ABSTRACT
This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.
Subject(s)
Mice , Animals , Antioxidants/analysis , Plant Extracts/pharmacology , Drugs, Chinese Herbal/chemistry , Rhizome/chemistry , Paeonia/chemistry , Glutathione/analysisABSTRACT
OBJECTIVE@#To analyze the available data on the anti-anger effects of herbal medicines (HMs) as well as their underlying mechanisms in rat models.@*METHODS@#From 6 electronic databases [PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Wanfang, Oriental Medicine Advanced Searching Integrated System (OASIS), and Research Information Sharing Service (RISS)], relevant animal experiments were searched by using "anger," "rats," and "animal" as search keywords. The last search was conducted on November 22, 2019, and all experiments involving rat models of anger and treatment using HMs published until the date of the search were considered.@*RESULTS@#A total of 24 studies with 16 kinds of HMs were included. Most studies have used the "tail irritating method" and "social isolation and resident intruder" method to establish anger models. According to the included studies, the therapeutic mechanisms of HMs for anger regulation and important herbs by their frequency and/or preclinical evidence mainly incladed regulation of hemorheology (Bupleuri Radix, Paeoniae Radix Alba, and Glycyrrhizae Radix), regulation of sex hormones (Bupleuri Radix, Cyperi Rhizoma, and Paeoniae Radix Alba), regulation of neurotransmitters (Cyperi Rhizoma), regulation of anger-related genes (Bupleuri Radix, Glycyrrhizae Radix, and Paeoniae Radix Alba), and other effects. Overall, Liver (Gan) qi-smoothing herbs including Bupleuri Radix and Cyperi Rhizoma were the most frequently used.@*CONCLUSIONS@#This review found the frequent methods to establish an anger model, and major mechanisms of anti-anger effects of HMs. Interestingly, some Liver qi-smoothing herbs have been frequently used to investigate the anti-anger effects of HM. These findings provide insight into the role and relevance of HMs in the field of anger management.
Subject(s)
Animals , Rats , Anger , Drugs, Chinese Herbal/therapeutic use , Herbal Medicine , Medicine, Chinese Traditional , Paeonia/chemistryABSTRACT
Huangqin Decoction(HQD) is a classic prescription for treating dysentery in the Treatise on Cold Damage and now is mainly used for the treatment of ulcerative colitis(UC). Since there are no requirements on specific Paeonia species, both Paeoniae Radix Alba(white peony root, WPR) and Paeoniae Radix Rubra(red peony root, RPR) are clinically used in HQD now. Although the two types of peony roots are close in origin and similar in primary components, the medicinal properties and efficacies are different. Furthermore, the systematic comparative analysis on the efficacy differences in treating UC of HQD with the roots of multi-originated peony has been seldom reported. This study compared and evaluated the pharmacological effects of HQD prepared from the roots of multi-originated peony, including WPR, RPR-l(derived from P. lactiflora), and RPR-v(derived from P. veitchii) based on the mouse model of UC induced by dextran sodium sulfate(DSS) by animal behaviors, pathological section(colon), and cytokine expression(IL-1β and IL-6), aiming to provide evidence for the identification of the original resource of peony root in HQD. The results indicated that all HQD samples prepared from WPR, RPR-l, and RPR-v could improve the symptoms of UC. Compared with the HQD-WPR, HQD-RPR-l and HQD-RPR-v were significantly different in weight loss, colon length, and disease activity index(DAI) score, but there was no significant difference between HQD-RPR-l and HQD-RPR-v. Moreover, HQD-RPR-v exhibited the most significant improvement in the pathological morphology of colonic tissue and mucosal defects. According to the previous comparative analysis of chemical profiling and content distribution of HQD prepared from the roots of multi-originated peony, RPR-v in HQD was potent in protecting against UC, which was presumedly attributed to a large number of monoterpene glycosides and galloyl glucoses. This study provided a scientific basis for the determination of peony root in HQD and its clinical medication.
Subject(s)
Animals , Mice , Colitis, Ulcerative/drug therapy , Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Monoterpenes , Paeonia/chemistry , Plant Roots/chemistryABSTRACT
The aim of this paper was to investigate the key targets and mechanism of "Epimedii Folium-Paeoniae Radix Alba" in the treatment of lumbar disc herniation by means of network pharmacology. The currently recognized databases and analysis software at home and abroad were used to construct the network from drugs and diseases. The chemical components of Epimedii Folium and Paeo-niae Radix Alba were collected by using databases such as TCMSP, while their active components were determined and the action targets were predicted according to threshold screening and literature reports. The genes for lumbar disc herniation were collected by using GeneCards, OMIM, and DisGeNET databases. The drug targets were mapped to disease targets, and protein interaction network analysis for key targets, GO function enrichment analysis and KEGG signaling pathway enrichment analysis were performed. Finally, 23 active components of Epimedium Folium and 13 active components of Paeoniae Radix Alba were determined, and a total of 624 drug targets were obtained. After standardization, 214 drug targets were obtained. In addition, 306, 2 and 5 related targets of lumbar disc herniation were collected from GeneCards, OMIM, and DisGeNET database, respectively, and a total of 293 disease targets were obtained after deduplication. After the mapping of drug target and disease target, 44 common targets were obtained. PPI protein interaction network analysis showed that IL-6, TNF, AKT1, MAPK1, and VEGFA may be the core targets for the treatment of lumbar disc herniation. GO enrichment analysis identified 56 items(P<0.05), among which biological processes mainly included immune response, apoptosis, etc.; cell components mainly included extracellular space, extracellular region, etc.; molecular functions mainly included cytokine activity, metallopeptidase activity and so on. Through KEGG pathway enrichment analysis, 91 signaling pathways related to inflammation, metabolism, and senescence were identified, mainly including IL-17 signaling pathway and TNF signaling pathway and so on. "Epimedii Folium-Paeoniae Radix Alba" showed the characteristics of multi-channel and multi-target for the treatment of lumbar disc herniation. This study preliminarily explored the key targets for its role and the biological processes and signaling pathways involved. It was found that it may play a therapeutic role by affecting inflammation and immune regulation, which laid the foundation for further experimental verification.