ABSTRACT
SUMMARY: Many students regard neuroanatomy as a terrifying subject due to the complicated neuronal connections. Purpose of this research was to promote the easy and logical learning of neuroanatomy by systematizing a rule "three neurons of afferent nerves." The rule, in which the second neuron decussates and reaches the thalamus, was applied to as many structures as possible. The three neurons are drawn in a constant pattern to intuitively demonstrate the rule. The rule could be applied not only to the spinothalamic tract, medial lemniscus pathway, sensory cranial nerves (visual pathway, trigeminothalamic tract, taste pathway, and auditory pathway) and ascending reticular activating system, but also to the pontocerebellum (afferent to cerebrum), basal nuclei (direct pathway), and limbic system (medial limbic circuit). Exceptionally, some afferent nerves do not exactly follow the suggested rule. This simple rule, which corresponds to many pathways of the neuroanatomy, is expected to make the learning by novice students easier.
Muchos estudiantes consideran la neuroanatomía como un tema aterrador debido a las complicadas conexiones neuronales. El propósito de esta investigación fue promover el aprendizaje fácil y lógico de la neuroanatomía mediante la sistematización de una regla "tres neuronas de los nervios aferentes". La regla, en la que la segunda neurona se decusa y llega al tálamo, se aplicó a todas las estructuras cuando esto fue posible. Las tres neuronas se dibujan en un patrón constante para demostrar la regla intuitivamente. La regla podría aplicarse no solo al tracto espinotalámico, la vía del lemnisco medial, los nervios craneales sensoriales (vía visual, tracto trigeminotalámico, vía gustativa y vía auditiva) y el sistema de activación reticular ascendente, sino también al pontocerebelo (aferente al cerebro), núcleos basales (vía directa) y sistema límbico (circuito límbico medial). Excepcionalmente, algunos nervios aferentes no siguen exactamente la regla sugerida. Se espera que esta simple regla, que corresponde a muchas vías de la neuroanatomía, facilite el aprendizaje de los estudiantes principiantes.
Subject(s)
Humans , Neuroanatomy/education , Neurons, Afferent , Education, Medical, Undergraduate , LearningABSTRACT
Dentin hypersensitivity is an abrupt intense pain caused by innocuous stimuli to exposed dentinal tubules. Mechanosensitive ion channels have been assessed in dental primary afferent neurons and odontoblasts to explain dentin hypersensitivity. Dentinal fluid dynamics evoked by various stimuli to exposed dentin cause mechanical stress to the structures underlying dentin. This review briefly discusses three hypotheses regarding dentin hypersensitivity and introduces recent findings on mechanosensitive ion channels expressed in the dental sensory system and discusses how the activation of these ion channels is involved in dentin hypersensitivity.
Subject(s)
Dental Physiological Phenomena , Dentin Sensitivity , Dentin , Dentinal Fluid , Hydrodynamics , Ion Channels , Mechanoreceptors , Neurons, Afferent , Odontoblasts , Stress, MechanicalABSTRACT
Obesity is a prevalent disease with significant morbidity and mortality. It is a state of chronic low-grade inflammation due to excess body fat. Weight homeostasis is maintained through changes in various gastrointestinal hormones caused by dietary intake. However, being overweight or obese breaks the balance of these appetite-related gastrointestinal hormones and creates resistance to the actions of these hormones. The sensitivity of vagal afferent neurons to peripheral signals becomes blunted. Cytokines produced by excessive fat tissue damage our normal immune system, making us vulnerable to infection. In addition, various changes in gastrointestinal motility occur. Therefore, this review focuses on the various changes in gastrointestinal hormones, the immune state, the vagus nerve, and gastrointestinal movement in obese patients.
Subject(s)
Humans , Adipose Tissue , Cytokines , Gastrointestinal Hormones , Gastrointestinal Motility , Homeostasis , Immune System , Inflammation , Mortality , Neurons, Afferent , Obesity , Overweight , Physiology , Vagus NerveABSTRACT
Migraine is a neurological disorder characterized by recurrent and disabling severe headaches. Although several anticonvulsant drugs that block voltage-dependent Na⁺ channels are widely used for migraine, far less is known about the therapeutic actions of carbamazepine on migraine. In the present study, therefore, we characterized the effects of carbamazepine on tetrodotoxin-resistant (TTX-R) Na⁺ channels in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na⁺ currents were measured in medium-sized DiIpositive neurons using the whole-cell patch clamp technique in the voltage-clamp mode. While carbamazepine had little effect on the peak amplitude of transient Na⁺ currents, it strongly inhibited steady-state currents of transient as well as persistent Na⁺ currents in a concentration-dependent manner. Carbamazepine had only minor effects on the voltage-activation relationship, the voltage-inactivation relationship, and the use-dependent inhibition of TTX-R Na⁺ channels. However, carbamazepine changed the inactivation kinetics of TTX-R Na⁺ channels, significantly accelerating the development of inactivation and delaying the recovery from inactivation. In the current-clamp mode, carbamazepine decreased the number of action potentials without changing the action potential threshold. Given that the sensitization of dural afferent neurons by inflammatory mediators triggers acute migraine headaches and that inflammatory mediators potentiate TTX-R Na⁺ currents, the present results suggest that carbamazepine may be useful for the treatment of migraine headaches.
Subject(s)
Animals , Rats , Action Potentials , Anticonvulsants , Carbamazepine , Headache , Kinetics , Migraine Disorders , Nervous System Diseases , Neurons , Neurons, Afferent , Sodium Channels , Trigeminal GanglionABSTRACT
PURPOSE: The neurological molecular mechanisms underlying the voiding dysfunction associated with nonbacterial chronic prostatitis/chronic pelvic pain syndrome remain poorly understood. In this study, we assessed whether prostate inflammation activated bladder afferent neurons, leading to bladder dysfunction, and sought to elucidate the underlying mechanisms. METHODS: Thirty male Sprague-Dawley rats were divided into 3 groups: sham-saline, formalin-injected, and capsaicin-pretreated and formalin-injected. Chemical prostatitis was induced by 0.1 mL of 10% buffered formalin injected into the ventral prostate. Capsaicin was injected subcutaneously to desensitize capsaicin-sensitive nerves. In each group, conscious cystometry was performed, and c-fos expression within the spinal cord was determined immunocytochemically. Double immunofluorescent staining with c-fos and choline acetyltransferase (ChAT) was performed. On the third day after pseudorabies virus (PRV) infection, c-fos and PRV double-staining was performed. RESULTS: Intraprostatic formalin significantly increased the maximal voiding pressure and decreased the intercontraction interval, compared with controls. Pretreatment with capsaicin significantly reversed these effects. More c-fos-positive cells were observed in the sacral parasympathetic nucleus (SPN) and dorsal gray commissure (DCM) in the prostatitis group than in the sham group. c-fos-positive cells decreased in the capsaicin-pretreated group. Preganglionic neurons labeled by c-fos and ChAT were observed in the SPN in rats with prostatitis. Interneurons labeled by c-fos and PRV were identified in the DCM after PRV infection. CONCLUSIONS: Our results suggest that prostate inflammation activates afferent nerve fibers projecting to the lumbosacral spinal cord, producing reflex activation of spinal neurons innervating the bladder and bladder hyperreflexia. This is mediated by capsaicin-sensitive prostate afferent neurons.
Subject(s)
Animals , Humans , Male , Rats , Capsaicin , Choline O-Acetyltransferase , Formaldehyde , Herpesvirus 1, Suid , Inflammation , Interneurons , Models, Animal , Nerve Fibers , Neurons , Neurons, Afferent , Pelvic Pain , Prostate , Prostatitis , Rats, Sprague-Dawley , Reflex , Reflex, Abnormal , Spinal Cord , Urinary BladderABSTRACT
ABSTRACT Objective To determine adenosine 5’-triphosphate levels in the interstice of spinal cord L6-S1 segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. Methods A microdialysis probe was transversally implanted in the dorsal half of spinal cord L6-S1 segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5’-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH2O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Results Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5’-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5’-triphosphate levels and no further increase in adenosine 5’-triphosphate was observed during bladder distension. Conclusion Adenosine 5’-triphosphate was present in the interstice of L6-S1 spinal cord segments, was degraded by ectonucleotidase, and its concentration increased following the activation of bladder mechanosensitive but not of the chemosensitive afferents fibers. Adenosine 5’-triphosphate may originate either from the central endings of bladder mechanosensitive primary afferent neurons, or most likely from intrinsic spinal neurons, or glial cells and its release appears to be modulated by capsaicin activated bladder primary afferent or by adenosine 5’-triphosphate itself.
RESUMO Objetivo Determinar as concentrações extracelulares do 5’-trifosfato de adenosina no interstício dos segmentos medulares L6-S1, em condições basais ou durante a ativação mecânica e química das fibras aferentes vesicais. Métodos Um cateter de microdiálise foi implantado no sentido transversal na parte dorsal da medula espinal, entre os segmentos L6-S1 de ratas. O microdialisado foi coletado em intervalos de 15 minutos, durante 135 minutos, com os animais anestesiados. A concentração de 5’-trifosfato de adenosina nas amostras foi determinada mediante ensaio de bioluminescência. Em um grupo de animais (n=7), as amostras de microdialisado foram obtidas com a bexiga vazia, com distensão da bexiga para volume de 20 ou 40cmH2O, com solução salina, solução salina com ácido acético, ou solução salina com capsaicina. Em outro grupo (n=6), foi realizada com a bexiga distendida, e a solução para microdiálise continha o inibidor de ectonucleotidase ARL 67156. Resultados Os níveis extracelulares de trifosfato de adenosina no início do estudo foram 110,9±35,36fmol/15 minutos (média±EPM, n=13), e a distensão da bexiga causou um aumento nos níveis de 5’-trifosfato de adenosina, o que não foi observado após a distensão da bexiga com solução salina contendo capsaicina (10µM). A microdiálise com solução contendo ARL 67156 (1mM) foi associada com significante aumento dos níveis de trifosfato de adenosina extracelular, e nenhum aumento do trifosfato de adenosina foi observado durante a distensão da bexiga. Conclusão O 5’-trifosfato de adenosina está presente no interstício do segmento L6-S1 da medula espinal, é degradado por ectonucleotidases, e sua concentração aumentou com a ativação das fibras aferentes mecanossensíveis da bexiga, mas não das quimiossensíveis. O 5’-trifosfato de adenosina pode ter sido liberado das terminações centrais dos neurônios aferentes primários mecanossensíveis ou, mais provavelmente, de neurônios espinais intrínsecos, ou ainda de células gliais. Sua liberação parece ser modulada por fibras aferentes primárias da bexiga ativadas pela capsaicina ou pelo próprio 5’-trifosfato de adenosina.
Subject(s)
Animals , Female , Rats , Spinal Cord/chemistry , Urinary Bladder/innervation , Adenosine Triphosphate/analysis , Visceral Afferents , Microdialysis/methods , Neurons, Afferent/physiology , Spinal Cord/drug effects , Urinary Bladder/drug effects , Adenosine Triphosphate/pharmacology , Rats, Sprague-Dawley , Luminescent Measurements , Neurons, Afferent/drug effects , Neurons, Afferent/metabolismABSTRACT
Walter Álvarez Quispe, terapeuta kallawaya y biomédico especializado en cirugía general y ginecología, presenta la lucha de los terapeutas tradicionales y alternativos por la depenalización de estos sistemas médicos andinos realizada entre 1960 y 1990. Bolivia se torna el primer país en América Latina y el Caribe en despenalizar la medicina tradicional antes de los planteamientos de la Conferencia Internacional sobre Atención Primaria de Salud (Alma-Ata, 1978). Los datos aportados por el entrevistado aseguran que los logros alcanzados, principalmente por los kallawayas, responden a un proyecto propio y autónomo. Estas conquistas no se deben a las políticas oficiales de interculturalidad en salud, aunque busquen atribuirse para sí los logros alcanzados.
Walter Álvarez Quispe, a Kallawaya healer and biomedical practitioner specializing in general surgery and gynecology, presents the struggle of traditional and alternative healers to get their Andean medical systems depenalized between 1960 and 1990. Bolivia was the first country in Latin America and the Caribbean to decriminalize traditional medicine before the proposals of the International Conference on Primary Health Care (Alma-Ata, 1978). The data provided by the interviewee show that the successes achieved, mainly by the Kallawayas, stem from their own independent initiative. These victories are not the result of official policies of interculturality in healthcare, although the successes achieved tend to be ascribed to them.
Subject(s)
Animals , Guinea Pigs , Male , Bronchi/innervation , Bronchoconstriction/drug effects , Bronchoconstrictor Agents/pharmacology , Citric Acid/pharmacology , Neurons, Afferent/physiology , Sulfites/pharmacology , Administration, Inhalation , Acetylcholine/pharmacology , Airway Resistance/drug effects , Autacoids/pharmacology , Bradykinin/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Citric Acid/administration & dosage , Hydrogen-Ion Concentration , Histamine/pharmacology , In Vitro Techniques , Lung Compliance/drug effects , Lung/innervation , Lung/metabolism , Neurokinin A/pharmacology , Neurons, Afferent/drug effects , Serotonin/pharmacology , Substance P/pharmacology , Sulfites/administration & dosageABSTRACT
Objective To understand the experiences and expectations of nurses in the treatment of women with chronic venous ulcers. Method Phenomenological research was based on Alfred Schütz, whose statements were obtained in January, 2012, through semi-structured interviews with seven nurses. Results The nurse reveals the difficulties presented by the woman in performing self-care, the perceived limitations in the treatment anchored in motivation, and the values and beliefs of women. It showed professional frustration because venous leg ulcer recurrence, lack of inputs, interdisciplinary work and training of nursing staff. There was an expected adherence to the treatment of women, and it emphasized the need for ongoing care, supported self-care and standard practices in treatment. Conclusion That treatment of chronic venous leg ulcers constitutes a challenge that requires collective investment, involving women, professionals, managers and health institutions. .
Objetivo Comprender las experiencias y expectativas de enfermeras en el tratamiento de mujeres con úlcera venosa crónica. Método Investigación fenomenológica fundamentada en Alfred Schutz, que buscó Se realizó entrevista semiestructurada con siete enfermeras, en enero del 2012. Resultados La enfermera revela dificultades presentadas por la mujer para realizar el autocuidado, percibe limitaciones en el tratamiento relacionadas con la desmotivación, los valores y las creencias de las mujeres. Refiere frustración profesional debido a la recidiva de la lesión, a la falta de insumos, al deficiente trabajo interdisciplinar y a la limitada capacitación del equipo de enfermeras. Espera la adhesión de la mujer al tratamiento y resalta la necesidad del cuidado continuo, del autocuidado apoyado y de estandarizar conductas de tratamiento. Conclusión El tratamiento de la úlcera venosa crónica es un desafío que requiere contribución colectiva, involucrando a las mujeres, a los profesionales, a los gestores y a las instituciones de salud. .
Objetivo Compreender as experiências e expectativas de enfermeiras no tratamento de mulheres com úlcera venosa crônica na Atenção Primária à Saúde. Método Pesquisa fundamentada na fenomenologia social de Alfred Schütz, com depoimentos obtidos em janeiro de 2012, por meio de entrevista semiestruturada com sete enfermeiras. Resultados As enfermeiras revelam dificuldades apresentadas pelas mulheres com úlcera venosa crônica para realizar o autocuidado, percebem limitações na terapêutica ancoradas na desmotivação e nos valores e crenças das mulheres. Referem frustração profissional em razão da recidiva da lesão, falta de insumos e tecnologia, de trabalho interdisciplinar e da capacitação da equipe de enfermagem. Esperam a adesão das mulheres ao tratamento e ressaltam a necessidade do cuidado contínuo, do autocuidado apoiado e da padronização de condutas no tratamento. Conclusão O tratamento da úlcera venosa crônica constitui-se em um desafio que requer investimento coletivo, envolvendo a mulher, os profissionais, os gestores e as instituições de saúde. .
Subject(s)
Animals , Caenorhabditis elegans Proteins/isolation & purification , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Ion Channels/isolation & purification , Ion Channels/metabolism , Nerve Tissue Proteins/isolation & purification , Nerve Tissue Proteins/metabolism , Nervous System/metabolism , Neurons, Afferent/metabolism , Sensation/genetics , Amino Acid Sequence/genetics , Base Sequence/genetics , Behavior, Animal/drug effects , Behavior, Animal/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Capsaicin/pharmacology , Cell Compartmentation/genetics , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Gene Expression Regulation/physiology , Ion Channels/genetics , Ion Channels/ultrastructure , Molecular Sequence Data , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/ultrastructure , Nervous System/cytology , Nervous System/drug effects , Neurons, Afferent/cytology , Neurons, Afferent/drug effects , Pain/genetics , Pain/metabolism , Pain/physiopathology , Phylogeny , Receptors, Drug/drug effects , Receptors, Drug/metabolism , Receptors, Drug/ultrastructure , Sensation/drug effects , Signal Transduction/genetics , TRPV Cation Channels , Transient Receptor Potential ChannelsABSTRACT
Nausea and emesis are a major side effect and obstacle for chemotherapy in cancer patients. Employ of antiemetic drugs help to suppress chemotherapy-induced emesis in some patients but not all patients. Ginger, an herbal medicine, has been traditionally used to treat various kinds of diseases including gastrointestinal symptoms. Ginger is effective in alleviating nausea and emesis, particularly, for cytotoxic chemotherapy drug-induced emesis. Ginger-mediated antiemetic effect has been attributed to its pungent constituents-mediated inhibition of serotonin (5-HT) receptor activity but its cellular mechanism of action is still unclear. Emetogenic chemotherapy drugs increase 5-HT concentration and activate visceral vagal afferent nerve activity. Thus, 5-HT mediated vagal afferent activation is essential to provoke emesis during chemotherapy. In this experiment, water extract of ginger and its three major pungent constituent's effect on 5-HT-evoked responses were tested on acutely dispersed visceral afferent neurons with patch-clamp methods. The ginger extract has similar effects to antiemetic drug ondansetron by blocking 5-HT-evoked responses. Pungent constituents of the ginger, [6]-shogaol, [6]-gingerol, and zingerone inhibited 5-HT responses in a dose dependent manner. The order of inhibitory potency for these compounds were [6]-shogaol>[6]-gingerol>zingerone. Unlike well-known competitive 5-HT3 receptor antagonist ondansetron, all tested ginger constituents acted as non-competitive antagonist. Our results imply that ginger and its pungent constituents exert antiemetic effects by blocking 5-HT-induced emetic signal transmission in vagal afferent neurons.
Subject(s)
Humans , Antiemetics , Drug Therapy , Zingiber officinale , Herbal Medicine , Nausea , Neurons , Neurons, Afferent , Ondansetron , Receptors, Serotonin, 5-HT3 , Serotonin , Visceral Afferents , Vomiting , WaterABSTRACT
Aquí exponemos un modelo que explica por qué, en el sistema nervioso central, los anti-inflamatorios no esteroideos, para ejercer su acción analgésica, deben interactuar con los opioides endógenos y los canabinoides endógenos. La sustancia gris del acueducto de Silvio es una estructura clave del llamado "sistema descendente de control nociceptivo". La activación de este sistema disminuye el flujo de mensajes nociceptivos hacia la corteza cerebral y, por lo tanto, el dolor. En la sustancia gris el ácido araquidónico es el elemento donde los opioides endógenos, los analgésicos opioides y los no-opioides (anti-inflamatorios no esteroideos) convergen para inducir analgesia. Las enzimas degradantes de los endocanabinoides son el punto donde estos y los analgésicos no-opioides convergen para inducir analgesia. Parece ventajoso el hecho de que los analgésicos que se compran libremente en la farmacia pueden aprovechar para su acción los mecanismos endógenos que todos nosotros poseemos
Here we present a model that explains why, in the central nervous system, the nonsteroidal antiinflammatory drugs, in order to induce analgesia, must interact with the endogenous opioids and the endocannabinoids. The periaqueductal gray matter is a key structure in the socalled "descending pain control system". Activations of this system diminishes the flow of nociceptive signals towards the cerebral cortex and, therefore, pain perception. In the periaqueductal gray matter, arachidonic acid is the elements where endogenous opioids analgesics and nonopioid analgesics converge to induce analgasia. The endocannabinoid metabolizing enzyme are the point at which endocannabinoids and nonsteroidal antinflammatory drugs converge to induce analgesia. There seems to be some advantage in that analgesics that can be bought over the counter can use for their action some endogenous mechanisms that we all possess
Subject(s)
Humans , Anti-Inflammatory Agents , Analgesics, Opioid/pharmacology , Cannabinoids , Cerebral Cortex , Neurons, Afferent , Pain Management , Central Nervous System/anatomy & histology , EndocannabinoidsABSTRACT
The rostral ventromedial medulla (RVM) is a prominent component of the descending modulatory system involved in the control of spinal nociceptive transmission. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the RVM, where the neurons involved in modulation of nociception reside. Using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found a large number of GFP-positive neurons in the RVM [nucleus raphe magnus (NRM) and nucleus gigantocellularis pars α (NGCα)]. Fluorescence immunohistochemistry revealed that approximately 10% of MC4R-GFP-positive neurons coexpressed tyrosine hydroxylase, indicating that they were catecholaminergic, whereas 50%-75% of those coexpressed tryptophan hydroxylase, indicating that they were serotonergic. Our findings support the hypothesis that MC4R signaling in RVM may modulate the activity of serotonergic sympathetic outflow sensitive to nociceptive signals, and that MC4R signaling in RVM may contribute to the descending modulation of nociceptive transmission.
Subject(s)
Animals , Female , Male , Mice , Medulla Oblongata , Cell Biology , Metabolism , Mice, Transgenic , Neural Pathways , Cell Biology , Metabolism , Neurons, Afferent , Cell Biology , Metabolism , Nociception , Physiology , Receptor, Melanocortin, Type 4 , Genetics , Metabolism , Serotonergic Neurons , Metabolism , Tyrosine 3-Monooxygenase , MetabolismABSTRACT
The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8/per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg-1·day-1, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5 percent (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7 percent), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9 percent, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.
Subject(s)
Animals , Male , Rats , Formaldehyde/antagonists & inhibitors , Nociception/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Sertraline/pharmacology , Arterial Pressure/drug effects , Formaldehyde/pharmacology , Heart Rate/drug effects , Neurons, Afferent/drug effects , Pain Measurement/drug effects , Rats, Wistar , Respiratory Rate/drug effects , Sciatic Nerve/drug effects , Serotonin/bloodABSTRACT
The long belief that dental primary afferent (DPA) neurons are entirely composed of nociceptive neurons has been challenged by several anatomical and functional investigations. In order to characterize non-nociceptivepopulation among DPA neurons, retrograde transport fluorescent dye was placed in upper molars of rats and immunohistochemical detection of peripherin and neurofilament 200 in the labeled trigeminal ganglia was performed. As the results, majority ofDPA neurons were peripherin-expressing small-sized neurons, showing characteristic ofnociceptive C-fibers. However, 25.7% of DPA were stained with antibody against neurofilament 200, indicating significant portion of DPA neurons are related to large myelinated Abeta fibers. There were a small number of neurons thatexpressed both peripherin and neurofilament 200, suggestive of Adelta fibers. The possible transition of neurochemical properties by neuronal injury induced by retrograde labeling technique was ruled out by detection of minimal expression of neuronal injury marker, ATF-3. These results suggest that in addition to the large population of C-fiber-related nociceptive neurons, a subset of DPA neurons is myelinated large neurons, which is related to low-threshold mechanosensitive Abeta fibers. We suggest that these Abeta fiber-related neurons might play a role as mechanotransducers of fluid movement within dentinal tubules.
Subject(s)
Animals , Rats , Dentin , Intermediate Filament Proteins , Membrane Glycoproteins , Molar , Myelin Sheath , Nerve Tissue Proteins , Neurofilament Proteins , Neurons , Neurons, Afferent , Nociceptors , Trigeminal GanglionABSTRACT
Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal contractions in the interdigestive state. This review article discussed the mechanism of gastrointestinal MMC. Luminal administration of 5-hydroxytryptamine (5-HT) initiates duodenal phase II followed by gastrointestinal phase III with a concomitant increase of plasma motilin release in conscious dogs. Duodenal 5-HT concentration is increased during gastric phase II and phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces gastrointestinal phase III. 5-HT4 antagonists significantly inhibits both of gastric and intestinal phase III, while 5-HT3 antagonists inhibited only gastric phase III. These suggest that gastrointestinal MMC cycle is mediated via the interaction between motilin and 5-HT by the positive feedback mechanism. Gastric MMC is regulated via vagus, 5-HT3/4 receptors and motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons and 5-HT4 receptors. Stress is highly associated with the pathogenesis of functional dyspepsia. Acoustic stress attenuates gastric phase III without affecting intestinal phase III in conscious dogs, via reduced vagal activity and increased sympathetic activity. It has been shown that subset of functional dyspepsia patients show reduced vagal activity and impaired gastric phase III. The physiological importance of gastric MMC is a mechanical and chemical cleansing of the empty stomach in preparation for the next meal. The impaired gastric MMC may aggravate dyspeptic symptoms following a food ingestion. Thus, maintaining gastric MMC in the interdigestive state is an important factor to prevent the postprandial dyspeptic symptoms.
Subject(s)
Animals , Dogs , Humans , Acoustics , Autonomic Pathways , Contracts , Dyspepsia , Eating , Enterochromaffin Cells , Infusions, Intravenous , Meals , Motilin , Myoelectric Complex, Migrating , Neurons, Afferent , Phenobarbital , Plasma , Receptors, Serotonin, 5-HT4 , Serotonin , Serotonin 5-HT3 Receptor Antagonists , Serotonin 5-HT4 Receptor Antagonists , StomachABSTRACT
Sciatic nerve injury is a common disease of peripheral nerve in clinic. After nerve injury, there are many dysfunctions in motoneurons and muscles following regeneration. Previous studies mostly investigated the aspects related to the injured nerve, and the effect on the recurrent inhibition (RI) pathway of spine following regeneration was not fully understood. Following reinnervation after temporary sciatic nerve crush, the functional alteration of RI was studied. In adult rats, RI between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSRs) elicited from the cut dorsal roots and recorded from either the LG-S or MG nerves by antidromic stimulation of the synergist muscle nerve. The following results were obtained. (1) The RI of MSRs in rats was almost lost (<5 weeks) after sciatic nerve crush. Although the RI partially recovered following reinnervation (6 weeks), it remained permanently depressed (up to 14 weeks). (2) Sciatic nerve crush on one side did not affect the contralateral RI. (3) Sciatic nerve crush did not induce any motoneuron loss revealed by immunohistochemistry. Peripheral nerve temporary disconnection causes long term alterations in RI pathway which make up motoneuron's function enhance for the alteration of muscle power and suggests that peripheral nerve injury induces long term plastic changes in the spinal motoneuron circuitry.
Subject(s)
Animals , Male , Rats , Long-Term Synaptic Depression , Physiology , Motor Neurons , Physiology , Nerve Crush , Nerve Regeneration , Physiology , Neuronal Plasticity , Physiology , Neurons, Afferent , Physiology , Rats, Wistar , Reflex, Monosynaptic , Physiology , Sciatic Nerve , Wounds and Injuries , Spinal Cord , Spinal Nerve RootsABSTRACT
La neurona sensorial de fibras pequeñas se encarga de la función termoalgésica y autonómica, función que se ve afectada por procesos tóxicos, mediados por sustancias como la del alcohol o por medicamentos antineoplásicos, biológicos o inmunoreguladores, en los que se comprometen en gran medida los factores neutróficos que soportan o mantienen a las estructuras neuronales sensoriales. Estas sustancias penetran en las neuronas sensoriales en los ganglios de las raíces dorsales, que carece de barrera protectora afectan especialmente a los factores de crecimiento neural (NGF), y de crecimiento neural derivado del cerebro BDNF, que son los encargados de restaurar y mantener las estructuras que median sus acciones a través de sustancia P y acetilcolina, de allí su sintomatología de dolor quemante y de los cambios autonómicos. Esta toxicidad varía en gran medida por la concentración de las sustancias en el ganglio de la raíz dorsal o por las alteraciones que se originan en las mitocondrial por disregulación en la homeostasis del calcio o de procesos asociados. También se puede presentar compromiso en las subunidades de las beta-tubulinas de las axones que se comprometen en la división celular y en la apoptosis, originando compromiso en el transporte axonal. Una estrategia terapéutica es la prevención de estas complicaciones o la supresión de la sustancia, lo cual debe revertir el proceso. La administración de factores neurotróficos puede prevenir o tratar estas complicaciones, una manera más racional es la corrección de las deficiencias nutricionales, sustancias esenciales para la toxicidad de medicamentos función de estas estructuras con la administración de oligoelementos de calcio y magnesio, previa y posteriormente a la administración de medicamentos con reconocida toxicidad en los nervios de fibras pequeñas.
Subject(s)
Humans , Alcoholic Neuropathy , Nerve Growth Factors , Neurons, Afferent , ToxoidsABSTRACT
<p><b>OBJECTIVE</b>To study the distribution character of the trigeminal sensory afferent fibers in rat's trigeminal sensory root (RxV) and to explore the possibility of selectively injury of the pain afferent fibers.</p><p><b>METHODS</b>The retrograde tracer fluorogold (FG) was injected into trigeminal spinal subnucleus and pontine nucleus respectively. After 7 days survival, the rats were sacrificed and the RxV was removed and sectioned. The distribution of FG at RxV was studied under fluorescent microscope and its character was analyzed.</p><p><b>RESULTS</b>After being introduced into trigeminal spinal rostral nucleus, the FG could be observed at the lateral portion on the sections of RxV. The fibers were small and concentrated. The interpolaris subnucleus and caudal subnucleus injection group also showed small and concentrated fibers in the lateral portion of RxV, but the distribution area was larger than that of the rostral subnucleus group. While being injected into trigeminal pontine nucleus, the FG positive axons could be found in the ventral, medial and central portion of the RxV cross sections. These fibers were thicker and more scattered compared to those projecting into trigeminal spinal nucleus.</p><p><b>CONCLUSION</b>The fibers relating to transporting pain sensory concentrate at a certain area of rat' s RxV, which indicate that selectively injury of the pain afferent fibers of RxV should be possible.</p>
Subject(s)
Animals , Male , Rats , Fluorescent Dyes , Neurons, Afferent , Physiology , Rats, Wistar , Staining and Labeling , Trigeminal Ganglion , Physiology , Trigeminal NeuralgiaABSTRACT
BACKGROUND AND OBJECTIVES: Voltage dependent calcium channel (VDCC) mediates calcium ion influx and controls neurotransmitter release in excitable cells. Hair cells in vertebrates cochlea are known to express L-type VDCC. The purpose of this study was to measure calcium current from hair cells to investigate basic activity and characteristics of VDCC. MATERIALS AND METHOD: We measured calcium current in hair cells of the chicken's auditory organ, the basilar papilla analogous to the mammalian cochlea, in whose L-type, dihydropyridinesensitive calcium channels predominate and in vestibular hair cells from cristae. Calcium currentthrough VDCC was isolated in voltage-clamp recording using Cesium, Tetraethylammonium, 4- aminopyridine and apamin to block the much larger potassium currents. Various concentrations of internal calcium buffer, ethylene glycol tetraacetic acid (EGTA) or 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) were used. RESULTS: The higher the buffer concentration, the larger the current size were ; they were significantly larger in 10 mM of calcium buffer concentration (ANOVA, p< 0.05). There was no difference in calcium current between cochlear and vestibular hair cells. CONCLUSION: We could successfully isolate stable inward calcium current from chick hair cells. This experiment can be used as a basic method to understand neurotransmission process between hair cells and afferent neurons.
Subject(s)
Apamin , Calcium , Calcium Channels , Calcium Channels, L-Type , Cesium , Cochlea , Egtazic Acid , Ethylenes , Hair , Hair Cells, Vestibular , Neurons, Afferent , Neurotransmitter Agents , Organ of Corti , Potassium , Synaptic Transmission , Tetraethylammonium , VertebratesABSTRACT
In the present study, the intracellular free calcium concentration ([Ca(2+)](i)) in acutely isolated rat dorsal root ganglia (DRG) neurons modulated by loureirin B, an active component of "dragon's blood" which is a kind of Chinese herbal medicine, was determined by the means of Fura-2 based microfluorimetry. It was found that loureirin B could evoke the elevation of [Ca(2+)](i) in a dose-dependent manner. However, the elevation of [Ca(2+)](i) evoked in the calcium free solution was much smaller than that in the standard external cell solution, suggesting that most change of [Ca(2+)](i) was generated by the influx of extracellular Ca(2+), not by the activities of intracellular organelles like Ca(2+) stores and mitochondria. In addition, the mixture of loureirin B and caffeine also induced [Ca(2+)](i) rise, but the peak of [Ca(2+)](i) rise induced by the mixture was significantly lower than that by caffeine alone, which means the triggering pathway and the targets of caffeine are probably involved in loureirin B-induced [Ca(2+)](i) rise. Moreover, compared to the transients induced by caffeine, KCl and capsaicin, the loureirin B-induced [Ca(2+)](i) rise is much slower and more stable. These results indicate that the capability of loureirin B of inducing the [Ca(2+)](i) rise is solid and unique.
Subject(s)
Animals , Rats , Caffeine , Pharmacology , Calcium , Metabolism , Ganglia, Spinal , Metabolism , Neurons, Afferent , Metabolism , Resins, Plant , PharmacologyABSTRACT
The sleep-wake cycle displays a characteristic 24-hour periodicity, providing an opportunity to dissect the endogenous circadian clock through the study of aberrant behaviour. This article surveys the properties of circadian clocks, with emphasis on mammals. Information was obtained from searches of peer-reviewed literature in the PUBMED database. Features that are highlighted include the known molecular components of clocks, their entrainment by external time cues and the output pathways used by clocks to regulate metabolism and behaviour. A review of human circadian rhythm sleep disorders follows, including recent discoveries of their genetic basis. The article concludes with a discussion of future approaches to the study of human circadian biology and sleep-wake behaviour.