Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Article in Chinese | WPRIM | ID: wpr-928072

ABSTRACT

Panax notoginseng is a perennial Chinese medicinal plant, which has serious continuous cropping obstacles and is prone to a variety of diseases and insect pests during the growth process. At present, the prevention and control of pests and diseases is mainly carried out through chemical pesticides, and the consequent pesticide residues of P. notoginseng have attracted much attention. This study reviewed the types and detection methods of pesticide residues in P. notoginseng from 1981 to 2021, and compared the limits of pesticide residues in P. notoginseng in China and abroad to provide a reference for rational application of pesticides in P. notoginseng and quality control of medicinal materials, thereby promoting the sustainable development of the P. notoginseng industry in China. Currently, there are only 40 published papers on pesticide residues of P. notoginseng, which is indicative of a serious problem of insufficient research. At present, hundreds of pesticide residues in P. notoginseng can be detected simultaneously by using chromatography-tandem mass spectrometry. The pesticides detected have gradually changed from early prohibited ones, such as dichlorodiphenyl trichloroethane(DDT), benzene hexachloride(BHC), and parathion, to low toxic ones(e.g., dimethomorph, procymidone, propicona-zole, and difenoconazole). The dietary risk from pesticide residues in P. notoginseng is low, which would not cause harm to consu-mers. This study concluded that in the future, the development of the quality standard for pesticide residues of P. notoginseng should be actively carried out. To increase the pesticides used in actual production in the quality standard based on the existing ones and to guide farmers to use pesticides scientifically will be the focus of future work.


Subject(s)
China , Panax notoginseng , Pesticide Residues/analysis , Pesticides/analysis , Plants, Medicinal
2.
Article in Chinese | WPRIM | ID: wpr-927947

ABSTRACT

Ginsenoside Rh_2 is a rare active ingredient in precious Chinese medicinal materials such as Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Panacis Quinquefolii Radix. It has important pharmacological activities such as anti-cancer and improving human immunity. However, due to the extremely low content of ginsenoside Rh_2 in the source plants, the traditional way of obtaining it has limitations. This study intended to apply synthetic biological technology to develop a cell factory of Saccharomyces cerevisiae to produce Rh_2 by low-cost fermentation. First, we used the high protopanaxadiol(PPD)-yielding strain LPTA as the chassis strain, and inserted the Panax notoginseng enzyme gene Pn1-31, together with yeast UDP-glucose supply module genes[phosphoglucose mutase 1(PGM1), α-phosphoglucose mutase(PGM2), and uridine diphosphate glucose pyrophosphorylase(UGP1)], into the EGH1 locus of yeast chromosome. The engineered strain LPTA-RH2 produced 17.10 mg·g~(-1) ginsenoside Rh_2. This strain had low yield of Rh_2 while accumulated much precursor PPD, which severely restricted the application of this strain. In order to further improve the production of ginsenoside Rh_2, we strengthened the UDP glucose supply module and ginsenoside Rh_2 synthesis module by engineered strain LPTA-RH2-T. The shaking flask yield of ginsenoside Rh_2 was increased to 36.26 mg·g~(-1), which accounted for 3.63% of the dry weight of yeast cells. Compared with those of the original strain LPTA-RH2, the final production and the conversion efficiency of Rh_2 increased by 112.11% and 65.14%, respectively. This study provides an important basis for further obtaining the industrial-grade cell factory for the production of ginsenoside Rh_2.


Subject(s)
Humans , Fermentation , Ginsenosides , Panax/genetics , Panax notoginseng , Saccharomyces cerevisiae/genetics , Uridine Diphosphate Glucose
3.
Article in Chinese | WPRIM | ID: wpr-927945

ABSTRACT

The continuous cropping obstacle of Panax notoginseng is serious, and effective control measures are lacking. Soil disinfection with chloropicrin(CP) has been proven to be effective in reducing the obstacles to continuous cropping of other crops. In order to ascertain the effect of CP in the continuous cropping of P. notoginseng, this paper explored the influences of CP at different treatment concentrations(0,30,40,50 kg/Mu, 1 Mu≈667 m~2) on soil macro-element nutrients, soil enzyme activity, growth and development of P. notoginseng, and the accumulation of medicinal components. The results showed that CP fumigation significantly increased the content of total nitrogen, alkali-hydrolyzable nitrogen, ammonium nitrogen, nitrate nitrogen, and available phosphorus in the soil, but it had no significant effect on potassium content. The soil protease activity showed a trend of first increasing and then decreasing with the prolonging of the treatment time. Both the soil urease and acid phosphatase activities showed a trend of first decreasing and then increasing with the prolonging of the treatment time. The higher the CP treatment concentration was, the lower the urease and acid phosphatase activities would be in the soil. The protease activity was relatively high after CP40 treatment, which was better than CP30 and CP50 treatments in promoting the nitrogen-phosphorus-potassium accumulation in P. notoginseng. The seedling survival rates after CP0, CP30, CP40, and CP50 tratments in October were 0, 65.56%, 89.44%, and 83.33%, respectively. Compared with the CP30 and CP50 treatments, CP40 treatment significantly facilitated the growth and development of P. notoginseng, the increase in fresh and dry weights, and the accumulation of root saponins. In summary, CP40 treatment accelerates the increase in soil nitrogen and phosphorus nutrients and their accumulation in P. notoginseng, elevates the seedling survival rate of P. notoginseng, enhances the growth and development of P. notoginseng, and promotes the accumulation of medicinal components. CP40 treatment is therefore recommended in production.


Subject(s)
Fumigation , Growth and Development , Hydrocarbons, Chlorinated , Panax notoginseng , Soil
4.
Article in Chinese | WPRIM | ID: wpr-927915

ABSTRACT

In this experiment, Panax notoginseng saponins chitosan nanoparticles(PNS-NPs) were prepared by self-assembly and their appearance, particle size, encapsulation efficiency, drug loading, polydispersity index(PDI), Zeta potential, and microstructure were characterized. The prepared PNS-NPs were intact in structure, with an average particle size of(209±0.258) nm, encapsulation efficiency of 42.34%±0.28%, a drug loading of 37.63%±0.85%, and a Zeta potential of(39.8±3.122) mV. The intestinal absorption of PNS-NPs in rats was further studied. The established HPLC method of PNS was employed to investigate the effects of pH, perfusion rate, and different drugs(PNS raw materials, Xuesaitong Capsules, and PNS-NPs). The absorption rate constant(K_a) and apparent permeability coefficient(P_(app)) in the duodenum, jejunum, ileum, and colon were calculated and analyzed. As illustrated by the results, the intestinal absorption of PNS-NPs was increased in the perfusion solution at pH 6.8(P<0.05), and perfusion rate had no significant effect on the K_a and P_(app) of PNS-NPs. The intestinal absorption of PNS-NPs was significantly different from that of PNS raw materials and Xuesaitong Capsules(P<0.05), and the intestinal absorption of PNS-NPs was significantly improved.


Subject(s)
Animals , Rats , Chitosan/pharmacology , Intestinal Absorption , Nanoparticles , Panax notoginseng/chemistry , Saponins/pharmacology
5.
Article in English | WPRIM | ID: wpr-939797

ABSTRACT

OBJECTIVE@#To evaluate the efficacy of deep vein thrombosis (DVT) prevention among real-world surgical inpatients who received panax notoginseng saponins (PNS) combined with low-molecular-weight heparin (LMWH).@*METHODS@#A prospective cohort study was conducted among surgical patients between January 2016 and November 2018 in Xuanwu Hospital, Capital Medical University, Beijing, China. Participants received LMWH alone or PNS combined with LMWH for preventing DVT. The primary outcome was incidence of lower extremity DVT, which was screened once a week. Participants in the LMWH group were given LMWH (enoxaparin) via hypodermic injection, 4000-8000 AxalU once daily. Participants in the exposure group received PNS (Xuesaitong oral tablets, 100 mg, 3 times daily) combined with LMWH given the same as LMWH group.@*RESULTS@#Of the 325 patients screened for the study, 281 participants were included in the final analysis. The cohort was divided into PNS + LMWH group and LMWH group with 134 and 147 participants, respectively. There was a significant difference of DVT incidence between two groups (P=0.01), with 21 (15.7%) incident DVT in the PNS + LMWH group, and 41 (27.9%) incident DVT in the LMWH group. Compared with participants without DVT, the participants diagnosed with DVT were older and had higher D-dimer level. The multivariate logistic regression model showed a significant lower risk of incident DVT among participants in the PNS + LMWH group compared with the LMWH group (odds ratio 0.46, 95% confidence interval, 0.25-0.86). There were no significant differences in thromboelaslography values (including R, K, Angle, and MA) and differences in severe bleeding between two groups. No symptomatic pulmonary embolism occurred during the study.@*CONCLUSION@#Combined application of PNS and LMWH can effectively reduce the incidence of DVT among surgical inpatients compared with LMWH monotherapy, without increased risk of bleeding.


Subject(s)
Humans , Anticoagulants/therapeutic use , Hemorrhage , Heparin, Low-Molecular-Weight/therapeutic use , Panax notoginseng , Prospective Studies , Saponins/therapeutic use , Venous Thrombosis/prevention & control
6.
Article in English | WPRIM | ID: wpr-929258

ABSTRACT

Colorectal cancer (CRC) is the third most lethal cancer and leading cause of cancer mortality worldwide. A key driver of CRC development is colon inflammatory responses especially in patients with inflammatory bowl disease (IBD). It has been proved that Panax notoginseng saponins (PNS) have anti-inflammatory, anti-oxidant and anti-tumor effects. The chemopreventive and immunomodulatory functions of PNS on colitis-associated colorectal cancer (CAC) have not been evaluated.This present study was designed to study the potential protective effects of PNS on AOM/DSS-induced CAC mice to explore the possible mechanism of PNS against CAC. Our study showed that PNS significantly alleviated colitis severity and prevented the occurrence of CAC. Functional assays revealed that PNS relieved immunosuppression of Treg cells in the CAC microenvironment by inhibiting the expression of IDO1 mediated directly by signal transducer and activator of transcription 1 (STAT1) rather than phosphorylated STAT1. Ultimately, Rh1, one of the PNS metabolites, exhibited the best inhibitory effect on IDO1 enzyme activity. Our study showed that PNS exerted significant chemopreventive function and immunomodulatory properties on CAC. It could reduce macrophages accumulation and Treg cells differentiation to reshape the immune microenvironment of CAC. These findings provided a promising approach for CAC intervention.


Subject(s)
Animals , Humans , Mice , Colitis/drug therapy , Colitis-Associated Neoplasms/drug therapy , Macrophages , Panax notoginseng , Saponins/therapeutic use , Tumor Microenvironment
7.
Article in English | WPRIM | ID: wpr-928942

ABSTRACT

OBJECTIVE@#To reveal the neuroprotective effect and the underlying mechanisms of a mixture of the main components of Panax notoginseng saponins (TSPN) on cerebral ischemia-reperfusion injury and oxygen-glucose deprivation/reoxygenation (OGD/R) of cultured cortical neurons.@*METHODS@#The neuroprotective effect of TSPN was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and live/dead cell assays. The morphology of dendrites was detected by immunofluorescence. Middle cerebral artery occlusion (MCAO) was developed in rats as a model of cerebral ischemia-reperfusion. The neuroprotective effect of TSPN was evaluated by neurological scoring, tail suspension test, 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl stainings. Western blot analysis, immunohistochemistry and immunofluorescence were used to measure the changes in the Akt/mammalian target of rapamycin (mTOR) signaling pathway.@*RESULTS@#MTT showed that TSPN (50, 25 and 12.5 µ g/mL) protected cortical neurons after OGD/R treatment (P<0.01 or P<0.05). Flow cytometry and live/dead cell assays indicated that 25 µ g/mL TSPN decreased neuronal apoptosis (P<0.05), and immunofluorescence showed that 25 µ g/mL TSPN restored the dendritic morphology of damaged neurons (P<0.05). Moreover, 12.5 µ g/mL TSPN downregulated the expression of Beclin-1, Cleaved-caspase 3 and LC3B-II/LC3B-I, and upregulated the levels of phosphorylated (p)-Akt and p-mTOR (P<0.01 or P<0.05). In the MCAO model, 50 µ g/mL TSPN improved defective neurological behavior and reduced infarct volume (P<0.05). Moreover, the expression of Beclin-1 and LC3B in cerebral ischemic penumbra was downregulated after 50 µ g/mL TSPN treatment, whereas the p-mTOR level was upregulated (P<0.05 or P<0.01).@*CONCLUSION@#TSPN promoted neuronal survival and protected dendrite integrity after OGD/R and had a potential therapeutic effect by alleviating neurological deficits and reversing neuronal loss. TSPN promoted p-mTOR and inhibited Beclin-1 to alleviate ischemic damage, which may be the mechanism that underlies the neuroprotective activity of TSPN.


Subject(s)
Animals , Rats , Beclin-1 , Brain Ischemia/metabolism , Glucose , Infarction, Middle Cerebral Artery/drug therapy , Mammals/metabolism , Neuroprotection , Neuroprotective Agents/therapeutic use , Oxygen , Panax notoginseng , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Saponins/therapeutic use , TOR Serine-Threonine Kinases/metabolism
8.
Article in Chinese | WPRIM | ID: wpr-936345

ABSTRACT

OBJECTIVE@#To investigate the therapeutic effects of total saponins from Panax notognseng (PNS) combined with cyclophosphamide (CTX) in mice bearing hepatocellular carcinoma H22 cell xenograft.@*METHODS@#We examined the effects of treatment with different concentrations of PNS on H22 cell proliferation for 24 to 72 h in vitro using CCK8 colorimetric assay. Annexin V/PI double fluorescence staining was used to detect the effect of PNS on apoptosis of H22 cells. Mouse models bearing H22 cell xenograft were established and treated with CTX (25 mg/kg), PNS (120, 240 or 480 mg/kg), alone or in combinations. After treatments for consecutive 10 days, the mice were euthanized for examinations of carbon clearance ability of the monocytes and macrophages, splenic lymphocyte proliferation, tumor necrosis factor (TNF-α), interleukin-2 (IL-2), serum hemolysin antibody level, blood indicators, and the tumor inhibition rate.@*RESULTS@#Treatment with PNS concentration-dependently inhibited the proliferation and significantly promoted apoptosis of cultured H22 cells (P < 0.01). In the tumor-bearing mouse models, PNS alone and its combination with CTX both resulted in obvious enhancement of phagocytosis of the monocyte-macrophages, stimulated the proliferation of splenic lymphocytes, promoted the release of TNF-α and IL-2 and the production of serum hemolysin antibody, and increased the number of white blood cells, red blood cells and lymphocytes in the peripheral blood. Treatment with 480 mg/kg PNS combined with CTX resulted in a tumor inhibition rate of 83.28% (P < 0.01) and a life prolonging rate of 131.25% in the mouse models (P < 0.05).@*CONCLUSION@#PNS alone or in combination with CTX can improve the immunity and tumor inhibition rate and prolong the survival time of H22 tumor-bearing mice.


Subject(s)
Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cyclophosphamide/therapeutic use , Hemolysin Proteins , Heterografts , Interleukin-2 , Liver Neoplasms/pathology , Panax notoginseng , Saponins/therapeutic use , Tumor Necrosis Factor-alpha
9.
Int. j. morphol ; 39(6): 1581-1586, dic. 2021. ilus, tab
Article in English | LILACS-Express | LILACS | ID: biblio-1385551

ABSTRACT

SUMMARY: The aim of this study was to explore promoting effect of external applying Panax Notoginseng Saponins (PNS) on fractures. For this analysis 18 New Zealand male rabbits were divided into control group, splintage group and PNS group. All rabbits were performed left radius fractures and natural healing, splintage healing and splintage coated with PNS healing. 2 rabbits in each group were sacrificed on day 14, day 28 and day 42 after surgery, separately. Atomic force microscope scanning and nanoindentation tests were performed on the callus sections. The particle size and roughness in PNS group was both less than that in splintage group. The elastic modulus of callus in PNS group was consistent with normal bone tissue started from day 28 after surgery, two weeks earlier than that in splintage group. PNS could significantly reduce fracture healing time and increase strength of callus.


RESUMEN: El objetivo de este estudio fue evaluar el efecto de la aplicación externa de Panax Notoginseng Saponins (PNS) en fracturas óseas. Se usaron 18 conejos machos de raza Nueva Zelanda divididos en grupos control, entablillado y PNS. Se realizaron fracturas del radio izquierdo y cicatrización natural en todos los animales, además de la cicatrización con entablillado y entablillado recubierto con PNS. Se sacrificaron, posterior a la cirugía, dos conejos de cada grupo los día 14, 28 y 42. Se realizaron pruebas de escaneo con microscopio de fuerza atómica y nanoindentación en las secciones de callos. El tamaño de la partícula y la rugosidad en el grupo de PNS fue menor que en el grupo entablillado. El módulo elástico del callo en el grupo de PNS fue consistente con el tejido óseo normal iniciado el día 28 después de la cirugía, dos semanas antes que en el grupo de entablillado. El PNS podría redu- cir significativamente el tiempo de curación de la fractura y aumentar la fuerza del callo.


Subject(s)
Animals , Male , Rabbits , Saponins/administration & dosage , Fracture Healing/physiology , Microscopy, Atomic Force , Fractures, Bone/drug therapy , Panax notoginseng/chemistry , Saponins/chemistry , Fractures, Bone/surgery
10.
Article in Chinese | WPRIM | ID: wpr-888034

ABSTRACT

To overview the systematic reviews of Panax notoginseng saponins in the treatment of acute cerebral infarction. CNKI, CBM, Wanfang, VIP, PubMed, Cochrane Library and EMbase databases were retrieved to collect the systematic reviews of the efficacy of P. notoginseng saponins in the treatment of acute cerebral infarction. The retrieval time was from the time of database establishment to January 2021. After two researchers independently screened out the literature and extracted the data, AMSTAR-2 scale was used to evaluate the methodological quality of the included systematic reviews, GRADE system was used to grade the quality of evidences of the outcome indicators, and the efficacy evaluation was summarized. A total of 5 systematic reviews were included. AMSTAR-2 evaluation results showed that 3 items were relatively complete, while 4 items had a poor overall quality. P. notoginseng saponins combined with conventional Western medicine therapy was superior to single conventional therapy in the recovery of neurological function, enhancement of the total effective rate in clinic, and improvement of activities of daily living. GRADE evaluation results showed that the quality of evidence was from low quality to very low quality. In conclusion, in the treatment of acute cerebral infarction, P. notoginseng saponins can improve the clinical efficacy, with a good safety but a not high methodological quality and a low evidence quality. It is suggested that high-quality clinical studies shall be further carried out to provide evidence-based basis for the application of P. notoginseng saponins in the treatment of acute cerebral infarction.


Subject(s)
Humans , Activities of Daily Living , Cerebral Infarction/drug therapy , Panax notoginseng , Saponins , Systematic Reviews as Topic
11.
Article in Chinese | WPRIM | ID: wpr-878916

ABSTRACT

This study cloned the transcription factor gene PnbHLH which held an open reading frame of 966 bp encoding 321 amino acids. This study constructed the overexpression vector of transcription factor PnbHLH of Panax notoginseng. The combination of PnbHLH overexpression and RNAi of the key enzyme gene PnCAS involved in the phytosterol biosynthesis was achieved in P. notoginseng cells, thus exploring the biosynthetic regulation of P. notoginseng saponins(PNS) by the synergistic effect of PnbHLH overexpression and PnCAS RNAi. The results showed that the PnbHLH transcription factor interacted with the promoters of key enzyme genes PnDS, PnSS and PnSE in the biosynthetic pathway of PNS, and then regulated the expression levels of key enzyme genes and affected the biosynthesis of saponins indirectly. Further study indicated that the synergistic effect of PnbHLH overexpression and PnCAS RNAi was a more effective approach to regulate the biosynthesis of saponins. Compared with the wild type and PnCAS RNAi cells of P. notoginseng, the contents of total saponins and monomeric saponins(Rd, Rb_1, Re, Rg_1 and R_1) were increased to some extent in the cell lines of PnbHLH overexpression and PnCAS RNAi. This indicated that the two ways of forward regulation and reverse regulation of saponin biosynthesis showed superposition effect. This study explored a more rational and efficient regulation strategy of PNS biosynthesis based on the advantages of multi-point regulation of transcription factors as well as the down-regulation of by-product synthesis of saponins.


Subject(s)
Intramolecular Transferases , Panax notoginseng , RNA Interference , Saponins , Transcription Factors/genetics
12.
Article in Chinese | WPRIM | ID: wpr-878879

ABSTRACT

This paper established the identification technology of the main root origin of three-year-old spring Panax notoginseng aiming at providing theoretical basis for the protection and traceability of geographical indication products of P. notoginseng. Forty-four samples of three-year-old spring P. notoginseng from Guangxi Baise, Yunnan Wenshan, Yunnan new cultivating regions. The stable isotopic ratios of carbon, nitrogen, hydrogen and oxygen were determined by elemental analysis and stable isotope mass spectrometer. Combined with Duncan multiple comparative analysis, fisher discriminant analysis and sequential discriminant analysis, a origin discriminant model for the main root of three-year-old spring P. notoginseng was established for 3 production areas of P. notoginseng. The geographical climate and environment of three production areas of P. notoginseng are obviously different. From Guangxi Baise-Yunnan Wenshan-Yunnan new cultivating regions, the longitude, average annual temperature and annual precipitation gradually decrease, and the elevation and latitude are increasing. The results of multiple comparative analysis showed that there were significant or very signi-ficant differences in the δ~(13)C,δ~(15)N,δ~2H,δ~(18)O of the main roots of P. notoginseng in three regions. The results of fisher's discriminant analysis and sequential discriminant analysis showed that the correct discriminant rates of the main roots of P. notoginseng for three regions were 80.05%,76.47% and 90.91%, respectively, based on four stable isotope ratios, with an average of 84.09%. Using stable isotope fingerprint and chemometrics method, we can distinguish the origin of the main raw materials and products of P. notoginseng.


Subject(s)
China , Geography , Isotopes , Panax notoginseng , Seasons
13.
Article in English | WPRIM | ID: wpr-922104

ABSTRACT

OBJECTIVE@#To elucidate the underlying mechanism of Panax notoginseng saponin (PNS) on gastric epithelial cell injury and barrier dysfunction induced by dual antiplatelet (DA).@*METHODS@#Human gastric mucosal epithelial cell (GES-1) was cultured and divided into 4 groups: a control, a DA, a PNS+DA and a LY294002+PNS+DA group. GES-1 apoptosis was detected by flow cytometry, cell permeability were detected using Transwell, level of prostaglandins E2 (PGE2), 6-keto-prostaglandin F1α (6-keto-PGF1α) and vascular endothelial growth factor (VEGF) in supernatant were measured by enzyme linked immunosorbent assay (ELISA), expression of phosphatidylinositide 3-kinase (PI3K), phosphorylated-PI3K (p-PI3K), Akt, phosphorylated-Akt (p-Akt), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), glycogen synthase kinase-3β (GSK-3β) and Ras homolog gene family member A (RhoA) were measured by Western-blot.@*RESULTS@#DA induced apoptosis and hyper-permeability in GES-1, reduced supernatant level of PGE2, 6-keto-PGF1α and VEGF (P<0.05). Addition of PNS reduced the apoptosis of GES-1 caused by DA, restored the concentration of PGE2, 6-keto-PGF1α and VEGF (P<0.05). In addition, PNS attenuated the alteration of COX-1 and COX-2 expression induced by DA, up-regulated p-PI3K/p-Akt, down-regulated RhoA and GSK-3β. LY294002 mitigated the effects of PNS on cell apoptosis, cell permeability, VEGF concentration, and expression of RhoA and GSK-3β significantly.@*CONCLUSIONS@#PNS attenuates the suppression on COX/PG pathway from DA, alleviates DA-induced GES-1 apoptosis and barrier dysfunction through PI3K/Akt/ VEGF-GSK-3β-RhoA network pathway.


Subject(s)
Humans , Cyclooxygenase 1 , Epithelial Cells/metabolism , Glycogen Synthase Kinase 3 beta , Panax notoginseng , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Vascular Endothelial Growth Factor A , rhoA GTP-Binding Protein
14.
Article in Chinese | WPRIM | ID: wpr-921631

ABSTRACT

The effects of four natural organic soil amendments on the quality and pesticide residues of Panax notoginseng were investigated through field experiments and the suitable dosage ratio of each soil amendment was selected to provide a new idea for the pollution-free cultivation of P. notoginseng. The four natural organic soil amendments used in this study were Jishibao, Jihuo, Fudujing, and omnipotent nutrients, which were produced by mixed fermentation of aboveground parts of different plants, biological waste residue, and biochar. During the experiments, only four soil amendments were applied to P. notoginseng instead of any pesticides and fertilizers. The experiment was designed as four factors and three levels. There were three dosage gradients(low, medium, and high) for Jishibao(A), Jihuo(B), Fudujing(C), and omnipotent nutrients(D). When the dosage of one soil amendment changed, the do-sage of the other soil amendments remained medium. There were 10 groups in addition to the soil amendment-free group as control(CK). The results showed that the four soil amendments could significantly improve the growth environment of P. notoginseng and increase the seedling survival rate and saponin content of P. notoginseng. The seedling survival rates of the treatment groups increased by 8.24%-30.05% as compared with the control group. Furthermore, the content of pesticide residues in P. notoginseng was too low to be detected, and that of heavy metals in P. notoginseng was far lower than the specified content in the Chinese Pharmacopoeia(2020). The optimal effect was achieved at medium dosage for all the soil amendments with the highest content of saponins, high seedling survival rate, and significantly reduced heavy metals, such as lead, cadmium, arsenic, and mercury.


Subject(s)
Arsenic , Metals, Heavy/analysis , Panax notoginseng , Soil , Soil Pollutants/analysis
15.
Braz. j. med. biol. res ; 53(1): e9085, Jan. 2020. graf
Article in English | LILACS | ID: biblio-1055483

ABSTRACT

Total Panax notoginseng saponin (TPNS) is the main bioactivity compound derived from the roots and rhizomes of Panax notoginseng (Burk.) F.H. Chen. The aim of this study was to investigate the effectiveness of TPNS in treating vascular neointimal hyperplasia in rats and its mechanisms. Male Sprague-Dawley rats were randomly divided into five groups, sham (control), injury, and low, medium, and high dose TPNS (5, 10, and 20 mg/kg). An in vivo 2F Fogarty balloon-induced carotid artery injury model was established in rats. TPNS significantly and dose-dependently reduced balloon injury-induced neointimal area (NIA) (P<0.001, for all doses) and NIA/media area (MA) (P<0.030, for all doses) in the carotid artery of rats, and PCNA expression (P<0.001, all). The mRNA expression of smooth muscle (SM) α-actin was significantly increased in all TPNS groups (P<0.005, for all doses) and the protein expression was significantly increased in the medium (P=0.006) and high dose TPNS (P=0.002) groups compared to the injury group. All the TPNS doses significantly decreased the mRNA expression of c-fos (P<0.001). The medium and high dose TPNS groups significantly suppressed the upregulation of pERK1/2 protein in the NIA (P<0.025) and MA (P<0.004). TPNS dose-dependently inhibited balloon injury-induced activation of pERK/p38MAPK signaling in the carotid artery. TPNS could be a promising agent in inhibiting cell proliferation following vascular injuries.


Subject(s)
Animals , Male , Rats , Saponins/pharmacology , Carotid Artery Injuries/prevention & control , p38 Mitogen-Activated Protein Kinases/metabolism , Panax notoginseng/drug effects , Neointima/pathology , Immunohistochemistry , Signal Transduction , Up-Regulation , Rats, Sprague-Dawley , Carotid Artery Injuries/etiology , Real-Time Polymerase Chain Reaction , Hyperplasia
16.
Article in Chinese | WPRIM | ID: wpr-828423

ABSTRACT

This work describes the holistic fingerprinting method based on liquid chromatography coupled with charged aerosol detection(CAD) to profile non-saponin from water-soluble parts and determination of dencichine in Panax ginseng(PG), P. quinquefolium(PQ) and P. notoginseng(PNG). Sample extraction was carried out by water with ultra sonication for 30 min, which was eluted by Retain PEP for further analysis. The analysis was performed on a Hypercarb of porous graphitized carbon(3.0 mm×150 mm, 3 μm) column with acetonitrile and 0.1% perfluoropentanoic acid as mobile phase at a flow rate of 0.8 mL·min~(-1). Temperature of evaporator and nitrogen pressure for CAD were set at 50 ℃and 60.1 psi(1 psi≈6.895 kPa), respectively. As a result, dencichine and other polar components had a good performance on resolution and retention. The correlation coefficient(R~2) of dencichine was 0.998 2 in the concentration from 0.019 2 to 0.48 μg·mL~(-1). Limit of quantitation calculated by signal to noise of 10 was 7.4 ng·mL~(-1), and the recovery ranged from 95.52% to 102.7%. Chemical profile of the water-soluble part from PG, PQ and PNG was similar holistically, while the relative content for dencichine and other partial components varied significantly. The proposed method was used for characteristic of chemical profiling for non-saponin from water-soluble part, and determination of dencichine in PG, PQ and PNG.


Subject(s)
Aerosols , Amino Acids, Diamino , Chromatography, High Pressure Liquid , Chromatography, Liquid , Panax , Panax notoginseng , Plant Roots , Saponins , Water
17.
Article in Chinese | WPRIM | ID: wpr-828070

ABSTRACT

According to the structure and effect differences of Panax notoginseng saponin components(PNSC), subcomponent division and network pharmacological characterization were conducted to provide a research basis for the medicinal properties of P.notoginseng saponin subcomponents and the technical design of unit preparations. PNSC were screened by the TCMSP database and subcomponents were classified according to systematic clustering. Then the subcomponents obtained were subjected to target prediction and attribution analysis by PharmMapper server, GeneCards, DisGeNET and HOME-NCBI-GENE database. A subcomponent target interaction network was constructed by using the STRING database. KEGG and GO enrichment analysis were performed on each subcomponent target using the DAVID database. The subcomponents-targets-pathways visualization network was constructed by Cytoscape. The subcomponent targets and pathways involved were compared to analyze the differences in anti-myocardial ischemic drug mechanisms and the rationality of subcomponent division. Eighteen compounds of PNSC were screened out, and classified into three subcomponents A, B, and C according to their properties, involving 67 targets and 17 common anti-myocardial ischemic pathways directly or indirectly related to myocardial ischemia. Subcomponent A had the highest number of targets and the target interaction was dense, possibly indicating its key role in the mechanism of pharmacodynamics. Subcomponents A, B, and C had similar basic structures, and KEGG and GO analysis showed that they all can enhance the heart function and protection of cardiomyocytes by inhibiting apoptosis, promoting angiogenesis and regulating inflammatory response to play the effect on myocardial ischemia. This study fully reflected the differences in the efficacy of various subcomponents in preventing and treating myocardial ischemia due to the different physical properties of P. notoginseng saponin subcomponents. To some extent, the differences in the efficacy of each subcomponent in the prevention and treatment of myocardial ischemia could verify the rationality of the division of P. notoginseng saponin subcomponents according to the structural properties, realizing the characterization of P. notoginseng saponin subcomponents based on structure and effect differences.


Subject(s)
Humans , Apoptosis , Coronary Artery Disease , Myocardial Ischemia , Panax notoginseng , Saponins
18.
Article in Chinese | WPRIM | ID: wpr-828045

ABSTRACT

The molecular docking technology was used in this study to virtually screen the active anti-myocardial ischemic components in Panax notoginseng, clarify the compositions of the anti-myocardial ischemic component unit and the basis for pharmacological activity of P. notoginseng, and provide the basis for the acquisition of the component raw materials and the formulation design before the preparations. One hundred and nineteen compounds in P. notoginseng were collected by searching TCMSP to establish the ligand database, and TNF, IL1 B, NFKBIA, and NOS3 which were related with myocardial ischemia were selected to create the receptor database. Then Discovery Studio software LibDock module was used to dock the ligands and receptors, with the approved small-molecule drugs which were related to targets or the treatment of myocardial ischemia disease in the DrugBank as the reference, and the average scores of approved small-molecule drugs were set as the threshold. A total of 13 compounds with a score above the threshold and in the top ranking were virtually screened. The study showed that all the 13 components screened out were saponins, which constituted the main component unit of the anti-myocardial ischemic activity of P. notoginseng, namely the P. notoginseng saponin components. After the comparative analysis of the main active residues of the approved commercial drugs and P. notoginseng saponin components on each target, the similarity of their effects suggested that the P. notoginseng saponin components may have the same anti-myocardial ischemic efficacy as clinical drugs. The components of P. notoginseng which exerted anti-myocardial ischemic activity were mainly the saponin components. The preliminary screening of the active anti-myocardial ischemic components of P. notoginseng had been completed, which provided a certain reference for the development of anti-myocardial ischemic Chinese medicine component preparations.


Subject(s)
Humans , Drugs, Chinese Herbal , Molecular Docking Simulation , Myocardial Ischemia , Panax notoginseng , Saponins
19.
Article in Chinese | WPRIM | ID: wpr-828017

ABSTRACT

Ischemic stroke is the most common form of stroke and one of the main diseases leading to death and disability in the world. Its pathological process is complex and changeable as a result of the interaction of multiple pathological links, such as oxidative stress, apoptosis and inflammation. Traditional Chinese medicine Notoginseng Radix et Rhizoma is the dried roots and rhizomes of Panax notoginseng. In clinic, it is mainly used for the treatment of diseases of cardio-cerebral system and vascular system. Recent studies have shown that total saponins of P. notoginseng, the main active ingredients of P. notoginseng against cerebral ischemia, are complex, and can interfere with the enzyme-promoted cascade reaction through multiple pathways, multiple links and multiple targets, so as to exert its physiological effect. Therefore, it has become a hotspot in studies for prevention and treatment of cerebral ischemia. At present, a great advance has been made in studies on the mechanism of anti-cerebral ischemia of P. notoginseng saponins, but more in-depth studies are needed because of its complex mechanism. Therefore, in this paper, a total of 165 kinds of P. notoginseng saponins were summarized, and simply divided into protopanaxadiol saponins(55 species), protopanaxadiol saponins(37 species) and special structural type saponins(73 species) according to their structural types, so as to provide reference for further studies of P. notoginseng saponins. In addition, the effect of P. notoginseng on cerebral ischemia is clear, but its mechanism remains to be further explored. This paper summarizes the mechanism of P. notoginseng saponins against cerebral ischemia in five aspects: antioxidant stress, reduction of apoptosis, reduction of inflammatory reaction, inhibition of calcium overload and protection of blood-brain barrier. Four kinds of drugs commonly used in the treatment of cerebral ischemia were summarized, in order to provide a theoretical basis for further development and utilization of P. notoginseng saponins in the treatment of cerebral ischemia.


Subject(s)
Humans , Brain Ischemia , Cerebral Infarction , Panax notoginseng , Rhizome , Saponins
20.
Article in Chinese | WPRIM | ID: wpr-828015

ABSTRACT

Ginkgo biloba and Panax notoginseng are both herb medicines for cerebrovascular disease, and play an active role in treating ischemic cerebrovascular disease(ICVD). Their mechanisms of action include antioxidant stress, nerve protection, vascular protection. According to the comparative study of literatures, G. biloba has a certain protective effect from the early stage of free radical formation throughout the whole process of causing cell inflammation and apoptosis in antioxidant stress; while P. notoginseng has mainly anti-inflammatory, anti-apoptosis effects. In the nerve protection and repair of nerve damage caused by glutamate, both could promote neurogenesis, repair damaged axons and protect nerve cells. In addition, G. biloba could also relieve neurotoxicity caused by glutamate damage, while P. notoginseng have a unique effect in repairing blood-brain barrier(BBB) and blood vessel regeneration. In clinic, they are used as auxiliary drugs in combination with thrombolytic therapy, and play curative effects in alleviating inflammation, eliminating edema, improving the cure rate and the prognosis. For cerebral diseases caused by chronic cerebral hypoperfusion, G. biloba could reduce inflammation and improve cognition. In addition, G. biloba could protect neurocyte by adjusting the secretion of dopamine in vivo, and has a certain effect on antidepressant diseases, which however needs further studies.


Subject(s)
Humans , Brain Ischemia , Drug Therapy , Ginkgo biloba , Panax notoginseng , Phytotherapy , Plant Extracts , Therapeutic Uses , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL