ABSTRACT
Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
Subject(s)
Humans , Female , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , RNA, Competitive Endogenous , Cell Line, Tumor , Ovarian Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Adaptor Proteins, Signal Transducing/metabolismABSTRACT
Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.
Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Cell Proliferation , Cytokines , Endoplasmic Reticulum Stress/geneticsABSTRACT
OBJECTIVE@#To investigate the correlation of the potential functional microRNA (miRNA)-mRNA regulatory network with recurrence of high-grade serous ovarian carcinoma (HGSOC) and its biological significance.@*METHODS@#This study was performed based on the data of 354 patients with HGSOC from the Cancer Genome Atlas database. In these patients, HGSOC was divided into different subtypes based on the pathways identified by GO analysis, and the correlations of the subtypes with HGSOC recurrence and differentially expressed miRNAs and mRNAs were assessed. Two relapse-related datasets were identified using the Gene Set Enrichment (GSE) database, from which the differentially expressed miRNAs were identified by intersection with the TCGA data. The target genes of these miRNAs were predicted using miRWalk 2.0 database, and these common differentially expressed miRNAs and mRNAs were used to construct the key miRNA-mRNA network associated with HGSOC recurrence. The expression of miR-506-3p and SNAI2 in two ovarian cancer cell lines was detected using RT-qPCR and Western blotting, and their targeted binding was verified using a double luciferase assay. The effect of miR-506-3p expression modulation on ovarian cancer cell migration was detected using scratch assay and Transwell assay.@*RESULTS@#We screened 303 GO terms of HGSOC-related pathways and identified two HGSOC subtypes (C1 and C2). The subtype C1 was associated with a significantly higher recurrence rate than C2. The differentially expressed genes between C1 and C2 subtypes were mainly enriched in epithelial-mesenchymal transition (EMT). Five miRNAs were identified as potential regulators of EMT, and a total of 41 target genes were found to be involved in the differential expressions of EMT pathway between C1 and C2 subtypes. The key miRNA-mRNA network associated with HGSOC recurrence was constructed based on these 5 miRNAs and 41 mRNAs. MiR-506-3p was confirmed to bind to SNAI2, and up-regulation of miR-506-3p significantly inhibited SNAI2 expression and reduced migration and invasion of SKOV3 and CAOV3 cells (P < 0.05), while miR-506-3p knockdown produced the opposite effects (P < 0.05).@*CONCLUSION@#MiR-506-3p and SNAI2 are the key molecules associated with HGSOC recurrence. MiR-506-3p may affect EMT of ovarian cancer cells by regulating cell migration and invasion via SNAI2, and its expression level has predictive value for HGSOC recurrence.
Subject(s)
Humans , Female , MicroRNAs/genetics , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/genetics , Computational BiologyABSTRACT
The present study aimed to explore the main active components and underlying mechanisms of Marsdenia tenacissima in the treatment of ovarian cancer(OC) through network pharmacology, molecular docking, and in vitro cell experiments. The active components of M. tenacissima were obtained from the literature search, and their potential targets were obtained from SwissTargetPrediction. The OC-related targets were retrieved from Therapeutic Target Database(TTD), Online Mendelian Inheritance in Man(OMIM), GeneCards, and PharmGKB. The common targets of the drug and the disease were screened out by Venn diagram. Cytoscape was used to construct an "active component-target-disease" network, and the core components were screened out according to the node degree. The protein-protein interaction(PPI) network of the common targets was constructed by STRING and Cytoscape, and the core targets were screened out according to the node degree. GO and KEGG enrichment analyses of potential therapeutic targets were carried out with DAVID database. Molecular docking was used to determine the binding activity of some active components to key targets by AutoDock. Finally, the anti-OC activity of M. tenacissima extract was verified based on SKOV3 cells in vitro. The PI3K/AKT signaling pathway was selected for in vitro experimental verification according to the results of GO function and KEGG pathway analyses. Network pharmacology results showed that 39 active components, such as kaempferol, 11α-O-benzoyl-12β-O-acetyltenacigenin B, and drevogenin Q, were screened out, involving 25 core targets such as AKT1, VEGFA, and EGFR, and the PI3K-AKT signaling pathway was the main pathway of target protein enrichment. The results of molecular docking also showed that the top ten core components showed good binding affinity to the top ten core targets. The results of in vitro experiments showed that M. tenacissima extract could significantly inhibit the proliferation of OC cells, induce apoptosis of OC cells through the mitochondrial pathway, and down-regulate the expression of proteins related to the PI3K/AKT signaling pathway. This study shows that M. tenacissima has the characteristics of multi-component, multi-target, and multi-pathway synergistic effect in the treatment of OC, which provides a theoretical basis for in-depth research on the material basis, mechanism, and clinical application.
Subject(s)
Humans , Female , Marsdenia , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Ovarian Neoplasms/genetics , Databases, Genetic , Plant Extracts , Drugs, Chinese Herbal/pharmacologyABSTRACT
Ovarian cancer is one of the three major cancers in gynecology. Ovarian cancer has insidious symptoms in its early stages and mostly has progressed to advanced stages when detected. Surgical treatment combined with chemotherapy is currently the main treatment, but the 5-year survival rate is still less than 45%. Angiogenesis is a key step in the growth and metastasis of ovarian cancer. The inhibition of ovarian cancer angiogenesis has become a new hotspot in anti-tumor targeted therapy, which has many advantages such as less drug resistance, high specificity, few side effects, and broad anti-tumor spectrum. Modern research has confirmed that traditional Chinese medicine(TCM) can inhibit tumor angiogenesis by inhibiting the expression of pro-angiogenic factors, up-regulating the expression of anti-angiogenic factors, inhibiting the proliferation of vascular endothelial cells, reducing the density of tumor microvessels, and regulating related signaling pathways, with unique advantages in the treatment of ovarian cancer. This paper presented a review of the role of TCM in inhibiting ovarian cancer angiogenesis in order to provide references for the optimization of clinical ovarian cancer treatment strategies.
Subject(s)
Humans , Female , Medicine, Chinese Traditional , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Angiogenesis , Angiogenesis Inhibitors/therapeutic use , Ovarian Neoplasms/genetics , Neovascularization, Pathologic/geneticsABSTRACT
Objective: To investigate the expression of long non-coding RNA LOC101927476 (LncRNA LOC101927476) in ovarian cancer and its effect on the biological characteristics of ovarian cancer. Methods: Patients with ovarian cancer who underwent surgery in Cancer Hospital of Chinese Academy of Medical Sciences from 2018 to 2019 were selected. The expressions of LOC101927476 in ovarian cancer cells 3AO, OVCA429, TOV21G, A2780, SKOV3, as well as 22 primary tumor tissues and their matched metastatic tumor tissues were detected by real-time quantitative polymerase chain reaction (RT-PCR). Ovarian cancer transcriptome sequencing data from the TCGA database was used to verify the expressions of LOC101927476 and GATA4. 3AO and OVCA429 cells were infected with lentivirus plasmid containing OE-LOC101927476 and single guide RNA (sg-RNA) targeting LOC101927476, respectively. The effects of LOC101927476 on migration and invasion were detected by Transwell and wound healing assay. The effect of LOC101927476 on cell proliferation was detected by cell counting kit-8 (CCK-8) assay. Results: RT-PCR assay showed that 20 out of 22 patients had significantly lower expression of LOC101927476 in their metastatic tumors compared with primary tumors. Transwell assay showed that overexpression of LOC101927476 significantly inhibited the invasion and migration capacities of 3AO cells. The numbers of invading and migrating 3AO cells infected with OE-LOC101927476 lentivirus were (357±63) and (699±65), respectively, lower than (661±95) and (1 024±76) in OE-EV group (P<0.050). In contrast, the numbers of invading and migrating OVCA429 cells with LOC101927476 knockdown were (512±72) and (472±40), respectively, higher than (309±13) and (363±27) in sg-Control group (P<0.050). Wound healing assay results showed that after 48 hours, the percentage of scratch healing of 3AO cells in OE-LOC101927476 group was (10.86±0.63)%, significantly lower than (57.38±4.42)% of OE-EV group (P=0.009). After 24 hours, the percentage of scratch healing of OCVA429 cells in sg-LOC101927476 group was (59.98±1.34)%, significantly higher than (23.15±2.03)% of sg-Control group (P=0.004). CCK-8 assays showed that the OD value of 3AO cells in OE-LOC101927476 group was (2.07±0.08), significantly lower than (2.29±0.04) of OE-EV group (P=0.009). The OD value of OVCA429 cells in sg-LOC101927476 group was (2.13±0.03), significantly higher than (1.93±0.03) of sg-Control group (P=0.001). The relative expression of GATA4 in OE-LOC101927476 group was (1.86±0.25), significantly higher than 1.00 of OE-EV group (P=0.001). In patients with high expression of LncRNA LOC101927476, the expression level of GATA4 was (2.93±0.35), which was higher than (0.29±0.06) of LOC101927476 low expression group (P=0.001). Conclusion: LncRNA LOC101927476 can inhibit the invasion, migration and proliferation of ovarian cancer cells.
Subject(s)
Female , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , RNA, Long Noncoding/geneticsABSTRACT
The present study explored the main active ingredients and the underlying mechanism of Spatholobi Caulisin the treatment of ovarian cancer(OC) by network pharmacology, molecular docking, and in vitro cell experiments. The active ingredients and their predicted targets(AITs) were first acquired online with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). Theoretical disease targets(DTs) were obtained through professional databases including GeneCards, OMIM, PharmGkb, TTD, and DrugBank. The common targets in the intersection of AITs and DTs were used for the construction of a "drug-ingredient-disease-target" network by Cytoscape 3.7.1. STRING database was used to construct a protein-protein interaction(PPI) network. R 4.0.5 was used for GO and KEGG functional enrichment analyses. Schr9 dinger Maestro was used to perform and optimize the molecular docking and virtual screening.Twenty-three active ingredients of Spatholobi Caulis were screened out, involving 75 OC targets and 178 signaling pathways.Network analysis revealed that Spatholobi Caulis presumedly exerted an anti-OC effect by acting on key protein targets such as GSK-3β, Bcl-2, and Bax. Molecular docking showed that GSK-3β possessed goodbinding activity to prunetin. In vitro cell experiments preliminarily verified the core targets and pathways of prunetin, the active ingredient of Spatholobi Caulis against human OC SKOV3 cells.CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the effect of prunetin on apoptosis of human OC SKOV3 cells.The expression of prunetin targets and related regulatory proteins was detected by Western blot.In vitro cell experiments demonstrated that prunetindisplayed significant inhibitory effects on the proliferation of OC cells and could induce apoptosis of SKOV3 cells. Western blot showed that prunetin could induce SKOV3 cell apoptosis by inhibiting GSK-3β phosphorylation and regulating the expression of downstream Bcl-2 and Bax proteins. This study reveals the scientific nature of network pharmacology in the prediction and guidance of experimental design, confirming that prunetin can treat OC by blocking the GSK-3β/Bcl-2/Bax cell signal transduction pathway. The findings are expected to provide a basis for the investigation of the mechanism of Spatholobi Caulis in the treatment of OC.
Subject(s)
Humans , Drugs, Chinese Herbal/pharmacology , Glycogen Synthase Kinase 3 beta/genetics , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Ovarian Neoplasms/geneticsABSTRACT
OBJECTIVE@#To explore the mechanism by which ginsenoside 20(S)-Rg3 upregulates the expression of tumor suppressor von Hippel-Lindau (VHL) gene in ovarian cancer cells.@*METHODS@#Ovarian cancer cell line SKOV3 treated with 20(S)-Rg3 were examined for mRNA and protein levels of VHL, DNMT1, DNMT3A and DNMT3B by real-time PCR and Western blotting, respectively. The changes in VHL mRNA expression in SKOV3 cells in response to treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, were detected using real-time PCR. VHL gene promoter methylation was examined with methylation-specific PCR and VHL expression levels were determined with real-time PCR and Western blotting in non-treated or 20(S)-Rg3-treated SKOV3 cells and in 20(S)-Rg3-treated DNMT3A-overexpressing SKOV3 cells. VHL and DNMT3A protein levels were detected by immunohistochemistry in subcutaneous SKOV3 cell xenografts in nude mice.@*RESULTS@#Treatment of SKOV3 cells with 20(S)-Rg3 significantly upregulated VHL and downregulated DNMT3A expressions at both the mRNA and protein levels (@*CONCLUSIONS@#Ginsenoside 20(S)-Rg3 upregulates VHL expression in ovarian cancer cells by suppressing DNMT3A-mediated DNA methylation.
Subject(s)
Animals , Female , Humans , Mice , Cell Line, Tumor , DNA Methylation , Gene Expression , Ginsenosides/pharmacology , Mice, Nude , Ovarian Neoplasms/genetics , Promoter Regions, Genetic , Von Hippel-Lindau Tumor Suppressor Protein/geneticsABSTRACT
Based on the PI3K/Akt signaling pathway, this study aimed to observe the proliferation and apoptosis of ovarian cancer SKOV3 cells at different concentrations of icaritin, in order to explore the possible molecular mechanisms. The research object was ovarian cancer SKOV3 cells. The cells were divided into the control group and icaritin groups(5, 10, 20 μmol·L~(-1)), and administrated with drugs for 48 hours. The cell counting kit-8(CCK-8)assay was used to detect the inhibitory effect of icaritin on the proliferation of ovarian cancer SKOV3 cells. The proliferation ability of the SKOV3 cells was detected by EdU assay. Hoechst 33342 fluorescence staining was used to observe the apoptotic morphology of SKOV3 cells in each group. The distribution of cell cycle and the apoptosis rate of each group were detected by flow cytometry. Quantitative Real-time PCR was used to detect mRNA expressions of PTEN, PI3K, Akt in each group of cells. Protein expressions of PTEN, PI3K, Akt and p-Akt were measured by Western blot. The results showed that the cell inhibition rates of icaritin groups were significantly increased compared with the control group(P<0.05). The rates of EdU-positive cells of icaritin groups were significantly decreased(P<0.05). SKOV3 cells in icaritin groups showed morphological changes of apoptosis. Apoptosis rates of icaritin groups were significantly increased(P<0.05). The proportions of cells in G_0/G_1 phase of icaritin groups were decreased(P<0.05), while the proportions of S phase cells were increased(P<0.05). The gene and protein expressions of PTEN in icaritin groups were elevated(P<0.05). The gene expressions of PI3K and Akt in icaritin groups were down-regulated(P<0.05). The protein expression of PI3K and p-Akt in icaritin groups were reduced(P<0.05). These results indicated that icarin may inhibit the proliferation of ovarian cancer SKOV3 cells in vitro, induce cell apoptosis and affect the cycle distribution of cells by inhibiting the PI3K/Akt signaling pathway.
Subject(s)
Female , Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Flavonoids , Ovarian Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/geneticsABSTRACT
Objective To explore the effect of miR-145-5p on the proliferation and apoptosis of human ovarian cancer cells and the possible molecular mechanisms involved.Methods Real-time quantitative PCR was performed to detect the expression of miR-145-5p in ovarian epithelial cells and ovarian cancer cells.CCK-8 and flow cytometry were used to detect the effects of miR-145-5p overexpression on the proliferation and apoptosis of ovarian cancer cells.TargetScan was employed to predict the target genes of miR-145-5p.Western blotting,dual luciferase reporter assay and rescue experiment were employed to predict and verify the underlying molecular mechanism of miR-145-5p function.Results The expression of miR-145-5p in ovarian cancer cells was significantly lower than that in normal ovarian epithelial cells(
Subject(s)
Female , Humans , Apoptosis/genetics , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/geneticsABSTRACT
BACKGROUND: Ovarian cancer is one of the most common malignancies often resulting in a poor prognosis. 5-methylcytosine (m5C) is a common epigenetic modification with roles in eukaryotes. However, the expression and function of m5C regulatory factors in ovarian cancer remained unclear. RESULTS: Two molecular subtypes with different prognostic and clinicopathological features were identified based on m5C regulatory factors. Meanwhile, functional annotation showed that in the two subtypes, 452 differentially expressed genes were significantly related to the malignant progression of ovarian cancer. Subsequently, four m5C genes were screened to construct a risk marker predictive of overall survival and indicative of clinicopathological features of ovarian cancer, also the robustness of the risk marker was verified in external dataset and internal validation set. multifactorial cox regression analysis and nomogram demonstrated that risk score was an independent prognostic factor for ovarian cancer prognosis. CONCLUSIONS: In conclusion, our results revealed that m5C-related genes play a critical role in tumor progression in ovarian cancer. Further detection of m5C methylation could provide a novel targeted therapy for treating ovarian cancer.
Subject(s)
Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , 5-Methylcytosine , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Epigenesis, GeneticABSTRACT
Abstract Objective This study evaluated the risk of the hereditary breast and ovarian cancer (HBOC) syndrome in patients with breast cancer by using the Family History Screening 7 (FHS-7) tool, a validated low-cost questionnaire with high sensitivity able to screen the HBOC risk in the population. Methods Women diagnosed with breast cancer (n=101) assisted by the Unified Health System at the 8th Regional Health Municipal Office of the state of Paraná answered the FHS-7, and the results were analyzed using IBM SPSS Statistics for Windows, Version 25.0. software (IBM Corp., Armonk, NY, USA). Results The risk of HBOC was 19.80% (n=20). Patients at risk exhibited aggressive tumor characteristics, such as high-grade tumors (30%), presence of angiolymphatic emboli (35%), and premenopausal at diagnosis (50%). Significant associations between the prevalence of high-grade tumors were observed inwomen younger than 50 years at diagnosis with HBOC (p=0.003). Conclusion Our findings suggest a possible family inheritance associated with worse clinical features in women with breast cancer in this population, indicating that HBOC investigation can be initially performed with low-cost instruments such as FHS-7.
Resumo Objetivo Este estudo avaliou o risco da síndrome hereditária de câncer de mama e ovário (HBOC, na sigla em inglês) em pacientes com câncer de mama utilizando a ferramenta Familial History Screening 7 (FHS-7), um questionário validado de baixo custo e com alta sensibilidade capaz de rastrear o risco de HBOC na população. Métodos Mulheres diagnosticadas com câncer de mama (n=101) assistidas pelo Sistema Único de Saúde da 8ª Regional de Saúde do estado do Paraná responderam ao questionário FHS-7, e os resultados foram analisados pelo software IBM SPSS for Windows, Version 25.0. (IBM Corp., Armonk, NY, EUA). Resultados A ocorrência do risco de HBOC foi de 19,80% (n=20). Pacientes em risco exibiram características agressivas do tumor como tumores de alto grau (30%), presença de êmbolos angiolinfáticos (35%) e pré-menopausa ao diagnóstico (50%). Associações significantes foram observadas entre a prevalência de tumores de alto grau e diagnóstico abaixo de 50 anos no grupo HBOC (p=0.003). Conclusão Nossos achados sugerem uma possível herança familiar associada a piores características clínicas em mulheres com câncer de mama nessa população, indicando que a investigação de HBOC pode ser realizada, inicialmente, com instrumentos de baixo custo, como o FHS-7.
Subject(s)
Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Hereditary Breast and Ovarian Cancer Syndrome , Mass Screening , Genetic Predisposition to Disease , Early Detection of CancerSubject(s)
Humans , Female , Ovarian Neoplasms/genetics , Adenocarcinoma/genetics , Uterine Cervical Neoplasms/genetics , Endometrial Neoplasms/genetics , Genital Neoplasms, Female/genetics , Hamartoma Syndrome, Multiple , Colorectal Neoplasms, Hereditary Nonpolyposis , Risk Factors , Germ-Line Mutation/genetics , Salpingo-oophorectomyABSTRACT
Abstract Background: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. Objective: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. Methods: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. Results: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. Conclusions: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.
Subject(s)
Humans , Female , Adolescent , Adult , Middle Aged , Aged , Young Adult , Ovarian Neoplasms/genetics , Adenocarcinoma/genetics , Cell Cycle Proteins/genetics , Polymorphism, Single Nucleotide , Ovarian Neoplasms/mortality , Prognosis , Adenocarcinoma/mortality , Survival Rate , Retrospective StudiesABSTRACT
BACKGROUND: Although OIP5-AS1 has been characterized as an oncogenic lncRNA in many types of cancer, its role and underlying mechanism in ovarian carcinoma (OC) remains unknown. This study aimed to investigate the role of OIP5-AS1 in OC. METHODS: OC tissues and non-tumor tissues (ovary tissues within 3 cm around tumors) were collected from 58 OC patients (age range 36 to 67 years old, mean age 51.4 ± 5.9 years old). The expression of OIP5-AS1 and snail in paired tissues were determined by RT-qPCR. The interaction between OIP5-AS1 and miR-34a was predicted by IntaRNA2.0 and confirmed by dual luciferase reporter assay. The effects of overexpression of OIP5-AS1 and miR-34a on the expression of snail were analyzed by RT-qPCR and Western blotting. Cell invasion and migration were analyzed by Transwell assay. RESULTS: We observed that the expression of OIP5-AS1 and snail was upregulated and positively correlated with each other in OC. RNA-RNA interaction analysis showed that OIP5-AS1 might sponge miR-34a. In OC cells, overexpression of OIP5-AS1 resulted in the upregulated expression of snail, while overexpression of miR-34a downregulated the expression of snail. In addition, overexpression of miR-34a reduced the effects of overexpression of OIP5-AS1 on the expression of snail. In cell invasion and migration assay, overexpression of OIP5-AS1 and snail resulted in increased OC cell invasion and migration, while overexpression of miR-34a decreased OC cell invasion and migration. Moreover, overexpression of miR-34a attenuated the effects of OIP5-AS1 overexpression on OC cell invasion and migration. CONCLUSIONS: Therefore, OIP5-AS1 may upregulate snail expression in OC by sponging miR-34a to promote OC cell invasion and migration.
Subject(s)
Humans , Female , Adult , Middle Aged , Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/physiology , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm InvasivenessABSTRACT
BACKGROUND: Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. METHODS: DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. RESULTS: We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. CONCLUSIONS: These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.
Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation , Apoptosis/drug effects , MicroRNAs/antagonists & inhibitors , Cell Line, Tumor , Gene Knockout Techniques/methods , Sirtuin 1/antagonists & inhibitors , Real-Time Polymerase Chain Reaction , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitorsABSTRACT
BACKGROUND: The aim of this study was to investigate the effect role and mechanism of miR-30b-3p on ovarian cancer cells biological function. METHODS: The expression of miR-30b-3p was detected in ovarian cancer cell lines and normal ovarian epithelial cell line by qRT-PCR. Mir-30b-3p mimic was transfected into OVCAR3 cells. Cell-counting kit-8 (CCK-8) assay was conducted to explore the effect of mir-30b-3p on the OVCAR3 cells' proliferation. Cell cycle and apoptosis were detected by Flow cytometry. Cell invasion ability was detected by Transwell test. The regulation of putative target of miR-30b-3p was verified by double luciferase reporter assays and Western blot. RESULT: We found that miR-30b-3p was downregulated in OVCAR3 cells. Overexpression of miR-30b-3p suppressed proliferation, promoted apoptosis, slowed cell cycle and inhibited migration and invasion of OVCAR3 cells. Bioinformatics analysis identified 3'-untranslated region (3'UTR) of Collagen triple helix repeat-containing 1 (CTHRC1) as the presumed binding site for miR-30b-3p. Detection of double luciferase reporter and Western-Blot result confirmed that CTHRC1 was the target gene of miR-30b-3p. Furthermore, E-cadherin, ß-cadherin and Vimentin protein expression level were changed after transfection of miR-30b-3p. CONCLUSION: miR-30b-3p function as an anti-cancer gene. Overexpression of miR-30b-3p can inhibit the biological function of ovarian cancer cells. MiR-30b-3p targets CTHRC1 gene plays an important role in epithelial-mesenchymal transformation (EMT), and supports miR-30b-3p as a potential biological indicator for ovarian cancer in the future.
Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Extracellular Matrix Proteins/genetics , MicroRNAs/genetics , Epithelial-Mesenchymal Transition/genetics , Ovarian Neoplasms/metabolism , Signal Transduction , Cell Movement , Extracellular Matrix Proteins/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Neoplasm InvasivenessABSTRACT
SUMMARY OBJECTIVE Long noncoding RNAs (lncRNAs) have been shown to play a critical role in tumor progression. Abnormal expression of LncRNA PTPRG antisense RNA 1 (PTPRG-AS1) has been reported in several tumors. Hence, we aimed to determine the expression and clinical significance of PTPRG-AS1 in epithelial ovarian cancer (EOC) patients. METHODS The expressions of PTPRG-AS1 were assessed in 184 pairs of EOC tumor specimens and adjacent normal tissues. The levels of target lncRNAs and GAPDH were examined using standard SYBR-Green methods. The relationships between the expressions of PTPRG-AS1 and the clinicopathological features were analyzed using the chi-square test. Multivariate analysis using the Cox proportional hazards model was performed to assess the prognostic value of PTPRG-AS1 in EOC patients. RESULTS We confirmed that the expressions of PTPRG-AS1 were distinctly higher in the EOC tissue compared with the adjacent non-tumor specimens (p < 0.01). Higher levels of PTPRG-AS1 in EOC patients were associated with advanced FIGO stage (p = 0.005), grade (p = 0.006), and distant metastasis (p = 0.005). Survival analyses revealed that patients with high expressions of PTPRG-AS1 had a distinctly decreased overall survival (p = 0.0029) and disease-free survival (p = 0.0009) compared with those with low expressions of PTPRG-AS1. Multivariate assays indicated that PTPRG-AS1 expression was an independent prognostic factor for both overall survival and disease-free survival in EOC (Both p < 0.05). CONCLUSIONS Our study suggests that PTPRG-AS1 may serve as a novel prognostic biomarker for EOC patients.
RESUMO OBJETIVO Sabe-se que RNAs longos não codificantes (lncRNAs) desempenham um papel crítico na progressão tumoral. A expressão anormal do RNA 1 anti-senso LncRNA PTPRG (PTPRG-AS1) já foi relatada em diversos tumores. Assim, buscamos determinar a expressão e significância clínica do PTPRG-AS1 em pacientes com câncer de ovário epitelial (COE). METODOLOGIA As expressões do PTPRG-AS1 foram avaliadas em 184 pares de amostras tumorais de COE e tecidos normais adjacentes. Os níveis de lncRNAs e GAPDH alvo foram examinados usando o método padrão de SYBR Green. As relações entre as expressões do PTPRG-AS1 e as características clínico-patológicas foram analisadas através do teste qui-quadrado. Uma análise multivariada utilizando o modelo de riscos proporcionais de Cox foi realizada para avaliar o valor prognóstico do PTPRG-AS1 em pacientes com COE. RESULTADOS Constatou-se que as expressões do PTPRG-AS1 foram nitidamente maiores nos tecidos de COE em relação aos espécimes adjacentes não tumorosos (p<0,01). Níveis mais elevados do PTPRG-AS1 em pacientes com COE foram associados a um estágio avançado de FIGO (p = 0,005), grau (p = 0,006) e metástases à distância (p = 0,005). As análises de sobrevida revelaram que pacientes com expressões elevadas do PTPRG-AS1 tiveram uma diminuição significativa da sobrevida global (p = 0,0029) e da sobrevida livre de doença (p = 0,0009) em relação àqueles com baixas expressões do PTPRG-AS1. As análises multivariadas indicaram que a expressão do PTPRG-AS1 foi um fator de prognóstico independente tanto para a sobrevida global quanto para a sobrevida livre de doença em pacientes com EOC (p < 0,05). CONCLUSÃO Nosso estudo sugere que o PTPRG-AS1 pode ser um novo biomarcador prognóstico para pacientes com COE.
Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , RNA, Long Noncoding , Carcinoma, Ovarian Epithelial/genetics , Prognosis , Gene Expression Regulation, NeoplasticSubject(s)
Humans , Female , Ovarian Neoplasms/genetics , Breast Neoplasms/genetics , Genes, BRCA1 , Genes, BRCA2 , Genetic Counseling , Ovarian Neoplasms/prevention & control , Peritoneal Neoplasms/genetics , Breast Neoplasms/prevention & control , Genetic Testing , Risk Assessment , Genetic Predisposition to Disease , Fallopian Tube Neoplasms/genetics , MutationABSTRACT
Abstract Introduction: Breast cancer is the most common neoplasia of women from all over the world especially women from Colombia. 5%10% of all cases are caused by hereditary factors, 25% of those cases have mutations in the BRCA1/BRCA2 genes. Objective: The purpose of this study was to identify the mutations associated with the risk of familial breast and/or ovarian cancer in a population of Colombian pacific. Methods: 58 high-risk breast and/or ovarian cancer families and 20 controls were screened for germline mutations in BRCA1 and BRCA2, by Single Strand Conformation Polymorphism (SSCP) and sequencing. Results: Four families (6.9%) were found to carry BRCA1 mutations and eight families (13.8%) had mutations in BRCA2. In BRCA1, we found three Variants of Uncertain Significance (VUS), of which we concluded, using in silico tools, that c.8112C>G and c.3119G>A (p.Ser1040Asn) are probably deleterious, and c.3083G>A (p.Arg1028His) is probably neutral. In BRCA2, we found three variants of uncertain significance: two were previously described and one novel mutation. Using in silico analysis, we concluded that c.865A>G (p.Asn289Asp) and c.6427T>C (p.Ser2143Pro) are probably deleterious and c.125A>G (p.Tyr42Cys) is probably neutral. Only one of them has previously been reported in Colombia. We also identified 13 polymorphisms (4 in BRCA1 and 9 in BRCA2), two of them are associated with a moderate increase in breast cancer risk (BRCA2 c.1114A>C and c.875566T>C). Conclusion: According to our results, the Colombian pacific population presents diverse mutational spectrum for BRCA genes that differs from the findings in other regions in the country.
Resumen Introducción: El cáncer de mama es la neoplasia más común en mujeres de todo el mundo, y, también de Colombia. 5% a 10% de todos los casos son causados por factores hereditarios; 25% de estos casos tienen mutaciones en los genes BRCA1/BRCA2. Objetivo: El propósito de este estudio fue el de identificar mutaciones asociadas con riesgo de cáncer de mama y/u ovario familiar en pacientes del pacífico colombiano. Métodos: Fueron revisados para mutaciones en BRCA1 y BRCA2 de línea germinal mediante SSCP y secuenciación 58 familias de alto riesgo para cáncer de mama y/u ovario y 20 controles Resultados: cuatro familias (6.9%) presentaron mutaciones en BRCA1 y ocho familias (13.8%) en BRCA2. En BRCA1, encontramos tres variantes de significado clínico desconocido (VUS), de las cuales concluimos, usando herramientas bioinformáticas, que c.8112C>G y c.3119G>A (p.Ser1040Asn) son probablemente deletéreas, y c.3083G>A (p.Arg1028His) es probablemente neutral. En BRCA2, encontramos tres VUS: una mutación nueva y dos previamente descritas, usando análisis bioinformáticos, concluimos que c.865A>G (p.Asn289Asp) y c.6427T>C (p.Ser2143Pro) son probablemente deletéreas y c.125A>G (p.Tyr42Cys) es probablemente neutral. Solo una de ellas ha sido reportada previamente en Colombia. También identificamos 13 polimorfismos (4 en BRCA1 y 9 en BRCA2), dos de ellos asociados con un moderado incremento del riesgo para cáncer de mama (BRCA2 c.1114A>C and c.875566T>C). Conclusión: de acuerdo con nuestros resultados, la población del suroccidente colombiano presenta un espectro mutacional diverso para los genes BRCA que difiere de lo encontrado en otras regiones del país.