus. A professional judgment is required while analyzing an illness because different diseases have slight variati ons in their symptoms. In order to recognize and classify diseases in citrus fruits and leaves, a customized CNN - based approach that links CNN with LSTM was developed in this research. By using a CNN - based method, it is possible to automatically differenti ate from healthier fruits and leaves and those that have diseases such fruit blight, fruit greening, fruit scab, and melanoses. In terms of performance, the proposed approach achieves 96% accuracy, 98% sensitivity, 96% Recall, and an F1 - score of 92% for ci trus fruit and leave identification and classification and the proposed method was compared with KNN, SVM, and CNN and concluded that the proposed CNN - based model is more accurate and effective at identifying illnesses in citrus fruits and leaves.


El avance y desarrollo comercial de India dependen en gran medida de la agricultura. Un tipo de fruta comunmente cultivada en en tornos tropicales es el cítrico. Se requiere un juicio profesional al analizar una enfermedad porque diferentes enfermedades tienen ligeras variaciones en sus síntomas. Para reconocer y clasificar enfermedades en frutas y hojas de cítricos, se desarrolló e n esta investigación un enfoque personalizado basado en CNN que vincula CNN con LSTM. Al utilizar un método basado en CNN, es posible diferenciar automáticamente entre frutas y hojas más saludables y aquellas que tienen enfermedades como la plaga de frutas , el verdor de frutas, la sarna de frutas y las melanosis. En términos de desempeño, el enfoque propuesto alcanza una precisión del 96%, una sensibilidad del 98%, una recuperación del 96% y una puntuación F1 del 92% para la identificación y clasificación d e frutas y hojas de cítricos, y el método propuesto se comparó con KNN, SVM y CNN y se concluyó que el modelo basado en CNN propuesto es más preciso y efectivo para identificar enfermedades en frutas y hojas de cítricos.


Subject(s)
Citrus/classification , Citrus/parasitology , Neural Networks, Computer , Plant Leaves/classification , Plant Leaves/parasitology , Artificial Intelligence/trends , Fruit/classification , Fruit/growth & development
2.
Rev. bras. oftalmol ; 83: e0006, 2024. tab, graf
Article in Portuguese | LILACS | ID: biblio-1535603

ABSTRACT

RESUMO Objetivo: Obter imagens de fundoscopia por meio de equipamento portátil e de baixo custo e, usando inteligência artificial, avaliar a presença de retinopatia diabética. Métodos: Por meio de um smartphone acoplado a um dispositivo com lente de 20D, foram obtidas imagens de fundo de olhos de pacientes diabéticos; usando a inteligência artificial, a presença de retinopatia diabética foi classificada por algoritmo binário. Resultados: Foram avaliadas 97 imagens da fundoscopia ocular (45 normais e 52 com retinopatia diabética). Com auxílio da inteligência artificial, houve acurácia diagnóstica em torno de 70 a 100% na classificação da presença de retinopatia diabética. Conclusão: A abordagem usando dispositivo portátil de baixo custo apresentou eficácia satisfatória na triagem de pacientes diabéticos com ou sem retinopatia diabética, sendo útil para locais sem condições de infraestrutura.


ABSTRACT Introduction: To obtain fundoscopy images through portable and low-cost equipment using artificial intelligence to assess the presence of DR. Methods: Fundus images of diabetic patients' eyes were obtained by using a smartphone coupled to a device with a 20D lens. By using artificial intelligence (AI), the presence of DR was classified by a binary algorithm. Results: 97 ocular fundoscopy images were evaluated (45 normal and 52 with DR). Through AI diagnostic accuracy around was 70% to 100% in the classification of the presence of DR. Conclusion: The approach using a low-cost portable device showed satisfactory efficacy in the screening of diabetic patients with or without diabetic retinopathy, being useful for places without infrastructure conditions.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Algorithms , Artificial Intelligence , Diabetic Retinopathy/diagnostic imaging , Photograph/instrumentation , Fundus Oculi , Ophthalmoscopy/methods , Retina/diagnostic imaging , Mass Screening , Neural Networks, Computer , Diagnostic Techniques, Ophthalmological/instrumentation , Machine Learning , Smartphone , Deep Learning
4.
Rev. colomb. cir ; 38(3): 439-446, Mayo 8, 2023. fig, tab
Article in Spanish | LILACS | ID: biblio-1438420

ABSTRACT

Introducción. Debido a la ausencia de modelos predictivos estadísticamente significativos enfocados a las complicaciones postoperatorias en el manejo quirúrgico del neumotórax, desarrollamos un modelo, utilizando redes neurales, que identifica las variables independientes y su importancia para reducir la incidencia de complicaciones. Métodos. Se realizó un estudio retrospectivo en un centro asistencial, donde se incluyeron 106 pacientes que requirieron manejo quirúrgico de neumotórax. Todos fueron operados por el mismo cirujano. Se desarrolló una red neural artificial para manejo de datos con muestras limitadas; se optimizaron los datos y cada algoritmo fue evaluado de forma independiente y mediante validación cruzada, para obtener el menor error posible y la mayor precisión con el menor tiempo de respuesta. Resultados. Las variables de mayor importancia según su peso en el sistema de decisión de la red neural (área bajo la curva 0,991) fueron el abordaje por toracoscopia video asistida (OR 1,131), el uso de pleurodesis con talco (OR 0,994) y el uso de autosuturas (OR 0,792; p<0,05). Discusión. En nuestro estudio, los principales predictores independientes asociados a mayor riesgo de complicaciones fueron el neumotórax de etiología secundaria y el neumotórax recurrente. Adicionalmente, confirmamos que las variables asociadas a reducción de riesgo de complicaciones postoperatorias tuvieron significancia estadística. Conclusión. Identificamos la toracoscopia video asistida, el uso de autosuturas y la pleurodesis con talco como posibles variables asociadas a menor riesgo de complicaciones. Se plantea la posibilidad de desarrollar una herramienta que facilite y apoye la toma de decisiones, por lo cual es necesaria la validación externa en estudios prospectivos


Introduction. Due to the absence of statistically significant predictive models focused on postoperative complications in the surgical management of pneumothorax, we developed a model using neural networks that identify the independent variables and their importance in reducing the incidence of postoperative complications. Methods. A retrospective single-center study was carried out, where 106 patients who required surgical management of pneumothorax were included. All patients were operated by the same surgeon. An artificial neural network was developed to manage data with limited samples. The data is optimized and each algorithm is evaluated independently and through cross-validation to obtain the lowest possible error and the highest precision with the shortest response time. Results. The most important variables according to their weight in the decision system of the neural network (AUC 0.991) were the approach via video-assisted thoracoscopy (OR 1.131), use of pleurodesis with powder talcum (OR 0.994) and use of autosutures (OR 0.792, p<0.05). Discussion. In our study, the main independent predictors associated with a higher risk of complications are pneumothorax of secondary etiology and recurrent pneumothorax. Additionally, we confirm that the variables associated with a reduction in the risk of postoperative complications have statistical significance. Conclusion. We identify video-assisted thoracoscopy, use of autosuture and powder talcum pleurodesis as possible variables associated with a lower risk of complications and raise the possibility of developing a tool that facilitates and supports decision-making, for which external validation in prospective studies is necessary


Subject(s)
Humans , Pneumothorax , Artificial Intelligence , Neural Networks, Computer , Postoperative Complications , Talc , Thoracoscopy
5.
Mastology (Online) ; 332023. ilus, tab
Article in English | LILACS | ID: biblio-1433826

ABSTRACT

:Breast cancer is the object of thousands of studies worldwide. Nevertheless, few tools are available to corroborate prediction of response to neoadjuvant chemotherapy. Artificial intelligence is being researched for its potential utility in several fields of knowledge, including oncology. The development of a standardized Artificial intelligence-based predictive model for patients with breast cancer may help make clinical management more personalized and effective. We aimed to apply Artificial intelligence models to predict the response to neoadjuvant chemotherapy based solely on clinical and pathological data. Methods: Medical records of 130 patients treated with neoadjuvant chemotherapy were reviewed and divided into two groups: 90 samples to train the network and 40 samples to perform prospective testingand validate the results obtained by the Artificial intelligence method. Results: Using clinicopathologic data alone, the artificial neural network was able to correctly predict pathologic complete response in 83.3% of the cases. It also correctly predicted 95.6% of locoregional recurrence, as well as correctly determined whether patients were alive or dead at a given time point in 90% of the time. To date, no published research has used clinicopathologic data to predict the response to neoadjuvant chemotherapy in patients with breast cancer, thus highlighting the importance of the present study. Conclusions: Artificial neural network may become an interesting tool for predicting response to neoadjuvant chemotherapy, locoregional recurrence, systemic disease progression, and survival in patients with breast cancer (AU)


Subject(s)
Humans , Female , Middle Aged , Breast Neoplasms/drug therapy , Artificial Intelligence , Neoadjuvant Therapy , Antineoplastic Agents/therapeutic use , Progesterone/metabolism , Retrospective Studies , Neural Networks, Computer , Receptor, ErbB-2/metabolism , Ki-67 Antigen/metabolism , Estrogens/metabolism , Neoplasm Recurrence, Local
6.
Rev. bras. med. esporte ; 29: e2022_0152, 2023. tab, graf
Article in English | LILACS | ID: biblio-1394837

ABSTRACT

ABSTRACT Introduction: In today's rapid development of science and technology, digital network data mining technology is developing as fast as the expansion of the frontiers of science and technology allows, with a very broad application level, covering most of the civilized environment. However, there is still much to explore in the application of sports training. Objective: Analyze the feasibility of data mining based on the digital network of sports training, maximizing athletes' training. Methods: This paper uses the experimental analysis of human FFT, combined with BP artificial intelligence network and deep data mining technology, to design a new sports training environment. The controlled test of this model was designed to compare advanced athletic training modalities with traditional modalities, comparing the athletes' explosive power, endurance, and fitness. Results: After 30 days of physical training, the athletic strength of athletes with advanced fitness increased by 15.33%, endurance increased by 15.85%, and fitness increased by 14.23%. Conclusion: The algorithm designed in this paper positively impacts maximizing athletes' training. It may have a favorable impact on training outcomes, as well as increase the athlete's interest in the sport. Level of evidence II; Therapeutic studies - investigating treatment outcomes.


RESUMO Introdução: No rápido desenvolvimento atual de ciência e tecnologia, a tecnologia de mineração de dados de rede digital desenvolve-se tão rápido quanto a expansão das fronteiras da ciência e tecnologia permitem, com um nível de aplicação muito amplo, cobrindo a maior parte do ambiente civilizado. No entanto, ainda há muito para explorar da aplicação no treinamento esportivo. Objetivo: Análise de viabilidade da mineração de dados com base na rede digital da formação esportiva, maximizar o treinamento dos atletas. Métodos: Este trabalho utiliza a análise experimental da FFT humana, combinada com a rede de inteligência artificial da BP e tecnologia de mineração profunda de dados, para projetar um novo ambiente de treinamento esportivo. O teste controlado deste modelo foi projetado para comparar modalidades avançadas de treinamento atlético com as modalidades tradicionais, comparando o poder explosivo, resistência e condição física do atleta. Resultados: Após 30 dias de treinamento físico, a força atlética dos esportistas com aptidão física avançada aumentou 15,33%, a resistência aumentou 15,85%, e o condicionamento físico aumentou 14,23%. Conclusão: O algoritmo desenhado neste artigo tem um impacto positivo na maximização do treinamento dos atletas. Pode ter um impacto favorável nos resultados do treinamento, bem como aumentar o interesse do atleta pelo esporte. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción: En el rápido desarrollo actual de la ciencia y la tecnología, la tecnología de extracción de datos de redes digitales se desarrolla tan rápido como lo permiten las fronteras en expansión de la ciencia y la tecnología, con un nivel de aplicación muy amplio que abarca la mayor parte del entorno civilizado. Sin embargo, aún queda mucho por explorar de la aplicación en el entrenamiento deportivo. Objetivo: Análisis de viabilidad de la minería de datos basada en la red digital de entrenamiento deportivo, maximizar la formación de los atletas. Métodos: Este trabajo utiliza el análisis experimental de la FFT humana, combinado con la red de inteligencia artificial BP y la tecnología de minería de datos profunda, para diseñar un nuevo entorno de entrenamiento deportivo. La prueba controlada de este modelo se diseñó para comparar las modalidades de entrenamiento atlético avanzado con las modalidades tradicionales, comparando la potencia explosiva, la resistencia y la forma física del atleta. Resultados: Después de 30 días de entrenamiento físico, la fuerza atlética de los atletas con un estado físico avanzado aumentó en un 15,33%, la resistencia aumentó en un 15,85% y el estado físico aumentó en un 14,23%. Conclusión: El algoritmo diseñado en este trabajo tiene un impacto positivo en la maximización del entrenamiento de los atletas. Puede tener un impacto favorable en los resultados del entrenamiento, así como aumentar el interés del atleta por el deporte. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.


Subject(s)
Humans , Artificial Intelligence , Physical Fitness/physiology , Neural Networks, Computer , Athletic Performance/physiology , Athletes
7.
Biomedical and Environmental Sciences ; (12): 1123-1135, 2023.
Article in English | WPRIM | ID: wpr-1007892

ABSTRACT

OBJECTIVE@#This study aimed to develop an artificial neural network (ANN) model combined with dietary retinol intake from different sources to predict the risk of non-alcoholic fatty liver disease (NAFLD) in American adults.@*METHODS@#Data from the 2007 to 2014 National Health and Nutrition Examination Survey (NHANES) 2007-2014 were analyzed. Eligible subjects ( n = 6,613) were randomly divided into a training set ( n 1 = 4,609) and a validation set ( n 2 = 2,004) at a ratio of 7:3. The training set was used to identify predictors of NAFLD risk using logistic regression analysis. An ANN was established to predict the NAFLD risk using a training set. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the accuracy of the model using the training and validation sets.@*RESULTS@#Our study found that the odds ratios ( ORs) and 95% confidence intervals ( CIs) of NAFLD for the highest quartile of plant-derived dietary retinol intake (i.e., provitamin A carotenoids, such as β-carotene) ( OR = 0.75, 95% CI: 0.57 to 0.99) were inversely associated with NAFLD risk, compared to the lowest quartile of intake, after adjusting for potential confounders. The areas under the ROC curves were 0.874 and 0.883 for the training and validation sets, respectively. NAFLD occurs when its incidence probability is greater than 0.388.@*CONCLUSION@#The ANN model combined with plant-derived dietary retinol intake showed a significant effect on NAFLD. This could be applied to predict NAFLD risk in the American adult population when government departments formulate future health plans.


Subject(s)
Adult , Humans , Vitamin A , Non-alcoholic Fatty Liver Disease/epidemiology , Nutrition Surveys , Diet , Neural Networks, Computer
8.
Acta Physiologica Sinica ; (6): 937-945, 2023.
Article in Chinese | WPRIM | ID: wpr-1007802

ABSTRACT

The present study aims to establish comprehensive evaluation models of physical fitness of the elderly based on machine learning, and provide an important basis to monitor the elderly's physique. Through stratified sampling, the elderly aged 60 years and above were selected from 10 communities in Nanchang City. The physical fitness of the elderly was measured by the comprehensive physical assessment scale based on our previous study. Fuzzy neural network (FNN), support vector machine (SVM) and random forest (RF) models for comprehensive physical evaluation of the elderly people in communities were constructed respectively. The accuracy, sensitivity and specificity of the comprehensive physical fitness evaluation models constructed by FNN, SVM and RF were above 0.85, 0.75 and 0.89, respectively, with the FNN model possessing the best prediction performance. FNN, RF and SVM models are valuable in the comprehensive evaluation and prediction of physical fitness, which can be used as tools to carry out physical evaluation of the elderly.


Subject(s)
Aged , Humans , Physical Fitness , Neural Networks, Computer , Exercise , Machine Learning
9.
Chinese Medical Journal ; (24): 2706-2711, 2023.
Article in English | WPRIM | ID: wpr-1007693

ABSTRACT

BACKGROUND@#Distinguishing between primary clear cell carcinoma of the liver (PCCCL) and common hepatocellular carcinoma (CHCC) through traditional inspection methods before the operation is difficult. This study aimed to establish a Faster region-based convolutional neural network (RCNN) model for the accurate differential diagnosis of PCCCL and CHCC.@*METHODS@#In this study, we collected the data of 62 patients with PCCCL and 1079 patients with CHCC in Beijing YouAn Hospital from June 2012 to May 2020. A total of 109 patients with CHCC and 42 patients with PCCCL were randomly divided into the training validation set and the test set in a ratio of 4:1.The Faster RCNN was used for deep learning of patients' data in the training validation set, and established a convolutional neural network model to distinguish PCCCL and CHCC. The accuracy, average precision, and the recall of the model for diagnosing PCCCL and CHCC were used to evaluate the detection performance of the Faster RCNN algorithm.@*RESULTS@#A total of 4392 images of 121 patients (1032 images of 33 patients with PCCCL and 3360 images of 88 patients with CHCC) were uesd in test set for deep learning and establishing the model, and 1072 images of 30 patients (320 images of nine patients with PCCCL and 752 images of 21 patients with CHCC) were used to test the model. The accuracy of the model for accurately diagnosing PCCCL and CHCC was 0.962 (95% confidence interval [CI]: 0.931-0.992). The average precision of the model for diagnosing PCCCL was 0.908 (95% CI: 0.823-0.993) and that for diagnosing CHCC was 0.907 (95% CI: 0.823-0.993). The recall of the model for diagnosing PCCCL was 0.951 (95% CI: 0.916-0.985) and that for diagnosing CHCC was 0.960 (95% CI: 0.854-0.962). The time to make a diagnosis using the model took an average of 4 s for each patient.@*CONCLUSION@#The Faster RCNN model can accurately distinguish PCCCL and CHCC. This model could be important for clinicians to make appropriate treatment plans for patients with PCCCL or CHCC.


Subject(s)
Humans , Liver Neoplasms/pathology , Retrospective Studies , Carcinoma, Hepatocellular/pathology , Neural Networks, Computer
10.
Journal of Forensic Medicine ; (6): 601-607, 2023.
Article in English | WPRIM | ID: wpr-1009393

ABSTRACT

Age estimation based on tissues or body fluids is an important task in forensic science. The changes of DNA methylation status with age have certain rules, which can be used to estimate the age of the individuals. Therefore, it is of great significance to discover specific DNA methylation sites and develop new age estimation models. At present, statistical models for age estimation have been developed based on the rule that DNA methylation status changes with age. The commonly used models include multiple linear regression model, multiple quantile regression model, support vector machine model, artificial neural network model, random forest model, etc. In addition, there are many factors that affect the level of DNA methylation, such as the tissue specificity of methylation. This paper reviews these modeling methods and influencing factors for age estimation based on DNA methylation, with a view to provide reference for the establishment of age estimation models.


Subject(s)
Humans , DNA Methylation , CpG Islands , Forensic Genetics , Neural Networks, Computer , Linear Models , Aging/genetics
11.
Journal of Biomedical Engineering ; (6): 1152-1159, 2023.
Article in Chinese | WPRIM | ID: wpr-1008945

ABSTRACT

Feature extraction methods and classifier selection are two critical steps in heart sound classification. To capture the pathological features of heart sound signals, this paper introduces a feature extraction method that combines mel-frequency cepstral coefficients (MFCC) and power spectral density (PSD). Unlike conventional classifiers, the adaptive neuro-fuzzy inference system (ANFIS) was chosen as the classifier for this study. In terms of experimental design, we compared different PSDs across various time intervals and frequency ranges, selecting the characteristics with the most effective classification outcomes. We compared four statistical properties, including mean PSD, standard deviation PSD, variance PSD, and median PSD. Through experimental comparisons, we found that combining the features of median PSD and MFCC with heart sound systolic period of 100-300 Hz yielded the best results. The accuracy, precision, sensitivity, specificity, and F1 score were determined to be 96.50%, 99.27%, 93.35%, 99.60%, and 96.35%, respectively. These results demonstrate the algorithm's significant potential for aiding in the diagnosis of congenital heart disease.


Subject(s)
Humans , Heart Sounds , Neural Networks, Computer , Algorithms , Heart Defects, Congenital
12.
Journal of Biomedical Engineering ; (6): 945-952, 2023.
Article in Chinese | WPRIM | ID: wpr-1008920

ABSTRACT

The setting and adjustment of ventilator parameters need to rely on a large amount of clinical data and rich experience. This paper explored the problem of difficult decision-making of ventilator parameters due to the time-varying and sudden changes of clinical patient's state, and proposed an expert knowledge-based strategies for ventilator parameter setting and stepless adaptive adjustment based on fuzzy control rule and neural network. Based on the method and the real-time physiological state of clinical patients, we generated a mechanical ventilation decision-making solution set with continuity and smoothness, and automatically provided explicit parameter adjustment suggestions to medical personnel. This method can solve the problems of low control precision and poor dynamic quality of the ventilator's stepwise adjustment, handle multi-input control decision problems more rationally, and improve ventilation comfort for patients.


Subject(s)
Humans , Ventilators, Mechanical , Respiration, Artificial , Neural Networks, Computer
13.
Journal of Biomedical Engineering ; (6): 852-858, 2023.
Article in Chinese | WPRIM | ID: wpr-1008909

ABSTRACT

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.


Subject(s)
Humans , Alzheimer Disease/diagnostic imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Diagnosis, Computer-Assisted , Brain , Cognitive Dysfunction
14.
Journal of Biomedical Engineering ; (6): 843-851, 2023.
Article in Chinese | WPRIM | ID: wpr-1008908

ABSTRACT

In order to fully explore the neural oscillatory coupling characteristics of patients with mild cognitive impairment (MCI), this paper analyzed and compared the strength of the coupling characteristics for 28 MCI patients and 21 normal subjects under six different-frequency combinations. The results showed that the difference in the global phase synchronization index of cross-frequency coupling under δ-θ rhythm combination was statistically significant in the MCI group compared with the normal control group ( P = 0.025, d = 0.398). To further validate this coupling feature, this paper proposed an optimized convolutional neural network model that incorporated a time-frequency data enhancement module and batch normalization layers to prevent overfitting while enhancing the robustness of the model. Based on this optimized model, with the phase locking value matrix of δ-θ rhythm combination as the single input feature, the diagnostic accuracy of MCI patients was (95.49 ± 4.15)%, sensitivity and specificity were (93.71 ± 7.21)% and (97.50 ± 5.34)%, respectively. The results showed that the characteristics of the phase locking value matrix under the combination of δ-θ rhythms can adequately reflect the cognitive status of MCI patients, which is helpful to assist the diagnosis of MCI.


Subject(s)
Humans , Electroencephalography/methods , Cognitive Dysfunction/diagnosis , Neural Networks, Computer , Sensitivity and Specificity
15.
Journal of Biomedical Engineering ; (6): 692-699, 2023.
Article in Chinese | WPRIM | ID: wpr-1008889

ABSTRACT

With inherent sparse spike-based coding and asynchronous event-driven computation, spiking neural network (SNN) is naturally suitable for processing event stream data of event cameras. In order to improve the feature extraction and classification performance of bio-inspired hierarchical SNNs, in this paper an event camera object recognition system based on biological synaptic plasticity is proposed. In our system input event streams were firstly segmented adaptively using spiking neuron potential to improve computational efficiency of the system. Multi-layer feature learning and classification are implemented by our bio-inspired hierarchical SNN with synaptic plasticity. After Gabor filter-based event-driven convolution layer which extracted primary visual features of event streams, we used a feature learning layer with unsupervised spiking timing dependent plasticity (STDP) rule to help the network extract frequent salient features, and a feature learning layer with reward-modulated STDP rule to help the network learn diagnostic features. The classification accuracies of the network proposed in this paper on the four benchmark event stream datasets were better than the existing bio-inspired hierarchical SNNs. Moreover, our method showed good classification ability for short event stream input data, and was robust to input event stream noise. The results show that our method can improve the feature extraction and classification performance of this kind of SNNs for event camera object recognition.


Subject(s)
Visual Perception , Learning , Action Potentials , Neural Networks, Computer , Neuronal Plasticity
16.
China Journal of Chinese Materia Medica ; (24): 4362-4369, 2023.
Article in Chinese | WPRIM | ID: wpr-1008690

ABSTRACT

Puerariae Lobatae Radix, the dried root of Pueraria lobata, is a traditional Chinese medicine with a long history. Puerariae Lobatae Caulis as an adulterant is always mixed into Puerariae Lobatae Radix for sales in the market. This study employed hyperspectral imaging(HSI) to distinguish between the two products. VNIR lens(spectral scope of 410-990 nm) and SWIR lens(spectral scope of 950-2 500 nm) were used for image acquiring. Multi-layer perceptron(MLP), partial least squares discriminant analysis(PLS-DA), and support vector machine(SVM) were employed to establish the full-waveband models and select the effective wavelengths for the distinguishing between Puerariae Lobatae Caulis and Puerariae Lobatae Radix, which provided technical and data support for the development of quick inspection equipment based on HSI. The results showed that MLP model outperformed PLS-DA and SVM models in the accuracy of discrimination with full wavebands in VNIR, SWIR, and VNIR+SWIR lens, which were 95.26%, 99.11%, and 99.05%, respectively. The discriminative band selection(DBS) algorithm was employed to select the effective wavelengths, and the discrimination accuracy was 93.05%, 98.05%, and 98.74% in the three different spectral scopes, respectively. On this basis, the MLP model combined with the effective wavelengths within the range of 2 100-2 400 nm can achieve the accuracy of 97.74%, which was close to that obtained with the full waveband. This waveband can be used to develop quick inspection devices based on HSI for the rapid and non-destructive distinguishing between Puerariae Lobatae Radix and Puerariae Lobatae Caulis.


Subject(s)
Pueraria , Hyperspectral Imaging , Medicine, Chinese Traditional , Algorithms , Neural Networks, Computer
17.
Journal of Southern Medical University ; (12): 1010-1016, 2023.
Article in Chinese | WPRIM | ID: wpr-987015

ABSTRACT

OBJECTIVE@#To propose an deep learning-based algorithm for automatic prediction of dose distribution in radiotherapy planning for head and neck cancer.@*METHODS@#We propose a novel beam dose decomposition learning (BDDL) method designed on a cascade network. The delivery matter of beam through the planning target volume (PTV) was fitted with the pre-defined beam angles, which served as an input to the convolution neural network (CNN). The output of the network was decomposed into multiple sub-fractions of dose distribution along the beam directions to carry out a complex task by performing multiple simpler sub-tasks, thus allowing the model more focused on extracting the local features. The subfractions of dose distribution map were merged into a distribution map using the proposed multi-voting mechanism. We also introduced dose distribution features of the regions-of-interest (ROIs) and boundary map as the loss function during the training phase to serve as constraining factors of the network when extracting features of the ROIs and areas of dose boundary. Public datasets of radiotherapy planning for head and neck cancer were used for obtaining the accuracy of dose distribution of the BDDL method and for implementing the ablation study of the proposed method.@*RESULTS@#The BDDL method achieved a Dose score of 2.166 and a DVH score of 1.178 (P < 0.05), demonstrating its superior prediction accuracy to that of current state-ofthe-art (SOTA) methods. Compared with the C3D method, which was in the first place in OpenKBP-2020 Challenge, the BDDL method improved the Dose score and DVH score by 26.3% and 30%, respectively. The results of the ablation study also demonstrated the effectiveness of each key component of the BDDL method.@*CONCLUSION@#The BDDL method utilizes the prior knowledge of the delivery matter of beam and dose distribution in the ROIs to establish a dose prediction model. Compared with the existing methods, the proposed method is interpretable and reliable and can be potentially applied in clinical radiotherapy.


Subject(s)
Humans , Deep Learning , Head and Neck Neoplasms/radiotherapy , Algorithms , Neural Networks, Computer
18.
Chinese Journal of Stomatology ; (12): 540-546, 2023.
Article in Chinese | WPRIM | ID: wpr-986108

ABSTRACT

Objective: To construct a kind of neural network for eliminating the metal artifacts in CT images by training the generative adversarial networks (GAN) model, so as to provide reference for clinical practice. Methods: The CT data of patients treated in the Department of Radiology, West China Hospital of Stomatology, Sichuan University from January 2017 to June 2022 were collected. A total of 1 000 cases of artifact-free CT data and 620 cases of metal artifact CT data were obtained, including 5 types of metal restorative materials, namely, fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies. Four hundred metal artifact CT data and 1 000 artifact-free CT data were utilized for simulation synthesis, and 1 000 pairs of simulated artifacts and metal images and simulated metal images (200 pairs of each type) were constructed. Under the condition that the data of the five metal artifacts were equal, the entire data set was randomly (computer random) divided into a training set (800 pairs) and a test set (200 pairs). The former was used to train the GAN model, and the latter was used to evaluate the performance of the GAN model. The test set was evaluated quantitatively and the quantitative indexes were root-mean-square error (RMSE) and structural similarity index measure (SSIM). The trained GAN model was employed to eliminate the metal artifacts from the CT data of the remaining 220 clinical cases of metal artifact CT data, and the elimination results were evaluated by two senior attending doctors using the modified LiKert scale. Results: The RMSE values for artifact elimination of fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies in test set were 0.018±0.004, 0.023±0.007, 0.015±0.003, 0.019±0.004, 0.024±0.008, respectively (F=1.29, P=0.274). The SSIM values were 0.963±0.023, 0.961±0.023, 0.965±0.013, 0.958±0.022, 0.957±0.026, respectively (F=2.22, P=0.069). The intra-group correlation coefficient of 2 evaluators was 0.972. For 220 clinical cases, the overall score of the modified LiKert scale was (3.73±1.13), indicating a satisfactory performance. The scores of modified LiKert scale for fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies were (3.68±1.13), (3.67±1.16), (3.97±1.03), (3.83±1.14), (3.33±1.12), respectively (F=1.44, P=0.145). Conclusions: The metal artifact reduction GAN model constructed in this study can effectively remove the interference of metal artifacts and improve the image quality.


Subject(s)
Humans , Tomography, X-Ray Computed/methods , Deep Learning , Titanium , Neural Networks, Computer , Metals , Image Processing, Computer-Assisted/methods , Algorithms
19.
Chinese Journal of Medical Instrumentation ; (6): 43-46, 2023.
Article in Chinese | WPRIM | ID: wpr-971301

ABSTRACT

OBJECTIVE@#To use the low-cost anesthesia monitor for realizing anesthesia depth monitoring, effectively assist anesthesiologists in diagnosis and reduce the cost of anesthesia operation.@*METHODS@#Propose a monitoring method of anesthesia depth based on artificial intelligence. The monitoring method is designed based on convolutional neural network (CNN) and long and short-term memory (LSTM) network. The input data of the model include electrocardiogram (ECG) and pulse wave photoplethysmography (PPG) recorded in the anesthesia monitor, as well as heart rate variability (HRV) calculated from ECG, The output of the model is in three states of anesthesia induction, anesthesia maintenance and anesthesia awakening.@*RESULTS@#The accuracy of anesthesia depth monitoring model under transfer learning is 94.1%, which is better than all comparison methods.@*CONCLUSIONS@#The accuracy of this study meets the needs of perioperative anesthesia depth monitoring and the study reduces the operation cost.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Heart Rate , Electrocardiography , Photoplethysmography/methods , Anesthesia
20.
West China Journal of Stomatology ; (6): 218-224, 2023.
Article in English | WPRIM | ID: wpr-981115

ABSTRACT

OBJECTIVES@#This study aims to predict the risk of deep caries exposure in radiographic images based on the convolutional neural network model, compare the prediction results of the network model with those of senior dentists, evaluate the performance of the model for teaching and training stomatological students and young dentists, and assist dentists to clarify treatment plans and conduct good doctor-patient communication before surgery.@*METHODS@#A total of 206 cases of pulpitis caused by deep caries were selected from the Department of Stomatological Hospital of Tianjin Medical University from 2019 to 2022. According to the inclusion and exclusion criteria, 104 cases of pulpitis were exposed during the decaying preparation period and 102 cases of pulpitis were not exposed. The 206 radiographic images collected were randomly divided into three groups according to the proportion: 126 radiographic images in the training set, 40 radiographic images in the validation set, and 40 radiographic images in the test set. Three convolutional neural networks, visual geometry group network (VGG), residual network (ResNet), and dense convolutional network (DenseNet) were selected to analyze the rules of the radiographic images in the training set. The radiographic images of the validation set were used to adjust the super parameters of the network. Finally, 40 radiographic images of the test set were used to evaluate the performance of the three network models. A senior dentist specializing in dental pulp was selected to predict whether the deep caries of 40 radiographic images in the test set were exposed. The gold standard is whether the pulp is exposed after decaying the prepared hole during the clinical operation. The prediction effect of the three network models (VGG, ResNet, and DenseNet) and the senior dentist on the pulp exposure of 40 radiographic images in the test set were compared using receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score to select the best network model.@*RESULTS@#The best network model was DenseNet model, with AUC of 0.97. The AUC values of the ResNet model, VGG model, and the senior dentist were 0.89, 0.78, and 0.87, respectively. Accuracy was not statistically different between the senior dentist (0.850) and the DenseNet model (0.850)(P>0.05). Kappa consistency test showed moderate reliability (Kappa=0.6>0.4, P<0.05).@*CONCLUSIONS@#Among the three convolutional neural network models, the DenseNet model has the best predictive effect on whether deep caries are exposed in imaging. The predictive effect of this model is equivalent to the level of senior dentists specializing in dental pulp.


Subject(s)
Humans , Deep Learning , Neural Networks, Computer , Pulpitis/diagnostic imaging , Reproducibility of Results , ROC Curve , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL