Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Biol. Res ; 53: 02, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089077

ABSTRACT

The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organ- ism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae , with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.


Subject(s)
Saccharomyces cerevisiae/metabolism , Wine/microbiology , Adaptation, Physiological , Vitis/metabolism , Fermentation , Nitrogen/metabolism , Saccharomyces cerevisiae/growth & development , Vitis/microbiology
2.
Braz. j. microbiol ; 49(4): 685-694, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974282

ABSTRACT

ABSTRACT To mitigate the deleterious effects of abiotic stress, the use of plant growth-promoting bacteria along with diazotrophic bacteria has been increasing. The objectives of this study were to investigate the key enzymes related to nitrogen and carbon metabolism in the biological nitrogen fixation process and to elucidate the activities of these enzymes by the synergistic interaction between Bradyrhizobium and plant growth-promoting bacteria in the absence and presence of salt stress. Cowpea plants were cultivated under axenic conditions, inoculated with Bradyrhizobium and co-inoculated with Bradyrhizobium sp. and Actinomadura sp., Bradyrhizobium sp. and Bacillus sp., Bradyrhizobium sp. and Paenibacillus graminis, and Bradyrhizobium sp. and Streptomycessp.; the plants were also maintained in the absence (control) and presence of salt stress (50 mmolL-1 NaCl). Salinity reduced the amino acids, free ammonia, ureides, proteins and total nitrogen content in nodules and increased the levels of sucrose and soluble sugars. The co-inoculations responded differently to the activity of glutamine synthetase enzymes under salt stress, as well as glutamate synthase, glutamate dehydrogenase aminating, and acid invertase in the control and salt stress. Considering the development conditions of this experiment, co-inoculation with Bradyrhizobium sp. and Bacillus sp. in cowpea provided better symbiotic performance, mitigating the deleterious effects of salt stress.


Subject(s)
Carbon/metabolism , Sodium Chloride/metabolism , Vigna/metabolism , Nitrogen/metabolism , Soil Microbiology , Sodium Chloride/analysis , Actinobacteria/physiology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Bradyrhizobium/physiology , Agricultural Inoculants/physiology , Vigna/growth & development , Vigna/microbiology , Amino Acids/metabolism , Nitrogen Fixation
3.
Braz. j. microbiol ; 49(4): 731-741, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974291

ABSTRACT

ABSTRACT A bacterium isolated from Sterkfontein dam was confirmed to produce bioflocculant with excellent flocculation activity. The 16S rDNA nucleotide sequence analyses revealed the bacteria to have 99% similarity to Streptomyces platensis strain HBUM174787 and the sequence was deposited in the Genbank as Streptomyces platensis with accession number FJ 486385.1. Culture conditions for optimal production of the bioflocculant included glucose as a sole carbon source, resulting in flocculating activity of 90%. Other optimal conditions included: peptone as nitrogen source; presence of Mg2+ as cations and inoculum size of 1.0% (v/v) at neutral pH of 7. Optimum dose of the purified bioflocculant for the clarification of 4 g/L kaolin clay suspension at neutral pH was 0.2 mg/mL. Energy Dispersive X-ray analysis confirmed elemental composition of the purified bioflocculant in mass proportion (%w/w): carbon (21.41), oxygen (35.59), sulphur (26.16), nitrogen (0.62) and potassium (7.48). Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of hydroxyl, carboxyl, methoxyl and amino group in the bioflocculant. The bioflocculant produced by S. platensis removed chemical oxygen demand (COD) in river water and meat processing wastewater at efficiencies of 63.1 and 46.6% respectively and reduced their turbidity by 84.3 and 75.6% respectively. The high flocculating rate and removal efficiencies displayed by S. platensis suggests its industrial application in wastewater treatment.


Subject(s)
Streptomyces/chemistry , Bacterial Proteins/metabolism , Waste Water/chemistry , Streptomyces/isolation & purification , Streptomyces/genetics , Streptomyces/metabolism , Bacterial Proteins/genetics , Water Microbiology , Carbon/metabolism , Water Purification , Rivers/chemistry , Flocculation , Nitrogen/metabolism
4.
Braz. j. microbiol ; 49(4): 872-878, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974308

ABSTRACT

ABSTRACT In order for the use of biological carotenoids to become feasible, it is necessary to have adequate low cost sources and improved methods of cultivation. The aim of this study was to evaluate the effect of supplementation with nitrogen, phosphorus, zinc, and magnesium, on the biomass and carotenoid volumetric production by yeast Rhodotorula rubra L02 using a complex medium (sugarcane juice) and synthetic media (sucrose and maltose) as substrates. The experimental design used for each substrate was randomized in blocks with 16 treatments and 3 repetitions. The treatments were compound for 15 different combinations of nutrients (N; Mg; Zn; P, N + Mg; N + Zn; N + P; Mg + Zn; Mg + P; Zn + P; N + P + Zn; N + P + Mg; N + Zn + Mg; P + Zn + Mg; N + Zn + Mg + P) alone and combined, and a control. The results were submitted to analysis of variance and Tukey test at 5% significance level. Among the treatments evaluated, the highest production of dry biomass, with both maltose and sucrose, was observed for Mg (1.60 g/L and 1.94 g/L, respectively). Additionally, another treatment that stood out in terms of biomass production was the control treatment with maltose (1.54 g/L). After the incubation time, killer activity was not observed since there was no formation of inhibition halo around the L02 yeast.


Subject(s)
Rhodotorula/metabolism , Carotenoids/biosynthesis , Culture Media/chemical synthesis , Saccharum/microbiology , Rhodotorula/growth & development , Rhodotorula/genetics , Biomass , Culture Media/metabolism , Culture Media/chemistry , Saccharum/metabolism , Nitrogen/metabolism
5.
Braz. j. microbiol ; 49(4): 832-839, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974313

ABSTRACT

ABSTRACT Clavulanic acid is a β-lactam compound with potent inhibitory activity against β-lactamases. Studies have shown that certain amino acids play essential roles in CA biosynthesis. However, quantitative evaluations of the effects of these amino acids are still needed in order to improve CA production. Here, we report a study of the nutritional requirements of Streptomyces clavuligerus for CA production. Firstly, the influence of the primary nitrogen source and the salts composition was investigated. Subsequently, soybean protein isolate was supplemented with arginine (0.0-3.20 g L-1), threonine (0.0-1.44 g L-1), ornithine (0.0-4.08 g L-1), and glutamate (0.0-8.16 g L-1), according to a two-level central composite rotatable design. A medium containing ferrous sulfate yielded CA production of 437 mg L-1, while a formulation without this salt produced only 41 mg L-1 of CA. This substantial difference suggested that Fe2+ is important for CA biosynthesis. The experimental design showed that glutamate and ornithine negatively influenced CA production while arginine and threonine had no influence. The soybean protein isolate provided sufficient C5 precursor for CA biosynthesis, so that supplementation was unnecessary. Screening of medium components, together with experimental design tools, could be a valuable way of enhancing CA titers and reducing the process costs.


Subject(s)
Streptomyces/metabolism , Clavulanic Acid/biosynthesis , Culture Media/metabolism , Ornithine/analysis , Ornithine/metabolism , Streptomyces/genetics , Glutamic Acid/analysis , Glutamic Acid/metabolism , Culture Media/chemistry , Nitrogen/analysis , Nitrogen/metabolism
6.
Braz. j. microbiol ; 49(3): 443-451, July-Sept. 2018. tab, graf
Article in English | LILACS | ID: biblio-951793

ABSTRACT

Abstract As a glacier retreats, barren areas are exposed, and these barren areas are ideal sites to study microbial succession. In this study, we characterized the soil culturable bacterial communities and biochemical parameters of early successional soils from a receding glacier in the Tianshan Mountains. The total number of culturable bacteria ranged from 2.19 × 105 to 1.30 × 106 CFU g-1 dw and from 9.33 × 105 to 2.53 × 106 CFU g-1 dw at 4 °C and 25 °C, respectively. The number of culturable bacteria in the soil increased at 25 °C but decreased at 4 °C along the chronosequence. The total organic carbon, total nitrogen content, and enzymatic activity were relatively low in the glacier foreland. The number of culturable bacteria isolated at 25 °C was significantly positively correlated with the TOC and TN as well as the soil urease, protease, polyphenoloxidase, sucrase, catalase, and dehydrogenase activities. We obtained 358 isolates from the glacier foreland soils that clustered into 35 groups using amplified ribosomal DNA restriction analysis. These groups are affiliated with 20 genera that belong to six taxa, namely, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteroides, and Deinococcus-Thermus, with a predominance of members of Actinobacteria and Proteobacteria in all of the samples. A redundancy analysis showed that the bacterial succession was divided into three periods, an early stage (10a), a middle stage (25-74a), and a late stage (100-130a), with the total number of culturable bacteria mainly being affected by the soil enzymatic activity, suggesting that the microbial succession correlated with the soil age along the foreland.


Subject(s)
Bacteria/isolation & purification , Ice Cover/microbiology , Ice Cover/chemistry , Phylogeny , Soil/chemistry , Soil Microbiology , Bacteria/classification , Bacteria/growth & development , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , China , Sequence Analysis, DNA , Nitrogen/analysis , Nitrogen/metabolism
7.
Braz. j. microbiol ; 49(1): 67-78, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889191

ABSTRACT

ABSTRACT The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.


Subject(s)
Fungi/physiology , Oryza/growth & development , Oryza/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Ascomycota/physiology , Biomass , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Nitrogen/metabolism , Oryza/metabolism , Phosphates/metabolism , Phylogeny , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Potassium/metabolism
8.
Electron. j. biotechnol ; 32: 26-34, Mar. 2018. graf, tab
Article in English | LILACS | ID: biblio-1022610

ABSTRACT

Background: A new ι-carrageenase-producing strain was screened from mangroves and authenticated as Pseudoalteromonas carrageenovora ASY5 in our laboratory. The potential application of this new strain was evaluated. Results: Medium compositions and culturing conditions in shaking flask fermentation were firstly optimized by single-factor experiment. ι-Carrageenase activity increased from 0.34 U/mL to 1.08 U/mL after test optimization. Optimal fermentation conditions were 20°C, pH 7.0, incubation time of 40 h, 15 g/L NaCl, 1.5% (w/v) yeast extract as nitrogen source, and 0.9% (w/v) ι-carrageenan as carbon source. Then, the crude ι-carrageenase was characterized. The optimum temperature and pH of the ι-carrageenase were 40°C and 8.0, respectively. The enzymatic activity at 35­40°C for 45 min retained more than 40% of the maximum activity. Meanwhile, The ι-carrageenase was inhibited by the addition of 1 mmol/L Cd2+ and Fe3+ but increased by the addition of 1 mmol/L Ag+, Ba2+, Ca2+, Co2+, Mn2+, Zn2+, Fe2+, and Al3+. The structure of oligosaccharides derived from ι-carrageenan was detected using electrospray ionization mass spectrometry (ESI-MS). The ι-carrageenase degraded ι-carrageenan, yielding disaccharides and tetrasaccharides as main products. Conclusions: The discovery and study of new ι-carrageenases are beneficial not only for the production of ι-carrageenan oligosaccharides but also for the further utilization in industrial production.


Subject(s)
Bacterial Proteins/metabolism , Pseudoalteromonas/enzymology , Glycoside Hydrolases/metabolism , Oligosaccharides/biosynthesis , Temperature , Carbon/metabolism , Carrageenan/biosynthesis , Spectrometry, Mass, Electrospray Ionization , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Nitrogen/metabolism
9.
Braz. j. microbiol ; 49(1): 87-96, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889214

ABSTRACT

ABSTRACT Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.


Subject(s)
Soil/chemistry , Soil Microbiology , Bacteria/isolation & purification , Phylogeny , Soil Pollutants/analysis , Soil Pollutants/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Petroleum/analysis , Petroleum/metabolism , Biodiversity , Wetlands , Nitrogen/metabolism
10.
Braz. j. biol ; 78(1): 41-46, Feb. 2018. graf
Article in English | LILACS | ID: biblio-888848

ABSTRACT

Abstract In this study was evaluated the influence of glutamine supplementation on the endogenous content of amino acids, proteins, total phenolics, flavonoids and proanthocyanidins in Bacupari callus. The explants were inoculated in MS medium, MS with half concentration of the nitrogen salts (MS½) and nitrogen-free MS, supplemented with glutamine (5, 10, 30 and 60mM) named as Gln5, Gln10, Gln30 and Gln60. Amino acids and proteins were analyzed after 20, 80 and 140 days and the secondary metabolites on the 140th day. There was no difference in the amino acids on the 20th day. On the 80th day the treatments MS and MS½ presented the lowest levels. On the 140th day MS and MS½ presented the lowest amino acid concentration and Gln10 the highest. Concerning proteins, there was difference only on the 140th day, being the highest concentrations observed in Gln5, and the lowest in MS½ treatment. Total phenolics content was higher in the treatment Gln60 and lowest in MS. Treatments Gln5, Gln10, Gln30 and MS½ were statistically equal. For flavonoids, the highest values occurred in the treatments Gln30, Gln60 and MS½ and the lowest in Gln5, Gln10 and MS. Similarly, for the proanthocyanidins the highest concentrations were observed in treatment Gln60 and the lowest in Gln5 and MS. In conclusion, the treatment with 60mM of glutamine favors the protein accumulation and production of secondary metabolites in Bacupari callus.


Resumo Nesse estudo foi avaliado o efeito da suplementação com glutamina no conteúdo endógeno de aminoácidos, proteínas, fenólicos totais, flavonoides e proantocianidinas em calos de Bacupari. Os explantes foram inoculados em meio MS, meio MS com metade da concentração de dos sais de nitrogênio (MS½) e meio MS sem nitrogênio suplementado com glutamina (5, 10, 30 e 60mM) denominados como Gln5, Gln10, Gln30 e Gln60. Os aminoácidos e as proteínas foram analisados após 20, 80 e 140 dias e os metabólitos secundários no 140° dia. Não houve diferença nos aminoácidos no 20° dia. No 80° dia os tratamentos MS e MS½ apresentaram os menores níveis. No 140° dia, MS e MS½ apresentaram as menores concentrações de aminoácidos e o Gln10 as maiores. A respeito das proteínas, houve diferença apenas no 140° dia, sendo as maiores concentrações observadas nos tratamentos Gln, e as menores no MS½. O conteúdo de fenólicos totais foi maior no tratamento Gln60 e menor no MS. Os tratamentos Gln5, Gln10, Gln30 e MS½ foram estatisticamente iguais. Para os flavonóides, os maiores valores ocorreram nos tratamentos Gln30, Gln60 e MS½ e os menores no Gln5, Gln10 e MS. Da mesma forma, para as proantocianidinas, as maiores concentrações foram observadas no tratamento Gln60 os menores no Gln5 e MS. Em conclusão, o tratamento com 60 mM de glutamina favorece o acúmulo de proteínas e a produção de metabólitos secundários em calos de Bacupari.


Subject(s)
Phenols/analysis , Clusiaceae/metabolism , Clusiaceae/chemistry , Glutamine/metabolism , Glutamine/chemistry , Nitrogen/metabolism , Nitrogen/chemistry , Phenols/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry , Flavonoids/metabolism , Flavonoids/chemistry , Proanthocyanidins/chemistry , Tissue Culture Techniques
11.
Braz. j. biol ; 78(1): 25-31, Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-888844

ABSTRACT

Abstract We aimed in this study utilize environmental indicators as a quantitative method to evaluate and discuss the nitrogen (TN) and phosphorus (TP) flux by a production stage grow-out (termination) of Nile tilapia (Oreochromis niloticus) in fishpond. The TN and TP load, the mass balance, the input of TN and TP via feed and the converted nutrients in fish biomass are the environmental indicators applied in this study. During the production cycle (128 days), the system exported 15,931 g TN and 4,189 g TP that were related to the amount of feed supplied (r Pearson = 0.8825 and r = 0.8523, respectively), corroborated by the feed conversion ratio (1.61:1). The indicators showed that 26% TN and 45% TP were reversed into fish biomass, 62% TN and 40% TP were retained in the fishpond, and 12% TN and 15% TP were exported via effluent. The largest contribution of nutrients generated by the system and exported via effluent was observed in phase III and IV. This result is supported by the feed conversion ratio 2.14 and 2.21:1 obtained at this phase, a fact explained by the amount of feed offered and the fish metabolism. Application of environmental indicators showed to be an efficient tool to quantify flux of TN and TP produced during the grow-out period of Nile tilapia and therefore, guide management practices more sustainable. Concerning the environmental sustainability of the activity the implementation of best management practices such as the better control of the feed amount offered would lead to a smaller loss of TN and TP to the water. Furthermore, the use of better quality feeds would allow greater nutrient assimilation efficiency.


Resumo Nós objetivamos neste estudo, utilizar indicadores ambientais como método quantitativo para avaliar e discutir sobre o fluxo de nitrogênio (TN) e fósforo (TP) na etapa final de crescimento (terminação) de tilápia-do-nilo (Oreochromis niloticus) em viveiro escavado. A carga de TN e TP, o balanço de massa, a entrada de nutrientes via ração e o TN e TP convertido em biomassa de peixe foram os indicadores ambientais utilizados neste estudo. Durante o ciclo produtivo (128 dias), o sistema exportou 15.931 g NT e 4.189 g PT os quais foram relacionadas às quantidades de alimento fornecido (r Pearson = 0,8825 e r = 0,8523, respectivamente), corroborada pela conversão alimentar (1,61:1). Os indicadores evidenciaram que 26% NT e 45% PT foram revertidos em biomassa de peixe, 62% NT e 40% PT ficaram retidos no viveiro e 12% NT e 15% PT foram exportados via efluente. O maior aporte de nutrientes gerado pelo sistema e exportado via efluente foi verificado nas fases III e IV. Este resultado é corroborado pelas taxas de conversão alimentar de 2,14 e 2,21:1 obtida nestas fases, fato explicado pela quantidade de ração ofertada e pelo metabolismo dos peixes. A aplicação dos indicadores ambientais mostrou ser uma ferramenta eficiente para quantificar o fluxo de TN e TP produzidos durante a etapa final de crescimento de tilápia-do-nilo e com isso orientar práticas de manejo mais sustentáveis. Com vistas à sustentabilidade ambiental da atividade, a implantação de boas práticas de manejo tais como o melhor controle da quantidade de alimento ofertado levaria a menor perda de NT e PT para a água. Além disso, o uso de rações de melhor qualidade permitiria maior eficiência de assimilação desses nutrientes.


Subject(s)
Animals , Phosphorus/analysis , Phosphorus/metabolism , Cichlids/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Aquaculture , Biomass , Metabolic Flux Analysis
12.
Braz. j. biol ; 78(1): 108-116, Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-888831

ABSTRACT

Abstract Although Planktothrix agardhii often produces toxic blooms in eutrophic water bodies around the world, little is known about the fate of the organic matter released by these abundant Cyanobacteria. Thus, this study focused in estimating the bacterial consumption of the DOC and DON (dissolved organic carbon and dissolved organic nitrogen, respectively) produced by axenic P. agardhii cultures and identifying some of the bacterial OTUs (operational taxonomic units) involved in the process. Both P. agardhii and bacterial inocula were sampled from the eutrophic Barra Bonita Reservoir (SP, Brazil). Two distinct carbon degradation phases were observed: during the first three days, higher degradation coefficients were calculated, which were followed by a slower degradation phase. The maximum value observed for particulate bacterial carbon (POC) was 11.9 mg L-1, which consisted of 62.5% of the total available DOC, and its mineralization coefficient was 0.477 day-1 (t½ = 1.45 days). A similar pattern of degradation was observed for DON, although the coefficients were slightly different. Changes in the OTUs patterns were observed during the different steps of the degradation. The main OTUs were related to the classes Alphaproteobacteria (8 OTUs), Betaproteobacteria (2 OTUs) and Gammaproteobacteria (3 OTUs). The genus Acinetobacter was the only identified organism that occurred during the whole process. Bacterial richness was higher at the slower degradation phase, which could be related to the small amounts of DOM (dissolved organic matter) available, particularly carbon. The kinetics of the bacterial degradation of P. agardhii-originated DOM suggests minimal loss of DOM from the Barra Bonita reservoir.


Resumo Embora Planktothrix agardhii frequentemente forme florações tóxicas em corpos d'água pelo mundo, pouco ainda se sabe sobre o destino da matéria orgânica liberada por essa abundante Cyanobacteria. Assim, este estudo foi focado na estimativa do consumo bacteriano do carbono orgânico dissolvido (DOC) e nitrogênio orgânico dissolvido (DON) produzido por culturas axênicas de P. agardhii e identificação de algumas das unidades taxonômicas operacionais (OTUs) bacterianas envolvidas no processo. Ambos a linhagem de P. agardhii e o inóculo bacteriano foram amostrados do reservatório eutrófico de Barra Bonita (SP, Brasil). Foram observadas duas fases distintas da degradação do DOC: durante os três primeiros dias, coeficientes mais altos de degradação foram calculados, que foram então seguidos por uma fase mais lenta da degradação do carbono. O valor máximo calculado para o carbono bacteriano particulado (POC) foi de 11,9 mgL-1, o que equivale a aproximadamente 62,5% do DOC disponível para consumo, e o seu coeficiente de mineralização foi de 0,477 dia-1 (t1/2 = 1,45 dias). Um padrão similar de degradação foi observado para DON, embora os coeficientes sejam ligeiramente diferentes. Foram observadas mudanças nos padrões de OTUs durante os diferentes passos da degradação. As principais OTUs foram relacionadas às classes Alphaproteobacteria (8 OTUs), Betaproteobacteria (2 OTUs) e Gammaproteobacteria (3 OTUs). O gênero Acinetobacter foi o único organismo identificado que ocorreu durante todo o processo. A maior riqueza bacteriana foi observada durante a fase lenta de degradação, o que pode estar relacionado às pequenas quantidades de matéria orgânica dissovida (DOM) disponíveis, particularmente o carbono. A cinética da degradação bacteriana da MOD de P. agardhii, quando comparada ao tempo de retenção do reservatório, sugere que existe uma perda mínima após sua liberação em Barra Bonita.


Subject(s)
Carbon/metabolism , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Proteobacteria/metabolism , Humic Substances/analysis , Nitrogen/metabolism , Biodegradation, Environmental , Carbon/analysis , Eutrophication , Nitrogen/analysis
13.
Biol. Res ; 51: 43, 2018. tab, graf
Article in English | LILACS | ID: biblio-983944

ABSTRACT

BACKGROUND: CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS: Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS: Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS: LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.


Subject(s)
Stress, Physiological/physiology , Triticum/growth & development , RNA/isolation & purification , Plant Roots/growth & development , Gene Expression Regulation, Plant/physiology , Nitrogen/metabolism , Triticum/physiology , RNA/metabolism , RNA, Circular
14.
Braz. j. microbiol ; 48(4): 615-616, Oct.-Dec. 2017. tab
Article in English | LILACS | ID: biblio-889157

ABSTRACT

ABSTRACT Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal.


Subject(s)
Bacteria/isolation & purification , Genome, Bacterial , Power Plants , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , China , Aerobiosis , Denitrification , Hot Temperature , Micropore Filters/microbiology , Nitrogen/metabolism
15.
Electron. j. biotechnol ; 30: 77-82, nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-1021550

ABSTRACT

Background: Mucor indicus is a dimorphic fungus used in the production of ethanol, oil, protein, and glucosamine. It can ferment different pentoses and hexoses; however, the yields of products highly depend on the nutrients and cultivation conditions. In this study, the effects of different morphologic forms, cultivation time and temperature, presence or absence of oxygen, carbon sources, and concentration of nitrogen source on the products of M. indicus were investigated. Results: The fungus with all morphologies produced high yields of ethanol, in the range of 0.32­0.43 g/g, on glucose. However, the fungus with filamentous morphology produced higher amounts of oil, protein, phosphate, and glucosamine together with ethanol, compared with other morphologies. A higher amount of oil (0.145 g/g biomass) was produced at 28°C, while the best temperature for protein and glucosamine production was 32 and 37°C, respectively. Although ethanol was produced at a higher yield (0.44 g/g) under anaerobic conditions compared with aerobic conditions (yield of 0.41 g/g), aerobic cultivation resulted in higher yields of protein (0.51 g/g biomass), glucosamine (0.16 g/g alkali insoluble material, AIM), and phosphate (0.11 g/g AIM). Conclusions: It is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.


Subject(s)
Ethanol/metabolism , Mucor/metabolism , Temperature , Time Factors , Oils/metabolism , Carbon/metabolism , Biomass , Aerobiosis , Culture Media , Fermentation , Glucosamine/metabolism , Glucose , Anaerobiosis , Nitrogen/metabolism
16.
Electron. j. biotechnol ; 30: 95-102, nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-1021560

ABSTRACT

Background: Dependence on fossil resources, for the production of fuels and energy, has resulted in environmental and financial problems, which require our immediate action in order to reverse the situation. Use of renewable sources for the production of fuels and energy is an important alternative with biodiesel remains as one of the promising options. Aim of this work is to evaluate the fungus Fusarium oxysporum for its potentials to accumulate microbial lipids when grown on synthetic media and saccharified sweet sorghum stalks. Results: The effect of different carbon sources, nitrogen sources and C/N ratio on the lipid production was initially examined, which resulted in a lipid concentration of 4.4 g/L, with lipid content of 42.6% w/w. Sweet sorghum stalks were able to support growth and lipid production of the fungus, both as carbon source and as nitrogen source. It was also shown that saccharification of the dried stalks is an important step to increase lipid production. Removal of the remaining stalk solids enabled the lipid production during cultivation in increased initial solids of up to 16 w/w. This resulted in a lipid production of 3.81 g/L. Conclusions: It was demonstrated that F. oxysporum can be used as an efficient oleaginous microorganism, with sweet sorghum serving as an excellent raw material for the cultivation of the fungus. The lipids obtained during this work were also found to have a fatty acid profile with good potentials to be used for biodiesel production.


Subject(s)
Fusarium/metabolism , Lipids/biosynthesis , Carbon/metabolism , Biomass , Renewable Resources , Fuels , Culture Media , Esters , Lipid Metabolism , Fatty Acids/analysis , Biofuels , Fermentation , Fusarium/chemistry , Hydrolysis , Lipids/analysis , Nitrogen/metabolism
17.
Electron. j. biotechnol ; 29: 1-6, sept. 2017. graf, tab
Article in English | LILACS | ID: biblio-1016090

ABSTRACT

Background: During salt stress, the yeast Debaryomyces hansenii synthesizes tyrosine as a strategy to avoid the oxidation of proteins. Tyrosine reacts with nitrogen radicals to form 3-nitrotyrosine. 3-nitrotyrosine prevents the effects of associated oxidative stress and thus contributes to the high halotolerace of the yeast. However, the mechanism of how D. hansenii counteracts the presence of this toxic compound is unclear. In this work, we evaluated D. hansenii's capacity to assimilate 3-nitrotyrosine as a unique nitrogen source and measured its denitrase activity under salt stress. To identify putative genes related to the assimilation of 3-nitrotyrosine, we performed an in silico search in the promoter regions of D. hansenii genome. Results: We identified 15 genes whose promoters had binding site sequences for transcriptional factors of sodium, nitrogen, and oxidative stress with oxidoreductase and monooxygenase GO annotations. Two of these genes, DEHA2E24178g and DEHA2C00286g, coding for putative denitrases and having GATA sequences, were evaluated by RT-PCR and showed high expression under salt and nitrogen stress. Conclusions: D. hansenii can grow in the presence of 3-nitrotyrosine as the only nitrogen source and has a high specific denitrase activity to degrade 3-nitrotyrosine in 1 and 2 M NaCl stress conditions. The results suggest that given the lack of information on transcriptional factors in D. hansenii, the genes identified in our in silico analysis may help explain 3-nitrotyrosine assimilation mechanisms.


Subject(s)
Tyrosine/analogs & derivatives , Tyrosine/metabolism , Debaryomyces/genetics , Debaryomyces/metabolism , Tyrosine/genetics , Transcription, Genetic , Yeasts , Regulatory Sequences, Nucleic Acid , Promoter Regions, Genetic , Oxidative Stress , Real-Time Polymerase Chain Reaction , Osmoregulation , Extremophiles , Nitrogen/metabolism
18.
Braz. j. microbiol ; 48(3): 544-550, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889154

ABSTRACT

Abstract Presence of the relatively new sulfonylurea herbicide monosulfuron-ester at 0.03-300 nmol/L affected the growth of two non-target nitrogen-fixing cyanobacteria (Anabaena flos-aquae and Anabaena azotica) and substantially inhibited in vitro Acetolactate synthase activity, with IC50 of 3.3 and 101.3 nmol/L for A. flos-aquae and A. azotica, respectively. Presenting in 30-300 nmol/L, it inhibited protein synthesis of the cyanobacteria with less amino acids produced as its concentration increased. Our findings support the view that monosulfuron-ester toxicity in both nitrogen-fixing cyanobacteria is due to its interference with protein metabolism via inhibition of branch-chain amino acid biosynthesis, and particularly Acetolactate synthase activity.


Subject(s)
Pyrimidines/toxicity , Sulfonylurea Compounds/toxicity , Anabaena/drug effects , Anabaena/metabolism , Anabaena flos-aquae/drug effects , Anabaena flos-aquae/metabolism , Esters/toxicity , Herbicides/toxicity , Nitrogen Fixation/drug effects , Anabaena/genetics , Anabaena flos-aquae/genetics , Amino Acids/metabolism , Nitrogen/metabolism
19.
Electron. j. biotechnol ; 28: 67-75, July. 2017.
Article in English | LILACS | ID: biblio-1015999

ABSTRACT

The increasing demand for propionic acid (PA) production and its wide applications in several industries, especially the food industry (as a preservative and satiety inducer), have led to studies on the low-cost biosynthesis of this acid. This paper gives an overview of the biotechnological aspects of PA production and introduces Propionibacterium as the most popular organism for PA production. Moreover, all process variables influencing the production yield, different simple and complex carbon sources, the metabolic pathway of production, engineered mutants with increased productivity, and modified tolerance against high concentrations of acid have been described. Furthermore, possible methods of extraction and analysis of this organic acid, several applied bioreactors, and different culture systems and substrates are introduced. It can be concluded that maximum biomass and PA production may be achieved using metabolically engineered microorganisms and analyzing the most significant factors influencing yield. To date, the maximum reported yield for PA production is 0.973 g·g-1, obtained from Propionibacterium acidipropionici in a three-electrode amperometric culture system in medium containing 0.4 mM cobalt sepulchrate. In addition, the best promising substrate for PA bioproduction may be achieved using glycerol as a carbon source in an extractive continuous fermentation. Simultaneous production of PA and vitamin B12 is suggested, and finally, the limitations of and strategies for competitive microbial production with respect to chemical process from an economical point of view are proposed and presented. Finally, some future trends for bioproduction of PA are suggested.


Subject(s)
Propionates/metabolism , Propionibacterium/metabolism , Propionates/chemistry , Vitamin B 12/biosynthesis , Carbon/metabolism , Bioreactors , Fatty Acids, Volatile/metabolism , Fermentation , Hydrogen-Ion Concentration , Nitrogen/metabolism
20.
Braz. j. microbiol ; 48(2): 359-365, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839374

ABSTRACT

Abstract The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80 g/L, respectively.


Subject(s)
Carbon/metabolism , Docosahexaenoic Acids/metabolism , Stramenopiles/metabolism , Nitrogen/metabolism , Biomass , Culture Media/chemistry , Stramenopiles/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL