Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Int. j. morphol ; 42(1): 216-224, feb. 2024. ilus
Article in English | LILACS | ID: biblio-1528818

ABSTRACT

SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.


La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.


Subject(s)
Animals , Male , Mice , Osteoporosis/drug therapy , Resveratrol/administration & dosage , Osteogenesis/drug effects , Cell Differentiation/drug effects , Blotting, Western , Disease Models, Animal , Sirtuin 1 , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Resveratrol/pharmacology , Mice, Inbred C57BL
2.
Int. j. morphol ; 40(4): 1108-1116, 2022. ilus, tab
Article in English | LILACS | ID: biblio-1405227

ABSTRACT

SUMMARY: Letrozole is mainly used for the treatment of unexplained infertility, breast cancer and polycystic ovarian syndrome, with secondary use in ovarian stimulation. In cases of unexpected or unknown pregnancy during the use of letrozole, letrozole may cause a teratogenic effect on the fetus. In this reason, in this study, we aimed to determine the effect of letrozole on fetal bone development. In this study, 32 pregnant Wistar albino rats were used. The rats were divided into four groups: Control (saline) and high; 0.3 mg/kg, medium; 0.03 mg/kg, low; 0.003 mg/ kg letrozole. Saline and letrozole were administered in 100 mL solutions by intraperitonaly from day 11 to day 15 of pregnancy. The skeletal system development of fetuses was examined with double skeletal staining, immunohistochemical staining methods and mineral density scanning electron microscopy. A total of 100 fetuses from female rats, 25 in each group, were included in the study. As a result of that, ossification rates were observed to decrease depending on the dose of letrozole in the forelimb limb (scapula, humerus, radius, ulna) and hindlimb (femur, tibia, fibula) limb bones. As a result of the statistical analysis, a statistically significant decrease was found in the ossification rates of all bones between the control group and low, medium, high letrozole groups (p<0.001). Exposure to letrozole during pregnancy adversely affected ossification and bone growth. However, the teratogenic effects of letrozole are unclear. Therefore, it needs to be investigated more extensively.


RESUMEN: Letrozol se usa principalmente para el tratamiento de la infertilidad inexplicable, el cáncer de mama y el síndrome de ovario poliquístico, con estimulación ovárica de uso secundario. En casos de embarazo inesperado o desconocido durante el uso de letrozol, puede causar un efecto teratogénico en el feto. Por esta razón, en este estudio, nuestro objetivo fue determinar el efecto de letrozol en el desarrollo óseo fetal. Se utilizaron 32 ratas albinas Wistar preñadas las cuales se distribuyeron en cuatro grupos: Control (solución salina) y alta; 0,3 mg/kg, medio; 0,03 mg/kg, bajo; 0,003 mg/kg de letrozol. Se administró solución salina y letrozol en soluciones de 100 mL por vía intraperitoneal desde el día 11 hasta el día 15 de la preñez. El desarrollo del sistema esquelético de los fetos se examinó con tinción esquelética doble, métodos de tinción inmunohistoquímica y microscopía electrónica de barrido de densidad mineral. Se incluyeron en el estudio un total de 100 fetos de ratas hembra, 25 en cada grupo. Como resultado, se observó que las tasas de osificación disminuían dependiendo de la dosis de letrozol en los huesos de los miembros torácicos (escápula, húmero, radio, ulna) y de las miembros pélvicos (fémur, tibia, fíbula). Se encontró una disminución estadísticamente significativa en las tasas de osificación de todos los huesos entre el grupo control y los grupos de letrozol bajo, medio y alto (p<0,001). La exposición a letrozol durante la preñez afectó negativamente la osificación y el crecimiento óseo. Sin embargo, los efectos teratogénicos del letrozol no están claros por lo que debe ser investigado más extensamente.


Subject(s)
Animals , Female , Rats , Teratogens/pharmacology , Bone Development/drug effects , Fetal Development/drug effects , Letrozole/pharmacology , Antineoplastic Agents/pharmacology , Osteogenesis/drug effects , Staining and Labeling/methods , Immunohistochemistry , Rats, Wistar , Letrozole/adverse effects , Antineoplastic Agents/adverse effects
3.
Acta odontol. latinoam ; Acta odontol. latinoam;33(2): 125-134, Sept. 2020. graf
Article in English | LILACS | ID: biblio-1130743

ABSTRACT

ABSTRACT Melatonin (MLT) is a potential signaling molecule in the homeostasis of bone metabolism and may be an important mediator of bone formation and stimulation. The aim of this in vitro study was to evaluate the effect of MLT on the viability, mRNA/protein expression and mineralization of pre-osteoblastic cells. The concentrations 5, 2.5, 1, 0.1 and 0.01 mM MLT were tested on pre-osteoblastic cells (MC3T3) compared to control (no MLT), evaluating proliferation and cell viability (C50), gene expression (RT-PCR) and secretion (ELISA) of COL-I and OPN at 24h, 48h and 72h, and the formation of mineral nodules (alizarin red and fast red) after 10 days of treatment. MLT at 5 and 2.5 mM proved to be cytotoxic (C50), so only 0.01, 0.1 and 1 mM were used for the subsequent analyses. OPN mRNA expression increased with MLT at 0.1 mM - 1 mM, which was followed by increased secretion of OPN both at 24h and 72h compared to the remaining groups (p <0.05). COL-I mRNA and COL-1 secretion followed the same pattern as OPN at 0.1 mM MLT at 72h of treatment (p <0.05). Regarding mineralization, all MLT doses (except 1mM) caused an increase (p <0.05) in the formation of mineral nodules compared to the control. Melatonin at 0.01mM - 1mM had a stimulatory effect on osteoblasts by upregulating COL-I and OPN expression/ secretion and mineralization, thereby fostering osteogenesis.


RESUMO A melatonina (MLT) é uma molécula potencial de sinalização na homeostase do metabolismo ósseo e pode ser um importante mediador da formação e estimulação óssea. O objetivo deste estudo in vitro foi avaliar o efeito da MLT na viabilidade, na expressão do mRNA da proteína e mineralização de células préosteoblásticas. As concentrações de MLT 5, 2,5, 1, 0,1 e 0,01 mM foram testadas em células pré-osteoblásticas da linhagem MC3T3 em comparação ao controle (sem MLT), avaliando a proliferação e a viabilidade celular (C50), expressão gênica (rtPCR) e secreção (Elisa) de Colágeno tipo 1 (COL-I) e osteopontina (OPN) às 24, 48 e 72 horas, além da formação de nódulos minerais por meio do teste vermelho de Alizarina fast red após 10 dias de tratamento. MLT a 5 e 2,5 mM provou ser tóxico (C50). Portanto, as concentrações de 0,01, 0,1 e 1 mM foram utilizadas para as análises subsequentes. A expressão do mRNA da OPN aumentou com MLT a 0,1 mM-1mM, seguida pela secreção aumentada de OPN às 24 e 72 horas em comparação aos demais grupos (p<0,05). O mRNA de COL-I e a secreção de COL-I seguiram o mesmo padrão do OPN a 0,1 mM de MLT em 72 horas de tratamento (p<0,05). Em relação à mineralização, todas as doses de MLT (exceto 1mM) causaram aumento (p<0,05) na formação de nódulos minerais em comparação ao controle. A MLT na concentração entre 0,01mM a 1 mM teve um efeito estimulador sobre os osteoblastos, ao regular positivamente a expressão e secreção de COL-I e OPN, além da mineralização, favorecendo a osteogênese.


Subject(s)
Humans , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Peptide Fragments/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Matrix Metalloproteinase 2/metabolism , Osteopontin/metabolism , Melatonin/pharmacology , Osteoblasts/metabolism , Peptide Fragments/genetics , RNA, Messenger/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Gene Expression Regulation, Developmental/drug effects , Matrix Metalloproteinase 2/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Osteopontin/genetics , Real-Time Polymerase Chain Reaction
4.
Actual. osteol ; 16(2): 140-153, mayo.-ago. 2020. ilus, graf
Article in Spanish | LILACS | ID: biblio-1129814

ABSTRACT

La osteoporosis y las enfermedades cardiovasculares son patologías prevalentes en mujeres posmenopáusicas. La calcificación vascular es un proceso en el que se produce una distorsión de la arquitectura natural del tejido arterial con una transformación símil osteogénica. La fisiología vascular y la osteogénesis (formación y remodelación ósea) comparten una complejidad metabólica y funcional crítica, que ha sido poco explorada en forma conjunta, lo que ha impulsado la concepción del Eje Óseo-Vascular como nueva área de investigación, con una visión de estudio integradora con la finalidad de identificar vínculos entre ambos sistemas. En virtud de la controversia planteada sobre los riesgos/beneficios de la terapia de reemplazo hormonal para prevenir enfermedades asociadas a la menopausia, se ha incentivado la búsqueda de nuevas opciones de tratamiento. Los fitoestrógenos, como compuestos nutracéuticos, surgen como una potencial alternativa terapéutica. En particular, las isoflavonas presentan gran analogía estructural con el estrógeno humano 17ß-estradiol, lo que les permite unirse al receptor de estrógenos e inducir acciones estrogénicas tanto en células animales como humanas. Basado en la experiencia propia como en lo reportado en la bibliografía, este artículo analiza la información disponible sobre las acciones vasculares y óseas de los fitoestrógenos (específicamente la isoflavona genisteína), con una visión de ciencia traslacional. Es de esperar que los avances en el conocimiento derivado de la ciencia básica, en un futuro cercano, pueda contribuir a decisiones clínicas a favor de promover terapias naturales de potencial acción dual, para la prevención de enfermedades de alta prevalencia y significativo costo social y económico para la población. (AU)


Osteoporosis and cardiovascular diseases are prevalent diseases in postmenopausal women. Vascular calcification is a cellmediated process that leads to the loss of the natural architecture of the arterial vessels due to osteogenic transdifferentiation of smooth muscle cells, and matrix mineralization. Vascular physiology and osteogenesis (bone formation and remodeling) share a critical metabolic and functional complexity. Given the emerging integrative nature of the bonevascular axis, links between both systems are a matter of ongoing interest. In view of the controversy stated about the risks/benefits of hormone replacement therapy to prevent diseases associated with menopause, phytoestrogens arise as a potential natural therapeutic alternative. In particular, isoflavones have a strong structural analogy with the human estrogen 17ß-estradiol, that allows them to bind to the estrogen receptor and induce estrogenic actions in animal and human cells. Based in on our own experience and the information available in the literature, in this paper we provide an overview of the role of phytoestrogens on vascular and bone tissues, with focus on Genistein actions. We wish that the basic knowledge acquired may contribute to guide clinical decisions for the promotion of natural therapies for the treatment of diseases that conspire against human health. (AU)


Subject(s)
Humans , Male , Female , Osteogenesis/drug effects , Phytoestrogens/therapeutic use , Atherosclerosis/drug therapy , Vascular Calcification/drug therapy , Osteogenesis/physiology , Menopause , Cardiovascular Diseases/complications , Osteoporosis, Postmenopausal , Bone Remodeling , Genistein/therapeutic use , Phytoestrogens/classification , Phytoestrogens/pharmacology , Atherosclerosis/physiopathology , Estrogens/biosynthesis , Vascular Calcification/physiopathology , Vascular Calcification/metabolism
5.
Acta cir. bras ; Acta Cir. Bras. (Online);35(1): e202000102, 2020. graf
Article in English | LILACS | ID: biblio-1088522

ABSTRACT

Abstract Purpose To evaluate the local effect of simvastatin (SVT) combined with deproteinized bovine bone (DBB) with hydroxyapatite/β-tricalcium phosphate biphasic ceramics (HA/TCP) and with collagen sponge (CS) on bone repair in critical size defects (CSDs) in rat calvaria. Methods Forty-two 5-mm diameter CSDs were made bilaterally in the calvaria of 18 rats. The animals were allocated according to the type of biomaterial and associations used to fill the CSD. After 8 weeks, the animals were euthanized, and their calvaria were evaluated for repaired tissue composition using histologic and histometric analyses. Results In the histometric analysis, the use of SVT showed to increase bone formation in the CSDs when combined with all the bone substitutes tested in this study (p<0.05). Greater bone formation was observed in the groups with SVT compared to the groups without SVT. Conclusions The use of SVT without the need for a vehicle and combined with a commercially available biomaterial may be a cheaper way to potentiate the formation of bone tissue without the need to produce new biomaterials. Therefore, SVT combined with DBB induced significantly greater new bone formation than did the other treatments.


Subject(s)
Humans , Animals , Female , Cattle , Rats , Osteogenesis/drug effects , Skull/drug effects , Biocompatible Materials/pharmacology , Collagen/pharmacology , Bone Substitutes/pharmacology , Simvastatin/pharmacology , Skull/surgery , Bone Regeneration/drug effects , Bone Transplantation/methods , Rats, Wistar , Disease Models, Animal , Anticholesteremic Agents/pharmacology
6.
Braz. oral res. (Online) ; 34: e007, 2020. graf
Article in English | LILACS | ID: biblio-1089397

ABSTRACT

Abstract The aim of this study was to assess the influence of cyclosporine administration on the repair of critical-sized calvaria defects (CSDs) in rat calvaria filled with diverse biomaterials. Sixty animals were divided into two groups: the control (CTR) group (saline solution) and the cyclosporine (CCP) group (cyclosporine, 10 mg/kg/day). These medications were administered daily by gavage, beginning 15 days before the surgical procedure and lasting until the day the animals were euthanized. A CSD (5 mm Ø) was made in the calvaria of each animal, which was allocated to one of 3 subgroups, according to the biomaterial used to fill the defect: coagulum (COA), deproteinized bovine bone (DBB), or biphasic calcium phosphate ceramics of hydroxyapatite and β-phosphate tricalcium (HA/TCP). Euthanasia of the animals was performed 15 and 60 days after the surgical procedure (n = 5 animals/period/subgroup). Bone repair (formation) assessment was performed through microtomography and histometry, while the analyses of the expression of the BMP2, Osteocalcin, and TGFβ1 proteins were performed using immunohistochemistry. The CSDs not filled with biomaterials demonstrated lower bone formation in the CCP group. At 15 days, less bone formation was observed in the CSDs filled with DBB, a smaller volume of mineralized tissue was observed in the CSDs filled with HA/TCP, and the expression levels of BMP2 and osteocalcin were lower in the CCP group compared to the CTR group. The use of cyclosporine impaired bone repair in CSD, and this effect can be partially explained by the suppression of BMP2 and osteocalcin expression.


Subject(s)
Animals , Male , Rats , Osteogenesis/drug effects , Bone Regeneration/drug effects , Cyclosporine/pharmacology , Bone Substitutes/pharmacology , Calcineurin Inhibitors/pharmacology , Skull/drug effects , Skull/pathology , Time Factors , Immunohistochemistry , Random Allocation , Osteocalcin/analysis , Reproducibility of Results , Transforming Growth Factor beta1/analysis , Bone Morphogenetic Protein 2/analysis , X-Ray Microtomography
7.
Braz. oral res. (Online) ; 34: e007, 2020. graf
Article in English | LILACS | ID: biblio-1055531

ABSTRACT

Abstract The aim of this study was to assess the influence of cyclosporine administration on the repair of critical-sized calvaria defects (CSDs) in rat calvaria filled with diverse biomaterials. Sixty animals were divided into two groups: the control (CTR) group (saline solution) and the cyclosporine (CCP) group (cyclosporine, 10 mg/kg/day). These medications were administered daily by gavage, beginning 15 days before the surgical procedure and lasting until the day the animals were euthanized. A CSD (5 mm Ø) was made in the calvaria of each animal, which was allocated to one of 3 subgroups, according to the biomaterial used to fill the defect: coagulum (COA), deproteinized bovine bone (DBB), or biphasic calcium phosphate ceramics of hydroxyapatite and β-phosphate tricalcium (HA/TCP). Euthanasia of the animals was performed 15 and 60 days after the surgical procedure (n = 5 animals/period/subgroup). Bone repair (formation) assessment was performed through microtomography and histometry, while the analyses of the expression of the BMP2, Osteocalcin, and TGFβ1 proteins were performed using immunohistochemistry. The CSDs not filled with biomaterials demonstrated lower bone formation in the CCP group. At 15 days, less bone formation was observed in the CSDs filled with DBB, a smaller volume of mineralized tissue was observed in the CSDs filled with HA/TCP, and the expression levels of BMP2 and osteocalcin were lower in the CCP group compared to the CTR group. The use of cyclosporine impaired bone repair in CSD, and this effect can be partially explained by the suppression of BMP2 and osteocalcin expression.


Subject(s)
Animals , Male , Rats , Osteogenesis/drug effects , Bone Regeneration/drug effects , Cyclosporine/pharmacology , Bone Substitutes/pharmacology , Calcineurin Inhibitors/pharmacology , Skull/drug effects , Skull/pathology , Time Factors , Immunohistochemistry , Random Allocation , Osteocalcin/analysis , Reproducibility of Results , Transforming Growth Factor beta1/analysis , Bone Morphogenetic Protein 2/analysis , X-Ray Microtomography
8.
J. pediatr. (Rio J.) ; J. pediatr. (Rio J.);95(5): 567-574, Sept.-Oct. 2019. tab
Article in English | LILACS | ID: biblio-1040356

ABSTRACT

Abstract Objective: The objective of this study was to evaluate the effects of two low-dose combined oral contraceptives on bone metabolism in adolescents for one year. Methods: This was a quasi-experimental study. The adolescents were divided into three groups: oral contraceptives 1 (n = 42) (20 µg EE/150 µg desogestrel), oral contraceptives 2 (n = 66) (30 µg EE/3 mg drospirenone), and a control group (n = 70). Adolescents underwent anthropometric assessment and densitometry (dual-energy X-ray). Bone age and bone formation markers (osteocalcin and bone alkaline phosphatase) were evaluated. The oral contraceptives users were evaluated again after 12 months. Linear regression analysis was used to indirectly study the effect of each additional year of chronological age on anthropometric and densitometric variables as well as on bone markers in the control group. Results: At study entry, no significant differences were observed between the oral contraceptives 1, oral contraceptives 2, and controls in the analyzed variables. Linear regression analysis showed an increase in bone mineral density and bone mineral content for each additional year. There was a significant reduction in bone alkaline phosphatase levels; no significant difference was observed for osteocalcin in control individuals. Comparison of dual-energy X-ray variables at baseline and after one year showed no significant differences in the oral contraceptives 1 or oral contraceptives 2 groups. A significant reduction in bone alkaline phosphatase and osteocalcin levels was observed in both the oral contraceptives 1 and oral contraceptives 2 groups. Conclusion: Adolescent women gain peak bone mass during this phase of life. Two low-dose combined oral hormonal contraceptives were associated with lower bone gain and lower bone formation markers than in untreated controls.


Resumo: Objetivo: O objetivo deste estudo foi avaliar os efeitos de dois contraceptivos orais combinados de baixa dosagem por um ano sobre o metabolismo ósseo em adolescentes. Métodos: Este foi um estudo quase experimental. As adolescentes foram divididas em três grupos: contraceptivos orais 1 (n = 42) (20 µg de EE/150 µg de desogestrel), contraceptivos orais 2 (n = 66) (30 µg EE/3 mg de drospirenona) e grupo controle (n = 70). As adolescentes foram submetidas à avaliação antropométrica e densitometria (raio-X de dupla energia). Foram avaliados a idade óssea e os marcadores de formação óssea (osteocalcina e fosfatase alcalina óssea). As usuárias de contraceptivos orais foram novamente avaliadas após 12 meses. A análise de regressão linear foi utilizada para estudar, indiretamente, o efeito de cada ano adicional da idade cronológica sobre as variáveis antropométricas e densitométricas e sobre os marcadores ósseos no grupo de controle. Resultados: No início do estudo, não foram observadas diferenças significativas nas variáveis analisadas entre as usuárias de contraceptivos orais 1, contraceptivos orais 2 e o grupo controle. A análise de regressão linear mostrou um aumento na densidade mineral óssea e no conteúdo mineral ósseo para cada ano adicional. Houve uma redução significativa nos níveis de fosfatase alcalina óssea e não foi observada diferença significativa para osteocalcina nos indivíduos controles. A comparação das variáveis do raio-X de dupla energia no início e após um ano não mostrou diferença significativa no grupo de contraceptivos orais 1 ou contraceptivos orais 2. Foi observada uma redução significativa nos níveis de fosfatase alcalina óssea e osteocalcina nos dois grupos contraceptivos orais 1 e contraceptivos orais 2. Conclusão: As adolescentes atingiram o pico de massa óssea durante essa fase da vida. Duas formulações de contraceptivos hormonais orais de baixa dosagem, após um ano de uso, se associaram a menor incremento na densidade mineral óssea e menor concentração de marcadores de formação óssea quando confrontados com resultados de adolescentes não usuárias de contraceptivos.


Subject(s)
Humans , Female , Child , Adolescent , Young Adult , Osteogenesis/drug effects , Bone Density/drug effects , Desogestrel/administration & dosage , Contraceptives, Oral, Hormonal/administration & dosage , Ethinyl Estradiol/administration & dosage , Androstenes/administration & dosage , Osteogenesis/physiology , Reference Values , Time Factors , Bone Density/physiology , Linear Models , Osteocalcin/analysis , Anthropometry , Analysis of Variance , Statistics, Nonparametric , Alkaline Phosphatase/analysis , Non-Randomized Controlled Trials as Topic
9.
J. appl. oral sci ; J. appl. oral sci;27: e20180574, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1040233

ABSTRACT

Abstract Hypertension is one of the main causes of premature death in the world; also, it is associated with several bone alterations. Preclinical studies have demonstrated delayed alveolar bone healing in hypertensive rats. However, losartan has been favorable for consolidation of bone grafts and reduction in active periodontitis. Therefore, losartan is suggested to be effective in bone formation stages, as well as in the synthesis of matrix proteins and mineralization. Objectives: To evaluate the alveolar bone dynamics in hypertensive rats treated with losartan by laser confocal microscopy and histological analysis. Methodology: Thirty-two rats, 16 spontaneously hypertensive rats (SHR) and 16 Wistar albinus rats, treated or not with losartan (30 mg/kg/day) were used. Calcein fluorochrome at 21 days and alizarin red fluorochrome at 49 days were injected in rats (both 20 mg/kg). The animals were submitted to euthanasia 67 days after treatment, and then the right maxilla was removed for laser confocal microscopy analysis and the left maxilla for histological analysis. Results: This study showed a greater calcium marking in normotensive animals treated with losartan in relation to the other groups. Laser confocal microscopy parameters showed higher values of bone volume formed, mineralized surface, active surface of mineralization and bone formation rate in normotensive animals treated with losartan. However, a smaller mineralized surface was observed in all hypertensive animals. Conclusion: Losartan can improve bone mineralization parameters under normal physiological conditions, but the same anabolic effect does not occur under hypertension.


Subject(s)
Animals , Male , Losartan/pharmacology , Alveolar Process/drug effects , Alveolar Process/physiopathology , Hypertension/physiopathology , Antihypertensive Agents/pharmacology , Osteogenesis/drug effects , Rats, Inbred SHR , Time Factors , Blood Pressure/drug effects , Bone Regeneration/drug effects , Calcification, Physiologic/drug effects , Reproducibility of Results , Rats, Wistar , Microscopy, Confocal , Alveolar Process/pathology , Fluoresceins/analysis
10.
J. appl. oral sci ; J. appl. oral sci;27: e20180693, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1040226

ABSTRACT

ABSTRACT Objectives: To compare the sealing ability and biocompatibility of Biodentine with mineral trioxide aggregate (MTA) when used as root-end filling materials. Methodology: The Cell Counting Kit-8 (CCK-8) assay was used to compare the cytotoxicity of MTA and Biodentine. Twenty-one extracted teeth with a single canal were immersed in an acidic silver nitrate solution after root-end filling. Then, the volume and depth of silver nitrate that infiltrated the apical portion of the teeth were analyzed using micro-computed tomography (micro-CT). Seventy-two roots from 3 female beagle dogs were randomly distributed into 3 groups and apical surgery was performed. After six months, the volume of the bone defect surrounding these roots was analyzed using micro-CT. Results: Based on the results of the CCK-8 assay, MTA and Biodentine did not show statistically significant differences in cytotoxicity (P>0.05). The volume and the depth of the infiltrated nitrate solution were greater in the MTA group than in the Biodentine group (P<0.05). The volume of the bone defect was larger in the MTA group than in the Biodentine group. However, the difference was not significant (P>0.05). The volumes of the bone defects in the MTA and Biodentine groups were smaller than the group without any filling materials (P<0.05). Conclusions: MTA and Biodentine exhibited comparable cellular biocompatibility. Biodentine showed a superior sealing ability to MTA in root-end filling. Both Biodentine and MTA promoted periradicular bone healing in beagle dog periradicular surgery models.


Subject(s)
Humans , Animals , Male , Adolescent , Dogs , Oxides/pharmacology , Periapical Tissue/drug effects , Periodontal Ligament/drug effects , Root Canal Filling Materials/pharmacology , Root Canal Therapy/methods , Wound Healing/drug effects , Silicates/pharmacology , Calcium Compounds/pharmacology , Aluminum Compounds/pharmacology , Osteogenesis/drug effects , Periapical Tissue/cytology , Periapical Tissue/diagnostic imaging , Periodontal Ligament/diagnostic imaging , Time Factors , Tooth Root/surgery , Tooth Root/drug effects , Tooth Root/diagnostic imaging , Bone Regeneration/drug effects , Materials Testing , Cell Count , Cells, Cultured , Reproducibility of Results , Treatment Outcome , Drug Combinations , X-Ray Microtomography
11.
J. appl. oral sci ; J. appl. oral sci;27: e20180317, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-984571

ABSTRACT

Abstract Bone morphogenetic protein type 2 (BMP-2) and retinoic acid (RA) are osteoinductive factors that stimulate endogenous mechanisms of bone repair which can be applied on management of osseous defects in oral and maxillofacial fields. Objective Considering the different results of RA on osteogenesis and its possible use to substitute/potency BMP-2 effects, this study evaluated the outcomes of BMP-2, RA, and BMP-2+RA treatments on in vitro osteogenic differentiation of human adipose-derived stem cells (ASCs) and the signaling pathway(s) involved. Material and Methods ASCs were treated every other day with basic osteogenic medium (OM) alone or supplemented with BMP-2, RA, or BMP-2+RA. Alkaline phosphatase (ALP) activity was determined using the r-nitrophenol method. Extracellular matrix mineralization was evaluated using von Kossa staining and calcium quantification. Expression of osteonectin and osteocalcin mRNA were determined using qPCR. Smad1, Smad4, phosphorylated Smad1/5/8, BMP-4, and BMP-7 proteins expressions were analyzed using western blotting. Signaling pathway was evaluated using the IPA® software. Results RA promoted the highest ALP activity at days 7, 14, 21, and 28, in comparison to BMP-2 and BMP-2+RA. BMP-2+RA best stimulated phosphorylated Smad1/5/8 protein expression at day 7 and Smad4 expression at days 7, 14, 21, and 28. Osteocalcin and osteonectin mRNA expressions were best stimulated by BMP-2+RA at day 7. Matrix mineralization was most improved by BMP-2+RA at days 12 and 32. Additionally, BMP-2+RA promoted the highest BMP signaling pathway activation at days 7 and 14, and demonstrated more activation of differentiation of bone-forming cells than OM alone. Conclusions In summary, RA increased the effect of BMP-2 on osteogenic differentiation of human ASCs.


Subject(s)
Humans , Osteogenesis/drug effects , Tretinoin/pharmacology , Cell Differentiation/drug effects , Bone Morphogenetic Protein 2/drug effects , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis/physiology , Reference Values , Time Factors , Osteocalcin/analysis , Osteocalcin/drug effects , Osteonectin/analysis , Osteonectin/drug effects , Cell Differentiation/physiology , Cells, Cultured , Blotting, Western , Reproducibility of Results , Analysis of Variance , Alkaline Phosphatase/analysis , Alkaline Phosphatase/adverse effects , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cells/metabolism
12.
J. appl. oral sci ; J. appl. oral sci;27: e20180014, 2019. graf
Article in English | LILACS, BBO | ID: biblio-975888

ABSTRACT

Abstract Stanozolol (ST) is a synthetic androgen with high anabolic potential. Although it is known that androgens play a positive role in bone metabolism, ST action on bone cells has not been sufficiently tested to support its clinical use for bone augmentation procedures. Objective: This study aimed to assess the effects of ST on osteogenic activity and gene expression in SaOS-2 cells. Material and Methods: SaOS-2 deposition of mineralizing matrix in response to increasing doses of ST (0-1000 nM) was evaluated through Alizarin Red S and Calcein Green staining techniques at 6, 12 and 24 days. Gene expression of runt-related transcription factor 2 (RUNX2), vitamin D receptor (VDR), osteopontin (SPP1) and osteonectin (ON) was analyzed by RT-PCR. Results: ST significantly influenced SaOS-2 osteogenic activity: stainings showed the presence of rounded calcified nodules, which increased both in number and in size over time and depending on ST dose. RT-PCR highlighted ST modulation of genes related to osteogenic differentiation. Conclusions: This study provided encouraging results, showing ST promoted the osteogenic commitment of SaOS-2 cells. Further studies are required to validate these data in primary osteoblasts and to investigate ST molecular pathway of action.


Subject(s)
Humans , Osteogenesis/drug effects , Stanozolol/pharmacology , Gene Expression/drug effects , Anabolic Agents/pharmacology , Osteoblasts/drug effects , Time Factors , Calcification, Physiologic/drug effects , Linear Models , Osteonectin/analysis , Osteonectin/drug effects , Reproducibility of Results , Analysis of Variance , Receptors, Calcitriol/analysis , Receptors, Calcitriol/drug effects , Cell Line, Tumor/drug effects , Core Binding Factor Alpha 1 Subunit/analysis , Core Binding Factor Alpha 1 Subunit/drug effects , Osteopontin/analysis , Osteopontin/drug effects , Real-Time Polymerase Chain Reaction
13.
J. appl. oral sci ; J. appl. oral sci;27: e20180150, 2019. graf
Article in English | LILACS, BBO | ID: biblio-975883

ABSTRACT

Abstract Objectives This investigation aimed to assess the differentiation inhibitory effects of ProRoot MTA® (PMTA) and Biodentine® (BIOD) on osteoclasts originated from murine bone marrow macrophages (BMMs) and compare these effects with those of alendronate (ALD). Materials and Methods Mouse BMMs were cultured to differentiate into osteoclasts with macrophage colony-stimulating factor and receptor activator of NF-κB (RANKL), treated with lipopolysaccharide. After application with PMTA, BIOD, or ALD, cell toxicities were examined using WST-1 assay kit, and RANKL-induced osteoclast differentiation and activities were determined by resorption pit formation assay and tartrate-resistant acid phosphate (TRAP) staining. The mRNA levels of osteoclast activity-related genes were detected with quantitative real time polymerase chain reaction. Expressions of molecular signaling pathways were assessed by western blot. All data were statistically analyzed with one-way ANOVA and Tukey's post-hoc test (p<0.05). Results Mouse BMMs applied with PMTA, BIOD, or ALD showed highly reduced levels of TRAP-positive osteoclasts. The BIOD treated specimens suppressed mRNA expressions of cathepsin K, TRAP, and c-Fos. Nonetheless, it showed a lower effect than PMTA or ALD applications. Compared with ALD, PMTA and BIOD decreased RANKL-mediated phosphorylation of ERK1/2 and IκBα. Conclusions PMTA and BIOD showed the inhibitory effect on osteoclast differentiation and activities similar to that of ALD through IκB phosphorylation and suppression of ERK signaling pathways.


Subject(s)
Animals , Mice , Osteoclasts/drug effects , Root Canal Filling Materials/pharmacology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Silicates/pharmacology , Calcium Compounds/pharmacology , Alendronate/pharmacology , Bone Density Conservation Agents/pharmacology , Osteoclasts/physiology , Osteogenesis/drug effects , Phosphorylation/drug effects , Root Resorption/prevention & control , Time Factors , Bone Marrow Cells/cytology , Cell Survival/drug effects , Cells, Cultured , Blotting, Western , Reproducibility of Results , MAP Kinase Signaling System/drug effects , I-kappa B Proteins/drug effects , RANK Ligand/analysis , RANK Ligand/drug effects , Real-Time Polymerase Chain Reaction , Tartrate-Resistant Acid Phosphatase
14.
Acta cir. bras ; Acta Cir. Bras. (Online);34(3): e201900306, 2019. tab, graf
Article in English | LILACS | ID: biblio-989063

ABSTRACT

Abstract Purpose: To investigate the effects of allopurinol administration on osteoinductive reaction and bone development with graft material. Methods: Thirty-six Wistar albino rats were divided into 3 groups. In the control group, calvarial bone defect was only created without any treatment. In the Defect + Graft group, allograft treatment was performed by forming 8 mm calvarial bone defect. In the Defect + Graft + Allopurinol group, alloplastic bone graft was placed in the calvarial bone defect and then, allopurinol (50 mg/kg/day) treatment was intraperitoneally applied for 28 days. Results: Histopathological examination revealed inflammation, congestion in the vessels, and an increase in osteoclast cells in the defect area. We also observed that new osteocyte cells, increase in connective tissue fibers, and new bone trabeculae. Osteopontin expression was positive in osteoblast cells and lacunated osteocyte cells were located in the periphery of the new bone trabeculae. Osteopontin expression was also positive in osteoblasts and osteocytes cells of new bone trabeculae in the graft site. Conclusion: It has been shown that allopurinol treatment in rat calvaria defects may induce osteoblastic activity, matrix development, mature bone cell formation and new bone formation when used with autogenous grafts.


Subject(s)
Animals , Rats , Osteogenesis/drug effects , Skull/drug effects , Wound Healing/drug effects , Bone Regeneration/drug effects , Allopurinol/pharmacology , Skull/injuries , Rats, Wistar , Disease Models, Animal , Autografts
15.
J. appl. oral sci ; J. appl. oral sci;27: e20180103, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1002400

ABSTRACT

Abstract Objective This study aimed to evaluate the inflammatory effect and bone formation in sterile surgical failures after implantation of a collagen sponge with mesenchymal stem cells from human dental pulp (hDPSCs) and Aloe vera. Material and Methods Rattus norvegicus (n=75) were divided into five experimental groups according to treatment: G1) control (blood clot); G2) Hemospon®; G3) Hemospon® in a culture medium enriched with 8% Aloe vera; G4) Hemospon® in a culture medium containing hDPSCs and G5) Hemospon® in a culture medium enriched with 8% Aloe vera and hDPSCs. On days 7, 15 and 30, the animals were euthanized, and the tibia was dissected for histological, immunohistochemistry and immunofluorescence analyses. The results were analyzed using nonparametric Kruskal-Wallis test and Dunn's post-test. Results On days 7 and 15, the groups with Aloe vera had less average acute inflammatory infiltrate compared to the control group and the group with Hemospon® (p<0.05). No statistically significant difference was found between the groups regarding bone formation at the three experimental points in time. Osteopontin expression corroborated the intensity of bone formation. Fluorescence microscopy revealed positive labeling with Q-Tracker® in hDPSCs before transplantation and tissue repair. Conclusion The results suggest that the combination of Hemospon®, Aloe vera and hDPSCs is a form of clinical treatment for the repair of non-critical bone defects that reduces the inflammatory cascade's effects.


Subject(s)
Humans , Animals , Male , Rats , Bone Regeneration/drug effects , Bone Regeneration/physiology , Plant Extracts/pharmacology , Dental Pulp/cytology , Mesenchymal Stem Cell Transplantation/methods , Aloe/chemistry , Osteogenesis/drug effects , Osteogenesis/physiology , Tibia/drug effects , Tibia/physiology , Tibia/pathology , Time Factors , Immunohistochemistry , Hemostatics/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Reproducibility of Results , Collagen/pharmacology , Treatment Outcome , Osteopontin/analysis , Flow Cytometry , Microscopy, Fluorescence
16.
Acta cir. bras ; Acta Cir. Bras. (Online);34(7): e201900704, 2019. tab, graf
Article in English | LILACS | ID: biblio-1038112

ABSTRACT

Abstract Purpose: The effects of resveratrol administration on calvarial bone defects with alloplastic graft material was investigated for osteoinductive reaction and bone development in rats. Methods: Healthy male rats were randomly divided into 3 groups consisting of 10 rats. Groups were as follows: control (defect) group, defect + graft group, and defect + graft + resveratrol group. A calvarial bone defect was created in all groups, alloplastic bone grafts were applied to the defect in the 2nd and 3rd group, resveratrol (5 mg/kg/day) was added to the drinking water of the animals following graft application for 28 days in the 3rd group. Results: Increase in osteoclasts and necrotic changes were observed histopathologically in the control group. In the 2nd group, reduction of inflammation, congestion of blood vessels, increased osteblastic activity, osteoinductive effect, progression of osteocyte development and increased collagen fibers in connective tissue were observed. In the 3rd group, osteoblasts seemed to secrete bone matrix and accelerate osteoinductive effect with increased osteopregenitor activity and positive osteopontin and osteonectin expressions. Conclusion: Resveratrol treatment was thought to be an alternative and supportive drug for implant application by inducing new bone formation in the calvaral defect region as a result of short-term treatment.


Subject(s)
Animals , Male , Rats , Skull/surgery , Bone Regeneration/drug effects , Bone Transplantation/methods , Bone Substitutes/administration & dosage , Resveratrol/administration & dosage , Osteoblasts/drug effects , Osteogenesis/drug effects , Skull/drug effects , Drug Administration Schedule , Osteonectin/administration & dosage , Osseointegration/drug effects , Bone Substitutes/therapeutic use , Disease Models, Animal , Osteopontin/administration & dosage
17.
Braz. oral res. (Online) ; 33: e079, 2019. graf
Article in English | LILACS | ID: biblio-1019604

ABSTRACT

Abstract Cell therapy associated with guided bone regeneration (GBR) can be used to treat bone defects under challenging conditions such as osteoporosis. This study aimed to evaluate the effect of mesenchymal stem cells (MSCs) in combination with a poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT) membrane on bone repair in osteoporotic rats. Osteoporosis was induced in female rats by bilateral removal of the ovaries (OVX) or sham surgery (SHAM), and the osteoporotic condition was characterized after 5 months by microtomographic and morphometric analyses. Calvarial defects were created in osteoporotic rats that immediately received the PVDF-TrFE/BT membrane. After 2 weeks, bone marrow-derived MSCs from healthy rats, characterized by the expression of surface markers using flow cytometry, or phosphate-buffered saline (PBS) (Control) were injected into the defects and bone formation was evaluated 4 weeks post-injection by microtomographic, morphometric, and histological analyses. A reduction in the amount of bone tissue in the femurs of OVX compared with SHAM rats confirmed the osteoporotic condition of the experimental model. More bone formation was observed when the defects were injected with MSCs compared to that with PBS. The modification that we are proposing in this study for the classical GBR approach where cells are locally injected after a membrane implantation may be a promising therapeutic strategy to increase bone formation under osteoporotic condition.


Subject(s)
Animals , Female , Polyvinyls/pharmacology , Titanium/pharmacology , Barium Compounds/pharmacology , Guided Tissue Regeneration/methods , Mesenchymal Stem Cells/physiology , Osteogenesis/drug effects , Osteoporosis/physiopathology , Osteoporosis/therapy , Polyvinyls/chemistry , Time Factors , Titanium/chemistry , Bone Regeneration/drug effects , Bone Regeneration/physiology , Ovariectomy , Random Allocation , Bone Density , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Barium Compounds/chemistry , Imaging, Three-Dimensional , Mesenchymal Stem Cells/chemistry , Flow Cytometry
18.
J. appl. oral sci ; J. appl. oral sci;27: e20180641, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-1012519

ABSTRACT

Abstract Objectives: Infection, inflammation and bone resorption are closely related events in apical periodontitis development. Therefore, we sought to investigate the role of cyclooxygenase (COX) in osteoclastogenesis and bone metabolism signaling in periapical bone tissue after bacterial lipopolysaccharide (LPS) inoculation into root canals. Methodology: Seventy two C57BL/6 mice had the root canals of the first molars inoculated with a solution containing LPS from E. coli (1.0 mg/mL) and received selective (celecoxib) or non-selective (indomethacin) COX-2 inhibitor. After 7, 14, 21 and 28 days the animals were euthanized and the tissues removed for total RNA extraction. Evaluation of gene expression was performed by qRT-PCR. Statistical analysis was performed using analysis of variance (ANOVA) followed by post-tests (α=0.05). Results: LPS induced expression of mRNA for COX-2 (Ptgs2) and PGE2 receptors (Ptger1, Ptger3 and Ptger4), indicating that cyclooxygenase is involved in periapical response to LPS. A signaling that favours bone resorption was observed because Tnfsf11 (RANKL), Vegfa, Ctsk, Mmp9, Cd36, Icam, Vcam1, Nfkb1 and Sox9 were upregulated in response to LPS. Indomethacin and celecoxib differentially modulated expression of osteoclastogenic and other bone metabolism genes: celecoxib downregulated Igf1r, Ctsk, Mmp9, Cd36, Icam1, Nfkb1, Smad3, Sox9, Csf3, Vcam1 and Itga3 whereas indomethacin inhibited Tgfbr1, Igf1r, Ctsk, Mmp9, Sox9, Cd36 and Icam1. Conclusions: We demonstrated that gene expression for COX-2 and PGE2 receptors was upregulated after LPS inoculation into the root canals. Additionally, early administration of indomethacin and celecoxib (NSAIDs) inhibited osteoclastogenic signaling. The relevance of the cyclooxygenase pathway in apical periodontitis was shown by a wide modulation in the expression of genes involved in both bone catabolism and anabolism.


Subject(s)
Animals , Male , Osteogenesis/physiology , Periapical Tissue/drug effects , Periapical Tissue/metabolism , Lipopolysaccharides/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Prostaglandin-Endoperoxide Synthases/physiology , Dental Pulp Cavity/metabolism , Osteogenesis/drug effects , Time Factors , Bone Resorption/metabolism , Gene Expression , Up-Regulation , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Indomethacin/pharmacology , Lipopolysaccharides/analysis , Prostaglandin-Endoperoxide Synthases/analysis , Prostaglandin-Endoperoxide Synthases/drug effects , Receptors, Prostaglandin E/analysis , Reverse Transcriptase Polymerase Chain Reaction , Escherichia coli/metabolism , Cyclooxygenase 2/analysis , Celecoxib/pharmacology , Mice, Inbred C57BL
19.
J. appl. oral sci ; J. appl. oral sci;27: e20180621, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1012525

ABSTRACT

Abstract Objective Considering the global public health problem of smoking, which can negatively influence bone tissue repair, the aim of this study is to analyze the influence of photobiomodulation therapy (PBM) on calvaria defects created surgically in specimens under the effect of cigarette smoke and analyzed with use of histomorphometric and immunohistochemistry techniques. Methodology Calvaria defects 4.1 mm in diameter were surgically created in the calvaria of 90-day-old rats (n=60) that were randomly divided into 4 experimental groups containing 15 animals each: control group (C), smoking group (S), laser group (L), and smoke associated with laser group (S+L). The animals were subjected to surgery for calvaria defects and underwent PBM, being evaluated at 21, 45, and 60 days post-surgery. The specimens were then processed for histomorphometric and immunohistochemistry analyses. The area of bone neoformation (ABN), percentage of bone neoformation (PBNF), and the remaining distance between the edges of the defects (D) were analyzed histometrically. Quantitative analysis of the TRAP immunolabeled cells was also performed. The data were subjected to analysis of variance (ANOVA) in conjunction with Tukey's test to verify the statistical differences between groups (p<0.05). Results The smoking group showed less ABN compared to the other experimental groups in all periods, and it also showed more D at 21 days compared to the remaining groups and at 45 days compared to the laser group. The smoking group showed a lower PNBF compared to the laser group in all experimental periods and compared to smoking combined with LLLT group at 21 days. Conclusions PBM acted on bone biomodulation, thus stimulating new bone formation and compensating for the negative factor of smoking, which can be used as a supportive therapy during bone repair processes.


Subject(s)
Animals , Female , Rats , Skull/radiation effects , Wound Healing/radiation effects , Bone Regeneration/drug effects , Low-Level Light Therapy/methods , Cigarette Smoking/physiopathology , Osteogenesis/drug effects , Skull/pathology , Time Factors , Immunohistochemistry , Random Allocation , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Cigarette Smoking/adverse effects
20.
J. oral res. (Impresa) ; 7(8): 350-355, nov. 30, 2018. ilus, tab
Article in English | LILACS | ID: biblio-1121066

ABSTRACT

Introduction: Ostene is a water-soluble wax-like alkylene oxide copolymer preparation for use as a mechanical hemostatic agent. this study aims to evaluate the effects of Ostene on bone healing. materials and methods: twenty albino rabbits were divided into four groups according to post-treatment follow-up (24 hr, 3 days, 7 days, 14 days) with five rabbits in each group. each rabbit in all groups was treated with two study materials (Ostene and Gelfoam). three holes were made in the mandibular bone of each rabbit using 5mm surgical bur; two holes were made on right side: one for testing Ostene and another for Gelfoam. a third hole, on the left side of mandible, was not treated, and was used as a control. finally, the incision was closed. the specimens were collected at different days post-treatment and examined by histopathology. result and discussion: this study showed that there is a significant difference (p-value≤ 0.05) between the Ostene group and the other groups (Gelfoam and control). at 24 hr post intervention, there is a significant difference in osteoblast cell formation (p-value=0.03), and osteoclast cell formation (p-value=0.05). new blood vessel formation, osteoblast and osteoclast cell formation for Ostene group at 3 days post-intervention were also significantly different (p-values = 0.05, 0.03, 0.04, respectively). at 7 days post-intervention p-values were 0.05 for osteoblast formation and 0.04 for osteoclast formation, respectively. after 14 days of healing p-value for osteoblast cell formation in the Ostene group was 0.05 and 0.04 for osteoclast cell formation. conclusions: the bone hemostatic agent Ostene is an effective at enhancing osteogenesis by initiating proliferation of osteoblast and osteoclast cells.


Subject(s)
Animals , Rabbits , Osteogenesis/drug effects , Wound Healing/drug effects , Bone and Bones/drug effects , Hemostatics/pharmacology , Hemostasis , Osteoblasts , Osteoclasts , Disease Models, Animal , Mandible/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL