Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
1.
Rev. bras. med. esporte ; 29: e2022_0152, 2023. tab, graf
Article in English | LILACS | ID: biblio-1394837

ABSTRACT

ABSTRACT Introduction: In today's rapid development of science and technology, digital network data mining technology is developing as fast as the expansion of the frontiers of science and technology allows, with a very broad application level, covering most of the civilized environment. However, there is still much to explore in the application of sports training. Objective: Analyze the feasibility of data mining based on the digital network of sports training, maximizing athletes' training. Methods: This paper uses the experimental analysis of human FFT, combined with BP artificial intelligence network and deep data mining technology, to design a new sports training environment. The controlled test of this model was designed to compare advanced athletic training modalities with traditional modalities, comparing the athletes' explosive power, endurance, and fitness. Results: After 30 days of physical training, the athletic strength of athletes with advanced fitness increased by 15.33%, endurance increased by 15.85%, and fitness increased by 14.23%. Conclusion: The algorithm designed in this paper positively impacts maximizing athletes' training. It may have a favorable impact on training outcomes, as well as increase the athlete's interest in the sport. Level of evidence II; Therapeutic studies - investigating treatment outcomes.


RESUMO Introdução: No rápido desenvolvimento atual de ciência e tecnologia, a tecnologia de mineração de dados de rede digital desenvolve-se tão rápido quanto a expansão das fronteiras da ciência e tecnologia permitem, com um nível de aplicação muito amplo, cobrindo a maior parte do ambiente civilizado. No entanto, ainda há muito para explorar da aplicação no treinamento esportivo. Objetivo: Análise de viabilidade da mineração de dados com base na rede digital da formação esportiva, maximizar o treinamento dos atletas. Métodos: Este trabalho utiliza a análise experimental da FFT humana, combinada com a rede de inteligência artificial da BP e tecnologia de mineração profunda de dados, para projetar um novo ambiente de treinamento esportivo. O teste controlado deste modelo foi projetado para comparar modalidades avançadas de treinamento atlético com as modalidades tradicionais, comparando o poder explosivo, resistência e condição física do atleta. Resultados: Após 30 dias de treinamento físico, a força atlética dos esportistas com aptidão física avançada aumentou 15,33%, a resistência aumentou 15,85%, e o condicionamento físico aumentou 14,23%. Conclusão: O algoritmo desenhado neste artigo tem um impacto positivo na maximização do treinamento dos atletas. Pode ter um impacto favorável nos resultados do treinamento, bem como aumentar o interesse do atleta pelo esporte. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción: En el rápido desarrollo actual de la ciencia y la tecnología, la tecnología de extracción de datos de redes digitales se desarrolla tan rápido como lo permiten las fronteras en expansión de la ciencia y la tecnología, con un nivel de aplicación muy amplio que abarca la mayor parte del entorno civilizado. Sin embargo, aún queda mucho por explorar de la aplicación en el entrenamiento deportivo. Objetivo: Análisis de viabilidad de la minería de datos basada en la red digital de entrenamiento deportivo, maximizar la formación de los atletas. Métodos: Este trabajo utiliza el análisis experimental de la FFT humana, combinado con la red de inteligencia artificial BP y la tecnología de minería de datos profunda, para diseñar un nuevo entorno de entrenamiento deportivo. La prueba controlada de este modelo se diseñó para comparar las modalidades de entrenamiento atlético avanzado con las modalidades tradicionales, comparando la potencia explosiva, la resistencia y la forma física del atleta. Resultados: Después de 30 días de entrenamiento físico, la fuerza atlética de los atletas con un estado físico avanzado aumentó en un 15,33%, la resistencia aumentó en un 15,85% y el estado físico aumentó en un 14,23%. Conclusión: El algoritmo diseñado en este trabajo tiene un impacto positivo en la maximización del entrenamiento de los atletas. Puede tener un impacto favorable en los resultados del entrenamiento, así como aumentar el interés del atleta por el deporte. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.


Subject(s)
Humans , Artificial Intelligence , Physical Fitness/physiology , Neural Networks, Computer , Athletic Performance/physiology , Athletes
2.
Mastology (Online) ; 332023. ilus, tab
Article in English | LILACS | ID: biblio-1433826

ABSTRACT

:Breast cancer is the object of thousands of studies worldwide. Nevertheless, few tools are available to corroborate prediction of response to neoadjuvant chemotherapy. Artificial intelligence is being researched for its potential utility in several fields of knowledge, including oncology. The development of a standardized Artificial intelligence-based predictive model for patients with breast cancer may help make clinical management more personalized and effective. We aimed to apply Artificial intelligence models to predict the response to neoadjuvant chemotherapy based solely on clinical and pathological data. Methods: Medical records of 130 patients treated with neoadjuvant chemotherapy were reviewed and divided into two groups: 90 samples to train the network and 40 samples to perform prospective testingand validate the results obtained by the Artificial intelligence method. Results: Using clinicopathologic data alone, the artificial neural network was able to correctly predict pathologic complete response in 83.3% of the cases. It also correctly predicted 95.6% of locoregional recurrence, as well as correctly determined whether patients were alive or dead at a given time point in 90% of the time. To date, no published research has used clinicopathologic data to predict the response to neoadjuvant chemotherapy in patients with breast cancer, thus highlighting the importance of the present study. Conclusions: Artificial neural network may become an interesting tool for predicting response to neoadjuvant chemotherapy, locoregional recurrence, systemic disease progression, and survival in patients with breast cancer (AU)


Subject(s)
Humans , Female , Middle Aged , Breast Neoplasms/drug therapy , Artificial Intelligence , Neoadjuvant Therapy , Antineoplastic Agents/therapeutic use , Progesterone/metabolism , Retrospective Studies , Neural Networks, Computer , Receptor, ErbB-2/metabolism , Ki-67 Antigen/metabolism , Estrogens/metabolism , Neoplasm Recurrence, Local
3.
Rev. cuba. inform. méd ; 14(2): e519, jul.-dic. 2022. tab, graf
Article in Spanish | LILACS, CUMED | ID: biblio-1408542

ABSTRACT

Este trabajo propone un sistema de diagnóstico del trastorno depresivo para el Centro de Salud Juan Pablo II. En este centro los especialistas aplican como método de evaluación el cuestionario BDI-II (Inventario de Depresión de Beck), que limita el proceso de diagnóstico porque solo contempla la sumatoria de un puntaje como resultado final. Por lo tanto, para mejorar el método de evaluación se propone la construcción de un modelo de diagnóstico basado en redes neuronales y la adaptación del cuestionario BDI-II recopilando ítems del cuestionario asociados a sus respectivos factores establecidos: emocional, cognitivo, físico y de motivación siendo las variables de entrada de la primera capa. El modelo tiene tres capas ocultas y finalmente se obtendrá una capa de salida con el diagnostico general y específico que detallará el resultado del paciente a fin de que el especialista realice un plan personalizado de tratamiento que se ajuste mejor a las necesidades del paciente(AU)


This work proposes a diagnostic system for depressive disorder for the Juan Pablo II Health Center where the specialists apply the BDI-II questionnaire (Beck's Depression Inventory) as evaluation method, which limits the diagnostic process because it only contemplates the sum of a score as a final result. Therefore, to improve the evaluation method, the construction of a diagnostic model based on neural networks and the adaptation of the BDI-II collecting questionnaire items associated with their respective established factors: emotional, cognitive, physical and motivation, being the input variables of the first layer, having three hidden layers and finally an output layer will be sought with the general and specific diagnosis that details the result of the patient so that the specialist can make a personalized treatment plan that better adjusts to the patient needs(AU)


Subject(s)
Humans , Male , Female , Medical Informatics Applications , Surveys and Questionnaires , Neural Networks, Computer , Depressive Disorder/diagnosis , Peru
4.
Int. j. morphol ; 40(1): 107-114, feb. 2022. ilus, tab
Article in English | LILACS-Express | LILACS | ID: biblio-1385563

ABSTRACT

SUMMARY: Sex assessment is an important process in forensic identification. A pelvis is the best skeletal element for identifying sexes due to its sexually dimorphic morphology. This study aimed to compare the accuracy of the visual assessment in dry bones as well as 2D images and to test the accuracy of using a deep convolutional neural network (GoogLeNet) for increasing the performance of a sex determination tool in a Thai population. The total samples consisted of 250 left os coxa that were divided into 200 as a 'training' group (100 females, 100 males) and 50 as a 'test' group. In this study, we observed the auricular area, both hands-on and photographically, for visual assessment and classified the images using GoogLeNet. The intra-inter observer reliabilities were tested for each visual assessment method. Additionally, the validation and test accuracies were 85, 72 percent and 79.5, 60 percent, for dry bone and 2D image methods, respectively. The intra- and inter-observer reliabilities showed moderate agreement (Kappa = 0.54 - 0.67) for both visual assessments. The deep convolutional neural network method showed high accuracy for both validation and test sets (93.33 percent and 88 percent, respectively). Deep learning performed better in classifying sexes from auricular area images than other visual assessment methods. This study suggests that deep learning has advantages in terms of sex classification in Thai samples.


RESUMEN: La evaluación del sexo es un proceso importante en la identificación forense. La pelvis es el mejor elemento esquelético para identificar sexos debido a su morfología sexualmente dimórfica. Este estudio tuvo como objetivo comparar la precisión de la evaluación visual en huesos secos, así como imágenes 2D y probar la precisión del uso de una red neuronal convolucional profunda (GoogLeNet) para aumentar el rendimiento de una herramienta de determinación de sexo en una población tailandesa. Las muestras consistieron en 250 huesos coxales izquierdos, los que fueron dividi- das de la siguiente manera: 200 como un grupo de "entrenamiento" (100 mujeres, 100 hombres) y 50 como un grupo de "prueba". En este estudio, observamos el área auricular, tanto de forma práctica como fotográfica, para una evaluación visual y clasificamos las imágenes utilizando GoogLeNet. Se analizó la confiabilidad intra-interobservador para cada método de evaluación visual. Además, las precisiones de validación y prueba fueron del 85, 72 por ciento y 79,5, 60 por ciento, para los métodos de hueso seco y de imágenes 2D, respectivamente. Las confiabilidades intra e interobservador mostraron un acuerdo moderado (Kappa = 0.54 - 0.67) para ambas evaluaciones visuales. El método de red neuronal convolucional profunda mostró una alta precisión tanto para la validación como para los conjuntos de prueba (93,33 por ciento y 88 por ciento, respectivamente). El aprendizaje se desempeñó mejor en la clasificación de sexos a partir de imágenes del área auricular que otros métodos de evaluación visual. Este estudio sugiere que el aprendizaje profundo tiene ventajas en términos de clasificación por sexo en muestras tailandesas.


Subject(s)
Humans , Male , Female , Pelvic Bones/anatomy & histology , Sex Determination by Skeleton/methods , Deep Learning , Thailand , Neural Networks, Computer
5.
Article in Chinese | WPRIM | ID: wpr-928228

ABSTRACT

Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.


Subject(s)
Algorithms , Humans , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
6.
Article in Chinese | WPRIM | ID: wpr-928226

ABSTRACT

Electrocardiogram (ECG) can visually reflect the physiological electrical activity of human heart, which is important in the field of arrhythmia detection and classification. To address the negative effect of label imbalance in ECG data on arrhythmia classification, this paper proposes a nested long short-term memory network (NLSTM) model for unbalanced ECG signal classification. The NLSTM is built to learn and memorize the temporal characteristics in complex signals, and the focal loss function is used to reduce the weights of easily identifiable samples. Then the residual attention mechanism is used to modify the assigned weights according to the importance of sample characteristic to solve the sample imbalance problem. Then the synthetic minority over-sampling technique is used to perform a simple manual oversampling process on the Massachusetts institute of technology and Beth Israel hospital arrhythmia (MIT-BIH-AR) database to further increase the classification accuracy of the model. Finally, the MIT-BIH arrhythmia database is applied to experimentally verify the above algorithms. The experimental results show that the proposed method can effectively solve the issues of imbalanced samples and unremarkable features in ECG signals, and the overall accuracy of the model reaches 98.34%. It also significantly improves the recognition and classification of minority samples and has provided a new feasible method for ECG-assisted diagnosis, which has practical application significance.


Subject(s)
Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography , Humans , Memory, Short-Term , Neural Networks, Computer , Signal Processing, Computer-Assisted
7.
Article in Chinese | WPRIM | ID: wpr-928224

ABSTRACT

The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95.98%, 98.03% and 95.79% respectively. In this research, the deep learning method was introduced for the analysis of single-lead ECG of HCM patients, which could not only overcome the technical limitations of conventional detection methods based on multi-lead ECG, but also has important application value for assisting doctor in fast and convenient large-scale HCM preliminary screening.


Subject(s)
Algorithms , Cardiomyopathy, Hypertrophic/diagnosis , Databases, Factual , Electrocardiography , Heart Rate , Humans , Neural Networks, Computer
8.
Article in Chinese | WPRIM | ID: wpr-928223

ABSTRACT

The finite element method is a new method to study the mechanism of brain injury caused by blunt instruments. But it is not easy to be applied because of its technology barrier of time-consuming and strong professionalism. In this study, a rapid and quantitative evaluation method was investigated to analyze the craniocerebral injury induced by blunt sticks based on convolutional neural network and finite element method. The velocity curve of stick struck and the maximum principal strain of brain tissue (cerebrum, corpus callosum, cerebellum and brainstem) from the finite element simulation were used as the input and output parameters of the convolutional neural network The convolutional neural network was trained and optimized by using the 10-fold cross-validation method. The Mean Absolute Error (MAE), Mean Square Error (MSE), and Goodness of Fit ( R 2) of the finally selected convolutional neural network model for the prediction of the maximum principal strain of the cerebrum were 0.084, 0.014, and 0.92, respectively. The predicted results of the maximum principal strain of the corpus callosum were 0.062, 0.007, 0.90, respectively. The predicted results of the maximum principal strain of the cerebellum and brainstem were 0.075, 0.011, and 0.94, respectively. These results show that the research and development of the deep convolutional neural network can quickly and accurately assess the local brain injury caused by the sticks blow, and have important application value for understanding the quantitative evaluation and the brain injury caused by the sticks struck. At the same time, this technology improves the computational efficiency and can provide a basis reference for transforming the current acceleration-based brain injury research into a focus on local brain injury research.


Subject(s)
Brain , Brain Injuries , Computer Simulation , Finite Element Analysis , Humans , Neural Networks, Computer
9.
Article in Chinese | WPRIM | ID: wpr-928210

ABSTRACT

Most of the existing near-infrared noninvasive blood glucose detection models focus on the relationship between near-infrared absorbance and blood glucose concentration, but do not consider the impact of human physiological state on blood glucose concentration. In order to improve the performance of prediction model, particle swarm optimization (PSO) algorithm was used to train the structure paramters of back propagation (BP) neural network. Moreover, systolic blood pressure, pulse rate, body temperature and 1 550 nm absorbance were introduced as input variables of blood glucose concentration prediction model, and BP neural network was used as prediction model. In order to solve the problem that traditional BP neural network is easy to fall into local optimization, a hybrid model based on PSO-BP was introduced in this paper. The results showed that the prediction effect of PSO-BP model was better than that of traditional BP neural network. The prediction root mean square error and correlation coefficient of ten-fold cross-validation were 0.95 mmol/L and 0.74, respectively. The Clarke error grid analysis results showed that the proportion of model prediction results falling into region A was 84.39%, and the proportion falling into region B was 15.61%, which met the clinical requirements. The model can quickly measure the blood glucose concentration of the subject, and has relatively high accuracy.


Subject(s)
Algorithms , Blood Glucose , Humans , Neural Networks, Computer
10.
Article in Chinese | WPRIM | ID: wpr-928204

ABSTRACT

Aiming at the problems of individual differences in the asynchrony process of human lower limbs and random changes in stride during walking, this paper proposes a method for gait recognition and prediction using motion posture signals. The research adopts an optimized gated recurrent unit (GRU) network algorithm based on immune particle swarm optimization (IPSO) to establish a network model that takes human body posture change data as the input, and the posture change data and accuracy of the next stage as the output, to realize the prediction of human body posture changes. This paper first clearly outlines the process of IPSO's optimization of the GRU algorithm. It collects human body posture change data of multiple subjects performing flat-land walking, squatting, and sitting leg flexion and extension movements. Then, through comparative analysis of IPSO optimized recurrent neural network (RNN), long short-term memory (LSTM) network, GRU network classification and prediction, the effectiveness of the built model is verified. The test results show that the optimized algorithm can better predict the changes in human posture. Among them, the root mean square error (RMSE) of flat-land walking and squatting can reach the accuracy of 10 -3, and the RMSE of sitting leg flexion and extension can reach the accuracy of 10 -2. The R 2 value of various actions can reach above 0.966. The above research results show that the optimized algorithm can be applied to realize human gait movement evaluation and gait trend prediction in rehabilitation treatment, as well as in the design of artificial limbs and lower limb rehabilitation equipment, which provide a reference for future research to improve patients' limb function, activity level, and life independence ability.


Subject(s)
Algorithms , Gait , Humans , Machine Learning , Neural Networks, Computer , Walking
11.
Article in English | WPRIM | ID: wpr-929072

ABSTRACT

Gestational diabetes mellitus (GDM) is common during pregnancy, with the prevalence reaching as high as 31.0% in some European regions (McIntyre et al., 2019). Dysfunction of the glucose metabolism in pregnancy can influence fetal growth via alteration of the intrauterine environment, resulting in an increased risk of abnormal offspring birth weight (McIntyre et al., 2019). Infants with abnormal birth weight will be faced with increased risks of neonatal complications in the perinatal period and chronic non-communicable diseases in childhood and adulthood (Mitanchez et al., 2015; McIntyre et al., 2019). Therefore, accurate estimation of birth weight for neonates from women with GDM is crucial for more sensible perinatal decision-making and improvement of perinatal outcomes. Timely antenatal intervention, with reference to accurately estimated fetal weight, may also decrease the risks of adverse long-term diseases.


Subject(s)
Adult , Birth Weight , Diabetes, Gestational , Female , Fetal Development , Humans , Infant , Infant, Newborn , Neural Networks, Computer , Pregnancy
12.
Article in Chinese | WPRIM | ID: wpr-928897

ABSTRACT

Premature delivery is one of the direct factors that affect the early development and safety of infants. Its direct clinical manifestation is the change of uterine contraction intensity and frequency. Uterine Electrohysterography(EHG) signal collected from the abdomen of pregnant women can accurately and effectively reflect the uterine contraction, which has higher clinical application value than invasive monitoring technology such as intrauterine pressure catheter. Therefore, the research of fetal preterm birth recognition algorithm based on EHG is particularly important for perinatal fetal monitoring. We proposed a convolution neural network(CNN) based on EHG fetal preterm birth recognition algorithm, and a deep CNN model was constructed by combining the Gramian angular difference field(GADF) with the transfer learning technology. The structure of the model was optimized using the clinical measured term-preterm EHG database. The classification accuracy of 94.38% and F1 value of 97.11% were achieved. The experimental results showed that the model constructed in this paper has a certain auxiliary diagnostic value for clinical prediction of premature delivery.


Subject(s)
Algorithms , Electromyography , Female , Humans , Infant, Newborn , Neural Networks, Computer , Pregnancy , Premature Birth/diagnosis , Uterine Contraction
13.
Article in Chinese | WPRIM | ID: wpr-928892

ABSTRACT

Objective The study aims to investigate the effects of different adaptive statistical iterative reconstruction-V( ASiR-V) and convolution kernel parameters on stability of CT auto-segmentation which is based on deep learning. Method Twenty patients who have received pelvic radiotherapy were selected and different reconstruction parameters were used to establish CT images dataset. Then structures including three soft tissue organs (bladder, bowelbag, small intestine) and five bone organs (left and right femoral head, left and right femur, pelvic) were segmented automatically by deep learning neural network. Performance was evaluated by dice similarity coefficient( DSC) and Hausdorff distance, using filter back projection(FBP) as the reference. Results Auto-segmentation of deep learning is greatly affected by ASIR-V, but less affected by convolution kernel, especially in soft tissues. Conclusion The stability of auto-segmentation is affected by parameter selection of reconstruction algorithm. In practical application, it is necessary to find a balance between image quality and segmentation quality, or improve segmentation network to enhance the stability of auto-segmentation.


Subject(s)
Algorithms , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Radiation Dosage , Tomography, X-Ray Computed
14.
Article in Chinese | WPRIM | ID: wpr-928873

ABSTRACT

CT image based organ segmentation is essential for radiotherapy treatment planning, and it is laborious and time consuming to outline the endangered organs and target areas before making radiation treatment plans. This study proposes a fully automated segmentation method based on fusion convolutional neural network to improve the efficiency of physicians in outlining the endangered organs and target areas. The CT images of 170 postoperative cervical cancer stage IB and IIA patients were selected for network training and automatic outlining of bladder, rectum, femoral head and CTV, and the neural network was used to localize easily distinguishable vessels around the target area to achieve more accurate outlining of CTV.


Subject(s)
Female , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Organs at Risk , Pelvis , Tomography, X-Ray Computed , Uterine Cervical Neoplasms/surgery
15.
Article in Chinese | WPRIM | ID: wpr-928858

ABSTRACT

This paper reviews some recent studies on the recognition and evaluation of facial paralysis based on artificial intelligence. The research methods can be divided into two categories: facial paralysis evaluation based on artificial selection of patients' facial image eigenvalues and facial paralysis evaluation based on neural network and patients' facial images. The analysis shows that the method of manual selection of eigenvalues is suitable for small sample size, but the classification effect of adjacent ratings of facial paralysis needs to be further optimized. The neural network method can distinguish the neighboring grades of facial paralysis relatively well, but it has a higher requirement for sample size. Both of the two methods have good prospects. The features that are more closely related to the evaluation scale are selected manually, and the common development direction may be to extract the time-domain features, so as to achieve the purpose of improving the evaluation accuracy of facial paralysis.


Subject(s)
Artificial Intelligence , Face , Facial Paralysis/diagnosis , Humans , Neural Networks, Computer
16.
Article in English | WPRIM | ID: wpr-928651

ABSTRACT

To compare the performance of generalized additive model (GAM) and long short-term memory recurrent neural network (LSTM-RNN) on the prediction of daily admissions of respiratory diseases with comorbid diabetes. Daily data on air pollutants, meteorological factors and hospital admissions for respiratory diseases from Jan 1st, 2014 to Dec 31st, 2019 in Beijing were collected. LSTM-RNN was used to predict the daily admissions of respiratory diseases with comorbid diabetes, and the results were compared with those of GAM. The evaluation indexes were calculated by five-fold cross validation. Compared with the GAM, the prediction errors of LSTM-RNN were significantly lower [root mean squared error (RMSE): 21.21±3.30 vs. 46.13±7.60, <0.01; mean absolute error (MAE): 14.64±1.99 vs. 36.08±6.20, <0.01], and the value was significantly higher (0.79±0.06 vs. 0.57±0.12, <0.01). In gender stratification, RMSE, MAE and values of LSTM-RNN were better than those of GAM in predicting female admission (all <0.05), but there were no significant difference in predicting male admission between two models (all >0.05). In seasonal stratification, RMSE and MAE of LSTM-RNN were lower than those of GAM in predicting warm season admission (all <0.05), but there was no significant difference in value (>0.05). There were no significant difference in RMSE, MAE and between the two models in predicting cold season admission (all >0.05). In the stratification of functional areas, the RMSE, MAE and values of LSTM-RNN were better than those of GAM in predicting core area admission (all <0.05). has lower prediction errors and better fitting than the GAM, which can provide scientific basis for precise allocation of medical resources in polluted weather in advance.


Subject(s)
Beijing/epidemiology , Diabetes Mellitus/epidemiology , Female , Hospitalization , Humans , Male , Memory, Short-Term , Neural Networks, Computer
17.
Article in Chinese | WPRIM | ID: wpr-939629

ABSTRACT

In recent years, exploring the physiological and pathological mechanisms of brain functional integration from the neural network level has become one of the focuses of neuroscience research. Due to the non-stationary and nonlinear characteristics of neural signals, its linear characteristics are not sufficient to fully explain the potential neurophysiological activity mechanism in the implementation of complex brain functions. In order to overcome the limitation that the linear algorithm cannot effectively analyze the nonlinear characteristics of signals, researchers proposed the transfer entropy (TE) algorithm. In recent years, with the introduction of the concept of brain functional network, TE has been continuously optimized as a powerful tool for nonlinear time series multivariate analysis. This paper first introduces the principle of TE algorithm and the research progress of related improved algorithms, discusses and compares their respective characteristics, and then summarizes the application of TE algorithm in the field of electrophysiological signal analysis. Finally, combined with the research progress in recent years, the existing problems of TE are discussed, and the future development direction is prospected.


Subject(s)
Algorithms , Brain/physiology , Entropy , Neural Networks, Computer , Nonlinear Dynamics
18.
Article in Chinese | WPRIM | ID: wpr-939624

ABSTRACT

Blood velocity inversion based on magnetoelectric effect is helpful for the development of daily monitoring of vascular stenosis, but the accuracy of blood velocity inversion and imaging resolution still need to be improved. Therefore, a convolutional neural network (CNN) based inversion imaging method for intravascular blood flow velocity was proposed in this paper. Firstly, unsupervised learning CNN is constructed to extract weight matrix representation information to preprocess voltage data. Then the preprocessing results are input to supervised learning CNN, and the blood flow velocity value is output by nonlinear mapping. Finally, angiographic images are obtained. In this paper, the validity of the proposed method is verified by constructing data set. The results show that the correlation coefficients of blood velocity inversion in vessel location and stenosis test are 0.884 4 and 0.972 1, respectively. The above research shows that the proposed method can effectively reduce the information loss during the inversion process and improve the inversion accuracy and imaging resolution, which is expected to assist clinical diagnosis.


Subject(s)
Angiography , Blood Flow Velocity , Constriction, Pathologic , Humans , Neural Networks, Computer
19.
Article in Chinese | WPRIM | ID: wpr-939618

ABSTRACT

The automatic recognition technology of muscle fatigue has widespread application in the field of kinesiology and rehabilitation medicine. In this paper, we used surface electromyography (sEMG) to study the recognition of leg muscle fatigue during circuit resistance training. The purpose of this study was to solve the problem that the sEMG signals have a lot of noise interference and the recognition accuracy of the existing muscle fatigue recognition model is not high enough. First, we proposed an improved wavelet threshold function denoising algorithm to denoise the sEMG signal. Then, we build a muscle fatigue state recognition model based on long short-term memory (LSTM), and used the Holdout method to evaluate the performance of the model. Finally, the denoising effect of the improved wavelet threshold function denoising method proposed in this paper was compared with the denoising effect of the traditional wavelet threshold denoising method. We compared the performance of the proposed muscle fatigue recognition model with that of particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN). The results showed that the new wavelet threshold function had better denoising performance than hard and soft threshold functions. The accuracy of LSTM network model in identifying muscle fatigue was 4.89% and 2.47% higher than that of PSO-SVM and CNN, respectively. The sEMG signal denoising method and muscle fatigue recognition model proposed in this paper have important implications for monitoring muscle fatigue during rehabilitation training and exercise.


Subject(s)
Electromyography , Memory, Short-Term , Muscle Fatigue , Neural Networks, Computer , Recognition, Psychology
20.
Article in Chinese | WPRIM | ID: wpr-939612

ABSTRACT

Lung cancer is the most threatening tumor disease to human health. Early detection is crucial to improve the survival rate and recovery rate of lung cancer patients. Existing methods use the two-dimensional multi-view framework to learn lung nodules features and simply integrate multi-view features to achieve the classification of benign and malignant lung nodules. However, these methods suffer from the problems of not capturing the spatial features effectively and ignoring the variability of multi-views. Therefore, this paper proposes a three-dimensional (3D) multi-view convolutional neural network (MVCNN) framework. To further solve the problem of different views in the multi-view model, a 3D multi-view squeeze-and-excitation convolution neural network (MVSECNN) model is constructed by introducing the squeeze-and-excitation (SE) module in the feature fusion stage. Finally, statistical methods are used to analyze model predictions and doctor annotations. In the independent test set, the classification accuracy and sensitivity of the model were 96.04% and 98.59% respectively, which were higher than other state-of-the-art methods. The consistency score between the predictions of the model and the pathological diagnosis results was 0.948, which is significantly higher than that between the doctor annotations and the pathological diagnosis results. The methods presented in this paper can effectively learn the spatial heterogeneity of lung nodules and solve the problem of multi-view differences. At the same time, the classification of benign and malignant lung nodules can be achieved, which is of great significance for assisting doctors in clinical diagnosis.


Subject(s)
Humans , Lung/pathology , Lung Neoplasms/pathology , Neural Networks, Computer , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL