ABSTRACT
SUMMARY: The study explores the relationship between chronic exposure to fine particulate matter (PM2.5), sourced from wood smoke, and the histological structure and endocrine function of the uterus in nulliparous adult rats. It assesses potential structural changes in the uterus that could impact reproductive health, viewing PM2.5 exposure as a possible risk factor. A controlled experiment was conducted in a city known for high air pollution levels, exposing rats to filtered and unfiltered air conditions, thus mimicking human PM2.5 exposure. Histological findings indicated a significant increase in collagen density and uterine wall thickness in PM2.5 exposed subjects, suggesting a reproductive function risk. However, no significant differences were observed in progesterone and estradiol hormone levels, pointing to the complex relationship between PM2.5 exposure and its endocrine impact, and emphasizing the need for further studies for a deeper understanding. This work highlights the importance of thoroughly investigating the long-term effects of PM2.5 pollution on reproductive health, underlining the significance of considering environmental exposure as a critical factor in reproductive health research.
El estudio explora la relación entre la exposición crónica a partículas finas (PM2,5), procedentes del humo de leña, y la estructura histológica y la función endocrina del útero en ratas adultas nulíparas. Evalúa posibles cambios estructurales en el útero que podrían afectar la salud reproductiva, considerando la exposición a PM2,5 como un posible factor de riesgo. Se llevó a cabo un experimento controlado en una ciudad conocida por sus altos niveles de contaminación del aire, exponiendo ratas a condiciones de aire filtrado y sin filtrar, imitando así la exposición humana a PM2,5. Los hallazgos histológicos indicaron un aumento significativo en la densidad del colágeno y el grosor de la pared uterina en sujetos expuestos a PM2,5, lo que sugiere un riesgo para la función reproductiva. Sin embargo, no se observaron diferencias significativas en los niveles de las hormonas progesterona y estradiol, lo que apunta a la compleja relación entre la exposición a PM2,5 y su impacto endocrino, y enfatiza la necesidad de realizar más estudios para una comprensión más profunda. Este trabajo destaca la importancia de investigar a fondo los efectos a largo plazo de la contaminación por PM2,5 en la salud reproductiva, subrayando la importancia de considerar la exposición ambiental como un factor crítico en la investigación de la salud reproductiva.
Subject(s)
Animals , Female , Rats , Smoke/adverse effects , Uterus/drug effects , Wood , Rats, Sprague-Dawley , Air Pollutants/toxicity , Air Pollution , Particulate Matter/toxicity , Genitalia, Female/drug effectsABSTRACT
BACKGROUND@#Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) has become a global epidemic, and air pollution has been identified as a potential risk factor. This study aims to investigate the non-linear relationship between ambient air pollution and MASLD prevalence.@*METHOD@#In this cross-sectional study, participants undergoing health checkups were assessed for three-year average air pollution exposure. MASLD diagnosis required hepatic steatosis with at least 1 out of 5 cardiometabolic criteria. A stepwise approach combining data visualization and regression modeling was used to determine the most appropriate link function between each of the six air pollutants and MASLD. A covariate-adjusted six-pollutant model was constructed accordingly.@*RESULTS@#A total of 131,592 participants were included, with 40.6% met the criteria of MASLD. "Threshold link function," "interaction link function," and "restricted cubic spline (RCS) link functions" best-fitted associations between MASLD and PM2.5, PM10/CO, and O3 /SO2/NO2, respectively. In the six-pollutant model, significant positive associations were observed when pollutant concentrations were over: 34.64 µg/m3 for PM2.5, 57.93 µg/m3 for PM10, 56 µg/m3 for O3, below 643.6 µg/m3 for CO, and within 33 and 48 µg/m3 for NO2. The six-pollutant model using these best-fitted link functions demonstrated superior model fitting compared to exposure-categorized model or linear link function model assuming proportionality of odds.@*CONCLUSION@#Non-linear associations were found between air pollutants and MASLD prevalence. PM2.5, PM10, O3, CO, and NO2 exhibited positive associations with MASLD in specific concentration ranges, highlighting the need to consider non-linear relationships in assessing the impact of air pollution on MASLD.
Subject(s)
Humans , Nitrogen Dioxide , Cross-Sectional Studies , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Liver Diseases , Environmental Exposure/analysisABSTRACT
Abstract Smog has become the fifth season of Pakistan especially in Lahore city. Increased level of air pollutants (primary and secondary) are thought to be responsible for the formation of smog in Lahore. Therefore, the current study was carried out for the evaluation of air pollutants (primary and secondary) of smog in Wagah border particularly and other sites (Jail road, Gulburg) Lahore. For this purpose, baseline data on winter smog from March to December on primary and secondary air pollutants and meteorological parameters was collected from Environmental Protection Department and Pakistan Meteorological Department respectively. Devices being used in both departments for analysis of parameters were also studied. Collected data was further statistically analyzed to determine the correlation of parameters with meteorological conditions and was subjected to air quality index. According to results, PM 10 and PM 2.5 were found very high above the NEQS. NOx concentrations were also high above the permissible limits whereas SO2 and O3 were found below the NEQS thus have no roles in smog formation. Air Quality Index (AQI) of pollutants was PM 2.5(86-227), PM 10 (46-332), NOx (26-110), O3 (19-84) and SO2 (10-95). AQI of PM 2.5 remained between moderate to very unhealthy levels. AQI of PM 10 remained between good to hazardous levels. AQI of NOx remained between good to unhealthy for sensitive groups' levels. AQI of O3 and SO2 remained between good to moderate levels. Pearson correlation showed that every pollutant has a different relation with different or same parameters in different areas. It is concluded from the present study that particulate matter was much more responsible for smog formation. Although NOx also played role in smog formation. So there is need to reduce sources of particulate matter and NOx specifically in order to reduce smog formation in Lahore.
Resumo Smog tornou-se a quinta estação do Paquistão, especialmente na cidade de Lahore. Acredita-se que o aumento do nível de poluentes atmosféricos (primários e secundários) seja responsável pela formação de poluição atmosférica em Lahore. Portanto, o presente estudo foi realizado para a avaliação dos poluentes atmosféricos (primários e secundários) do smog na fronteira de Wagah em particular e em outros locais (Jail road, Gulburg) Lahore. Para este propósito, os dados de referência sobre a poluição atmosférica de inverno de março a dezembro sobre poluentes atmosféricos primários e secundários e parâmetros meteorológicos foram coletados do Departamento de Proteção Ambiental e do Departamento Meteorológico do Paquistão, respectivamente. Dispositivos sendo usados em ambos os departamentos para análise de parâmetros também foram estudados. Os dados coletados foram posteriormente analisados estatisticamente para determinar a correlação dos parâmetros com as condições meteorológicas e foram submetidos ao índice de qualidade do ar. De acordo com os resultados, PM 10 e PM 2,5 foram encontrados muito acima do NEQS. As concentrações de NOx também estavam muito acima dos limites permitidos, enquanto SO2 e O3 foram encontrados abaixo do NEQS, portanto, não têm papéis na formação de smog. O índice de qualidade do ar (AQI) de poluentes foi PM 2,5 (86-227), PM 10 (46-332), NOx (26-110), O3 (19-84) e SO2 (10-95). O AQI de PM 2,5 permaneceu entre níveis moderados a muito prejudiciais à saúde. O AQI de PM 10 permaneceu entre níveis bons e perigosos. AQI de NOx permaneceu entre bom e não saudável para os níveis de grupos sensíveis. O AQI de O3 e SO2 permaneceu entre níveis bons a moderados. A correlação de Pearson mostrou que cada poluente tem uma relação diferente com parâmetros diferentes ou iguais em áreas diferentes. Conclui-se do presente estudo que o material particulado foi muito mais responsável pela formação de smog. Embora o NOx também tenha desempenhado um papel na formação do smog. Portanto, é necessário reduzir as fontes de partículas e NOx, especificamente para reduzir a formação de smog em Lahore.
Subject(s)
Air Pollutants/analysis , Air Pollutants/adverse effects , Pakistan , Smog , Environmental Monitoring , Cities , Particulate Matter/analysisABSTRACT
Particulate matter (PM) is a major air pollutant causing serious health problems. The aim of the present study was to find out concentration of PM in ambient air and its associated health risk in Haripur city, Pakistan. Twenty-three samples were taken at various educational institutes, hospitals, recreational areas and industries in Haripur city. Concentration of PM2.5 (µg/m3) and PM10 (µg/m3) was measured with Youngteng YT-HPC 3000A portable PM counter. The results revealed that values of both PM2.5 and PM10 were above the permissible limits (35 µg/m3 for PM2.5 and 150 µg/m3 for PM10) set by Environmental Protection Agency Pakistan (Pak-EPA) in all the educational institutes, hospitals, recreational areas and industries investigated. Furthermore, significant (p<0.05) variation was found in the concentration of both PM2.5 and PM10 in all the educational institutes, hospitals, recreational areas, and industries studied. The concentration of PM2.5 was positively correlated with the concentration of PM10 in all the sampling sites. Therefore, from 1-14 scale standard of health index, the values of PM2.5 and PM10 exhibited that the ambient air quality of Haripur city Pakistan is under high risk. If the regulatory authorities such as Environmental Protection Agency, Health Department and Local Government monitor PM pollution in different settings of Haripur city, then a decrease can be possible in the pollution level. The remedies that can be taken to overcome the problem of ambient air pollution such as PM are plantation of trees at the sites where there are higher levels of air pollutants and use of masks on personal protection basis along with implementation of pollution control system in industries of Hattar Industrial Estate Haripur city, Pakistan.
O material particulado (MP) é um importante poluente do ar que causa sérios problemas de saúde. O objetivo do presente estudo foi descobrir a concentração de MP no ar ambiente e sua associação com o risco à saúde na cidade de Haripur, Paquistão. Vinte e três amostras foram coletadas em várias instituições de ensino, hospitais, áreas recreativas e indústrias na cidade de Haripur. A concentração de MP2,5 (µg/m3) e MP10 (µg/m3) foi medida por meio do contador de MP portátil Youngteng YT-HPC 3000A. Os resultados revelaram que os valores de MP2,5 e MP10 estavam acima dos limites permitidos (35 µg/m3 para MP2,5 e 150 µg/m3 para MP10) estabelecidos pela Agência de Proteção Ambiental do Paquistão (Pak-EPA) em todas as instituições de ensino, hospitais, áreas recreativas e indústrias investigadas. Além disso, foi encontrada variação significativa (p < 0,05) na concentração de MP2,5 e MP10 em todos os locais estudados. A concentração de MP2,5 correlacionou-se positivamente com a concentração de MP10 em todos os locais de amostragem. Portanto, a partir da escala padrão 1-14 do índice de saúde, os valores de MP2,5 e MP10 mostraram que a qualidade do ar ambiente na cidade de Haripur, Paquistão, está sob alto risco. Se as autoridades reguladoras, como a Pak-EPA, o Departamento de Saúde e o governo local, monitorarem a poluição por MP em diferentes configurações da cidade de Haripur, pode ser que haja uma diminuição no nível de poluição. As medidas que podem ser tomadas para superar o problema da poluição do ar ambiente, como o MP, são o plantio de árvores nos locais onde há maiores níveis de poluentes atmosféricos, o uso de máscaras e a implantação de sistema de controle de poluição nas propriedades industriais de Hattar, na cidade Haripur, Paquistão.
Subject(s)
Health Risk , Air Pollutants , Air Pollution , Particulate Matter , PakistanABSTRACT
Introducción. El material particulado (PM) es uno de los contaminantes del aire que mayor implicación tienen en la aparición o exacerbación de cuadros respiratorios en niños. Objetivo. Describir las características de las consultas por enfermedades respiratorias agudas en menores de 15 años, los niveles de PM en el aire, y analizar la asociación existente entre ellos en un sector de Bahía Blanca entre abril de 2019 y marzo de 2020. Población y métodos. Estudio ecológico de series temporales y grupos múltiples. Análisis descriptivo de consultas totales, por área, diagnóstico, y del PM. Modelo de correlación y regresión lineal generalizado para determinar la relación entre las variables. Se utilizó el programa SPSS®. Resultados. Se recopilaron 4787 consultas. Un 38,6 % (1846) correspondieron a rinitis y un 21,1 % (1011) a broncoespasmo. El PM de 10 nm (PM10) superó su valor límite el 31 % (115) de los días de estudio y el de 2,5 nm (PM2,5) un 3 % (8). Un aumento del 10 % del PM2,5 demostró incrementos de 1,3 % en las consultas totales; el incremento llegó al 2,1 % en el área más cercana al sector industrial (p <0,05). En esta última, el aumento del 10 % de los valores de PM10 se asoció al aumento del 1,8 % de las consultas (p <0,05). Conclusión. Se demostró asociación positiva entre las consultas por enfermedad respiratoria aguda y los niveles de PM del aire, sobre todo con el PM2,5 y en el área más cercana al sector industrial.
Introduction. Particulate matter (PM) is one of the air pollutants most involved in the onset or exacerbation of respiratory conditions in children. Objective. To describe the characteristics of consultations for acute respiratory diseases in children younger than 15 years and the levels of PM in the air and to analyze their association in a sector of Bahía Blanca between April 2019 and March 2020. Population and methods. Ecological, time-series study with multiple groups. Descriptive analysis of total number of consultations, by area, diagnosis, and PM. Generalized linear correlation and regression model to determine the relationship among variables. The SPSS® software was used. Results. Data from 4787 consultations were collected. Of these, 38.6% (1846) were related to rhinitis and 21.1% (1011), to bronchospasm. PM of 10 nm (PM10) exceeded its limit value on 31% (115) of the study days, and PM of 2.5 nm (PM2.5), on 3% (8). A 10% increase in PM2.5 showed increases of 1.3% in total consultations; the increase reached 2.1% in the area closest to the industrial sector (p < 0.05). In the latter, a 10% increase in PM10 was associated with an increase of 1.8% in consultations (p < 0.05). Conclusion. A positive association was evidenced between consultations for acute respiratory diseases and PM levels in the air, especially with PM2.5 and in the area closest to the industrial sector.
Subject(s)
Humans , Infant , Child, Preschool , Child , Adolescent , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/epidemiology , Air Pollution/adverse effects , Argentina , Air Pollution/analysis , Environmental Exposure/analysis , Particulate Matter/analysisABSTRACT
Objective: To investigate the association of mixed exposure to greenness and nitrogen dioxide(NO2) and hypertension among the older adults aged 65 years and over in China. Methods: The study subjects were from the Chinese Longitudinal Healthy Longevity Survey from 2017 to 2018. A total of 15 423 older adults aged 65 years and over meeting the criteria were finally included in the study. A questionnaire survey was used to collect information on demographic characteristics, lifestyle habits and self-reported prevalence of hypertension. Blood pressure values were obtained through physical examination. The level of normalized difference vegetation index(NDVI) was measured by the Medium-resolution Imaging Spectral Radiator(MODIS) of the National Aeronautics and Space Administration(NASA). The concentration of NO2 was from China's surface air pollutant data set. Meteorological data was from NASA MERRA-2. The exposure to NDVI and NO2 for each study subject was calculated based on the area within a 1 km radius around their residence. The association between mixed exposure of NDVI and NO2 as well as their interaction and hypertension in older adults was analyzed by using the multivariate logistic regression model. The restrictive cubic spline(RCS) function was used to explore the exposure-response relationship between greenness and NO2 and the risk of hypertension in study subjects. Results: The mean age of 15 423 older adults were (85.6±11.6). Women accounted for 56.3%(8 685/15 423) and 55.6%(8 578/15 423) lived in urban areas. The mean time of residence was (60.9±28.5) years. 59.8% of participants were with hypertension. The mean NDVI level was 0.41±0.13, and the mean NO2 concentration was (32.18±10.36) μg/cm3. The results of multivariate logistic regression analysis showed that NDVI was inversely and linearly associated with the hypertension in older adults, with the OR(95%CI) value of 0.959(0.928-0.992). Compared with the T1 group of NDVI, the risk of hypertension was lower in the T3 group, with the OR(95%CI) value of 0.852(0.769-0.944), and the trend test was statistically significant(P<0.05). Compared with the T1 group of NO2, the risk of hypertension was higher in the T2 and T3 groups, with OR(95%CI) values of 1.160(1.055-1.275) and 1.244(1.111-1.393), and the trend test was statistically significant (P<0.05). The result of the RCS showed that NDVI was inversely and linearly associated with hypertension in older adults. NO2 was nonlinearly associated with hypertension in older adults. The interaction analysis showed that NDVI and NO2 had a negative multiplicative interaction on the risk of hypertension, with OR(95%CI) value of 0.995(0.992-0.997). Conclusion: Exposure to greenness and NO2 are associated with hypertension in older adults.
Subject(s)
Aged , Humans , Female , Nitrogen Dioxide , Air Pollution , Prevalence , Hypertension/epidemiology , China/epidemiology , Particulate Matter/analysisABSTRACT
Objective: To analyze the short-term effect of individual atmospheric PM2.5 exposure on the diversity, enterotype, and community structure of gut microbiome in healthy elderly people in Jinan, Shandong province. Methods: The present panel study recruited 76 healthy elderly people aged 60-69 years old in Dianliu Street, Lixia District, Jinan, Shandong Province, and followed them up five times from September 2018 to January 2019. The relevant information was collected by questionnaire, physical examination, precise monitoring of individual PM2.5 exposure, fecal sample collection and gut microbiome 16S rDNA sequencing. The Dirichlet multinomial mixtures (DMM) model was used to analyze the enterotype. Linear mixed effect model and generalized linear mixed effect model were used to analyze the effect of PM2.5 exposure on gut microbiome α diversity indices (Shannon, Simpson, Chao1, and ACE indices), enterotype and abundance of core species. Results: Each of the 76 subjects participated in at least two follow-up visits, resulting in a total of 352 person-visits. The age of 76 subjects was (65.0±2.8) years old with BMI (25.0±2.4) kg/m2. There were 38 males accounting for 50% of the subjects. People with an educational level of primary school or below accounted for 10.5% of the 76 subjects, and those with secondary school and junior college or above accounting for 71.1% and 18.4%. The individual PM2.5 exposure concentration of 76 subjects during the study period was (58.7±53.7) μg/m3. DMM model showed that the subjects could be divided into four enterotypes, which were mainly driven by Bacteroides, Faecalibacterium, Lachnospiraceae, Prevotellaceae, and Ruminococcaceae. Linear mixed effects model showed that different lag periods of PM2.5 exposure were significantly associated with a lower gut α diversity index (FDR<0.05 after correction). Further analysis showed that PM2.5 exposure was significantly associated with changes in the abundances of Firmicutes (Megamonas, Blautia, Streptococcus, etc.) and Bacteroidetes (Alistipes) (FDR<0.05 after correction). Conclusion: Short-term PM2.5 exposure is significantly associated with a decrease in gut microbiome diversity and changes in the abundance of several species of Firmicutes and Bacteroidetes in the elderly. It is necessary to further explore the underlying mechanisms between PM2.5 exposure and the gut microbiome, so as to provide a scientific basis for promoting the intestinal health of the elderly.
Subject(s)
Aged , Humans , Male , Middle Aged , Female , Feces/microbiology , Gastrointestinal Microbiome , Particulate Matter , RNA, Ribosomal, 16S/geneticsABSTRACT
Objective: To explore the occupational protective effect of different protective devices on the operators during manual cleaning and oiling of dental handpieces, and to provide a basis for the selection of appropriate protective methods. Methods: From November 2020 to December 2021, 20 high-speed dental handpieces of the same brand were selected and randomly divided into disposable protective bag group and small aerosol safety cabinet group by drawing lots, with 10 in each group. After recording the model, they were distributed to the clinical fixed consulting room for use, and were collected by specially-assigned personnel every day for manual cleaning under the protection of the two devices. By measuring the number of airborne colonies, the concentrations of particulate matter and the satisfaction of operators, the occupational protection effect of the two protective devices on operators was evaluated. Results: Under the protection of the two devices, the average number of airborne colonies after operation was less than 1 CFU/ml. When no protective device was used, the number concentration of particulate matter produced during operation was (21595.70±8164.26) pieces/cm(3). The number concentrations of particles produced by disposable protective bag group [ (6800.24±515.05) pieces/cm(3)] and small aerosol safety cabinet group [ (5797.15±790.50) pieces/cm(3)] were significantly lower than those without any protective device (P<0.001). The number concentration of particle matter of small aerosol safety cabinet group was significantly lower than that of disposable protective bag group (P<0.001). In the satisfaction evaluation of operators, small aerosol safety cabinet group [ (3.53±0.82) points] was significantly better than disposable protective bag group [ (2.23±1.10) points] (P<0.001) . Conclusion: The use of small aerosol safety cabinet during manual cleaning and oiling of dental handpieces has good protective effect, superior safety performance and strong clinical applicability, and has advantages in occupational protection of clinical operators.
Subject(s)
Aerosols , Particulate Matter , Protective DevicesABSTRACT
OBJECTIVE@#To investigate the association between short-term exposure to indoor total volatile organic compounds (TVOC) and nocturnal heart rate variability (HRV) among young female adults.@*METHODS@#This panel study recruited 50 young females from one university in Beijing, China from December 2021 to April 2022. All the participants underwent two sequential visits. During each visit, real time indoor TVOC concentration was monitored using an indoor air quality detector. The real time levels of indoor temperature, relative humidity, noise, carbon dioxide and fine particulate matter were monitored using a temperature and humidity meter, a noise meter, a carbon dioxide meter and a particulate counter, respectively. HRV parameters were measured using a 12-lead Holter. Mixed-effects models were used to evaluate the association between the TVOC and HRV parameters and establish the exposure-response relationships, and two-pollutant models were applied to examine the robustness of the results.@*RESULTS@#The mean age of the 50 female subjects was (22.5±2.3) years, and the mean body mass index was (20.4±1.9) kg/m2. During this study, the median (interquartile range) of indoor TVOC concentrations was 0.069 (0.046) mg/m3, the median (interquartile range) of indoor temperature, relative humidity, carbon dioxide concentration, noise level and fine particulate matter concentration were 24.3 (2.7) ℃, 38.5% (15.0%), 0.1% (0.1%), 52.7 (5.8) dB(A) and 10.3 (21.5) μg/m3, respectively. Short-term exposure to indoor TVOC was associated with significant changes in time-domain and frequency-domain HRV parameters, and the exposure metric for most HRV parameters with the most significant changes was 1 h-moving average. Along with a 0.01 mg/m3 increment in 1 h-moving average concentration of indoor TVOC, this study observed decreases of 1.89% (95%CI: -2.28%, -1.50%) in standard deviation of all normal to normal intervals (SDNN), 1.92% (95%CI: -2.32%, -1.51%) in standard deviation of average normal to normal intervals (SDANN), 0.64% (95%CI: -1.13%, -0.14%) in percentage of adjacent NN intervals differing by more than 50 ms (pNN50), 3.52% (95%CI: -4.30%, -2.74%) in total power (TP), 5.01% (95%CI: -6.21%, -3.79%) in very low frequency (VLF) power, and 4.36% (95%CI: -5.16%, -3.55%) in low frequency (LF) power. The exposure-response curves showed that indoor TVOC was negatively correlated with SDNN, SDANN, TP, and VLF when the concentration exceeded 0.1 mg/m3. The two-pollutant models indicated that the results were generally robust after controlling indoor noise and fine particulate matter.@*CONCLUSION@#Short-term exposure to indoor TVOC was associated with significant negative changes in nocturnal HRV of young women. This study provides an important scientific basis for relevant prevention and control measures.
Subject(s)
Humans , Female , Adult , Young Adult , Air Pollutants/analysis , Heart Rate/physiology , Volatile Organic Compounds/analysis , Carbon Dioxide , Particulate Matter/adverse effects , Environmental PollutantsABSTRACT
OBJECTIVES@#Stroke has become the leading cause of death and disability among adults in China. This study aims to analyze the disease burden based on gender and age and the risk factors for stroke subtypes in China 2019, and to provide reference for targeted stroke prevention and control.@*METHODS@#Based on 2019 data of the Global Burden of Disease (GBD), the gender and age in patients with different stroke subtypes (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage) in China 2019 was described by using disability-adjusted life years (DALY), and attributable burden of related risk factors was analyzed.@*RESULTS@#In 2019, the burden of intracranial hemorrhage was the heaviest one in China, resulting in 22.210 6 million person years of DALY, following by ischemic stroke and subarachnoid hemorrhage, resulting in 21.393 9 and 2.344 7 million person years of DALY, respectively. Among them, except the 0-14 age group, the disease burden of different subtypes of stroke in men was higher than that in women. The disease burden of ischemic stroke was increased with age in both men and women, with the heaviest disease burden in ≥70 years group. The disease burden of intracranial hemorrhage and subarachnoid hemorrhage was the heaviest in males aged 50-69 years old, and in females aged ≥70 years and 50-69 years, respectively. Metabolic factors were the main risk factors in all ages of different stroke subtypes, and the most important risk factor was high systolic blood pressure. Other risk factors were different between men and women. Smoking, high body mass index, high low-density lipoprotein, and outdoor particulate matter pollution were the main risk factors for stroke in men, while high body mass index, outdoor particulate matter pollution, and high fasting blood glucose were the main risk factors of stroke in women. The main risk were different among different age groups.@*CONCLUSIONS@#The burden and attributable risk factors for different stroke subtypes are discrepancy in different gender and age groups. Targeted interventions should be conducted in the future to reduce the burden of stroke.
Subject(s)
Male , Adult , Humans , Female , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Middle Aged , Aged , Subarachnoid Hemorrhage/epidemiology , Quality-Adjusted Life Years , Cost of Illness , Stroke/etiology , Risk Factors , China/epidemiology , Particulate Matter , Ischemic Stroke , Intracranial Hemorrhages/etiologyABSTRACT
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and has serious implications for the health of mothers and their offspring. In recent years, studies have confirmed that air pollution is one of the main risk factors for diabetes, and there is increasing evidence that air pollution exposure is closely related to the occurrence of gestational diabetes. However, current studies on the association between air pollutant exposure and the incidence of gestational diabetes are inconsistent, and the window period of pollutant exposure is still unclear. Limited mechanistic studies suggest that airborne particulate matter and gaseous pollutants may affect GDM through multiple mechanisms, including inflammation, oxidative stress, disruption of adipokine secretion, and imbalance of intestinal flora. This review summarizes the relationship between air pollutant exposure and the incidence of GDM in recent years, as well as the possible molecular mechanism of the occurrence and development of GDM caused by air pollutants, in order to provide scientific basis for preventing pollutant exposure, reducing the risk of GDM, improving maternal and fetal outcomes and improving the quality of the birth population.
Subject(s)
Pregnancy , Female , Humans , Diabetes, Gestational/epidemiology , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Risk Factors , Maternal Exposure/adverse effectsABSTRACT
In China, the level of ambient fine particulate matter (PM 2.5 ) pollution far exceeds the air quality standards recommended by the World Health Organization. Moreover, the health effects of PM 2.5 exposure have become a major public health issue. More than half of PM 2.5 -related excess deaths are caused by cardiopulmonary disease, which has become a major health risk associated with PM 2.5 pollution. In this review, we discussed the latest epidemiological advances relating to the health effects of PM 2.5 on cardiopulmonary diseases in China, including studies relating to the effects of PM 2.5 on mortality, morbidity, and risk factors for cardiovascular and respiratory diseases. These data provided important evidence to highlight the cardiopulmonary risk associated with PM 2.5 across the world. In the future, further studies need to be carried out to investigate the specific relationship between the constituents and sources of PM 2.5 and cardiopulmonary disease. These studies provided scientific evidence for precise reduction measurement of pollution sources and public health risks. It is also necessary to identify effective biomarkers and elucidate the biological mechanisms and pathways involved; this may help us to take steps to reduce PM 2.5 pollution and reduce the incidence of cardiopulmonary disease.
Subject(s)
Humans , Particulate Matter/analysis , Air Pollution/adverse effects , Risk Factors , Respiratory Tract Diseases , China/epidemiology , Environmental Exposure/adverse effectsABSTRACT
OBJECTIVE@#This study aimed to investigate the association of ambient PM2.5 exposure with blood pressure (BP) at the population level in China.@*METHODS@#A total of 14,080 participants who had at least two valid blood pressure records were selected from the China Health and Retirement Longitudinal Survey during 2011-2015. Their long-term PM2.5 exposure was assessed at the geographical level, on the basis of a regular 0.1° × 0.1° grid over China. A mixed-effects regression model was used to assess associations.@*RESULTS@#Each decrease of 10 μg/m3 in the 1 year-mean PM2.5 concentration (FPM1Y) was associated with a decrease of 1.24 [95% confidence interval (CI): 0.84-1.64] mmHg systolic BP (SBP) and 0.50 (95% CI: 0.25-0.75) mmHg diastolic BP (DBP), respectively. A robust association was observed between the long-term decrease in PM2.5 and decreased BP in the middle-aged and older population. Using a generalized additive mixed model, we further found that SBP increased nonlinearly overall with FPM1Y but in an approximately linear range when the FPM1Y concentration was < 70 µg/m3; In contrast, DBP increased approximately linearly without a clear threshold.@*CONCLUSION@#Efficient control of PM2.5 air pollution may promote vascular health in China. Our study provides robust scientific support for making the related air pollution control policies.
Subject(s)
Middle Aged , Humans , Aged , Particulate Matter/analysis , Blood Pressure , Air Pollutants/analysis , Follow-Up Studies , Hypertension/etiology , East Asian People , Environmental Exposure/analysis , Air Pollution/analysis , China/epidemiologyABSTRACT
Objective To explore the overall level,distribution characteristics,and differences in household fine particulate matter (PM2.5) pollution caused by fuel burning in urban and rural areas in China. Methods The relevant articles published from 1991 to 2021 were retrieved and included in this study.The data including the average concentration of household PM2.5 and urban and rural areas were extracted,and the stoves and fuel types were reclassified.The average concentration of PM2.5 in different areas was calculated and analyzed by nonparametric test. Results The average household PM2.5 concentration in China was (178.81±249.91) μg/m3.The mean household PM2.5 concentration was higher in rural areas than in urban areas[(206.08±279.40) μg/m3 vs. (110.63±131.16) μg/m3;Z=-5.45,P<0.001] and higher in northern areas than in southern areas[(224.27±301.66) μg/m3 vs.(130.11±140.61) μg/m3;Z=-2.38,P=0.017].The north-south difference in household PM2.5 concentration was more significant in rural areas than in urban areas[(324.19±367.94) μg/m3 vs.(141.20±151.05) μg/m3,χ2=-5.06,P<0.001].The PM2.5 pollution level showed differences between urban and rural households using different fuel types (χ2=92.85,P<0.001),stove types (χ2=74.42,P<0.001),and whether they were heating (Z=-4.43,P<0.001).Specifically,rural households mainly used solid fuels (manure,charcoal,coal) and traditional or improved stoves,while urban households mainly used clean fuels (gas) and clean stoves.The PM2.5 concentrations in heated households were higher than those in non-heated households in both rural and urban areas (Z=-4.43,P<0.001). Conclusions The household PM2.5 pollution caused by fuel combustion in China remains a high level.The PM2.5 concentration shows a significant difference between urban and rural households,and the PM2.5 pollution is more serious in rural households.The difference in the household PM2.5 concentration between urban and rural areas is more significant in northern China.PM2.5 pollution in the households using solid fuel,traditional stoves,and heating is serious,and thus targeted measures should be taken to control PM2.5 pollution in these households.
Subject(s)
Humans , Particulate Matter/analysis , Air Pollution, Indoor/analysis , Cooking , Environmental Exposure/analysis , China , Rural PopulationABSTRACT
Objective:To explore the impact of PM 2.5 concentration in Shanghai on the incidence of allergic rhinitis(AR) in the population, and provide strategies for early warning and prevention of AR. Methods:Collect daily average concentrations of atmospheric pollutants monitored in Shanghai from January 1, 2017 to December 31, 2019, and clinical data of AR patients from five hospitals in Shanghai during the same period. We used a time-series analysis additive Poisson regression model to analyze the correlation between PM 2.5 levels and outpatient attendance for AR patients. Results:During the study period, a total of 56 500 AR patients were included, and the daily average concentration of PM 2.5 was(35.28±23.07)μg/m³. There is a correlation between the concentration of PM 2.5 and the number of outpatient attendance for AR cases. There is a positive correlation between the daily average number of outpatient for AR and levels of PM 2.5 air pollution((P<0.05)) . We found that every 10 μg/m³ increase in PM 2.5, the impact of on the number of AR visits was statistically significant on the same day, the first day behind, and the second day behind, with the strongest impact being the exposure on the same day. Every 10 μg/m³ increases in PM 2.5, the number of outpatient visits increased by 0.526% on the same day(95%CI 1.000 50-1.010 04). Conclusion:The atmospheric PM 2.5 concentration in Shanghai is positively correlated with the number of outpatient for AR, and PM 2.5 exposure is an independent factor in the onset of AR. This provides an important theoretical basis for AR.
Subject(s)
Humans , Particulate Matter/analysis , Air Pollutants/adverse effects , Incidence , China/epidemiology , Air Pollution/adverse effects , Rhinitis, Allergic/etiologyABSTRACT
Platelets not only have hemostatic function, but can also directly or indirectly recognize pathogenic microorganisms and the signals they produce to capture and destroy them through membrane receptors. They can collaborate with various components of the body's immune system by releasing of intraplatelet particulate matter, cytokines and chemokines to perform bactericidal functions. And it can also play a bactericidal role by swallowing pathogens, releasing antimicrobial proteins and chemokines and activating and enhancing other specialized anti-inflammatory cells bactericidal effect, such as leukocytes and so on. However, the bacteriostatic composition and bacteriostatic mechanism of platelets remain unclear, so attention should be paid to the immune mechanism and bacteriostatic effect of platelets.
Subject(s)
Blood Platelets , Anti-Bacterial Agents/pharmacology , Cytokines , Leukocytes , Particulate MatterABSTRACT
BACKGROUND@#Weather conditions are a possible contributing factor to age-related macular degeneration (AMD), a leading cause of irreversible loss of vision. The present study evaluated the joint effects of meteorological factors and fine particulate matter (PM2.5) on AMD.@*METHODS@#Data was extracted from a national cross-sectional survey conducted across 10 provinces in rural China. A total of 36,081 participants aged 40 and older were recruited. AMD was diagnosed clinically by slit-lamp ophthalmoscopy, fundus photography, and spectral domain optical coherence tomography (OCT). Meteorological data were calculated by European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and were matched to participants' home addresses by latitude and longitude. Participants' individual PM2.5 exposure concentrations were calculated by a satellite-based model at a 1-km resolution level. Multivariable-adjusted logistic regression models paired with interaction analysis were performed to investigate the joint effects of meteorological factors and PM2.5 on AMD.@*RESULTS@#The prevalence of AMD in the study population was 2.6% (95% CI 2.42-2.76%). The average annual PM2.5 level during the study period was 63.1 ± 15.3 µg/m3. A significant positive association was detected between AMD and PM2.5 level, temperature (T), and relative humidity (RH), in both the independent and the combined effect models. For PM2.5, compared with the lowest quartile, the odds ratios (ORs) with 95% confidence intervals (CIs) across increasing quartiles were 0.828 (0.674,1.018), 1.105 (0.799,1.528), and 2.602 (1.516,4.468). Positive associations were observed between AMD and temperature, with ORs (95% CI) of 1.625 (1.059,2.494), 1.619 (1.026,2.553), and 3.276 (1.841,5.830), across increasing quartiles. In the interaction analysis, the estimated relative excess risk due to interaction (RERI) and the attributable proportion (AP) for combined atmospheric pressure and PM2.5 was 0.864 (0.586,1.141) and 1.180 (0.768,1.592), respectively, indicating a synergistic effect between PM2.5 and atmospheric pressure.@*CONCLUSIONS@#This study is among the first to characterize the coordinated effects of meteorological factors and PM2.5 on AMD. The findings warrant further investigation to elucidate the relationship between ambient environment and AMD.
Subject(s)
Humans , Adult , Middle Aged , Cross-Sectional Studies , Air Pollutants/analysis , Particulate Matter/analysis , China/epidemiology , Macular Degeneration/etiology , Meteorological ConceptsABSTRACT
BACKGROUND@#Congenital heart disease (CHD) is one of the most common congenital malformations in humans. Inconsistent results emerged in the existed studies on associations between air pollution and congenital heart disease. The purpose of this study was to evaluate the association of gestational exposure to air pollutants with congenital heart disease, and to explore the critical exposure windows for congenital heart disease.@*METHODS@#The nested case-control study collected birth records and the following health data in Tianjin Women and Children's Health Center, China. All of the cases of congenital heart disease from 2013 to 2015 were selected matching five healthy controls for each case. Inverse distance weighting was used to estimate individual exposure based on daily air pollution data. Furthermore, the conditional logistic regression with distributed lag non-linear model was performed to identify the association between gestational exposure to air pollution and congenital heart disease.@*RESULTS@#A total of 8,748 mother-infant pairs were entered into the analysis, of which 1,458 infants suffered from congenital heart disease. For each 10 µg/m3 increase of gestational exposure to PM2.5, the ORs (95% confidence interval, 95%CI) ranged from 1.008 (1.001-1.016) to 1.013 (1.001-1.024) during the 1st-2nd gestation weeks. Similar weak but increased risks of congenital heart disease were associated with O3 exposure during the 1st week and SO2 exposure during 6th-7th weeks in the first trimester, while no significant findings for other air pollutants.@*CONCLUSIONS@#This study highlighted that gestational exposure to PM2.5, O3, and SO2 had lag effects on congenital heart disease. Our results support potential benefits for pregnancy women to the mitigation of air pollution exposure in the early stage, especially when a critical exposure time window of air pollutants may precede heart development.
Subject(s)
Infant , Pregnancy , Child , Humans , Female , Air Pollutants/analysis , Case-Control Studies , Prenatal Exposure Delayed Effects/epidemiology , Heart Defects, Congenital/etiology , China/epidemiology , Particulate Matter/adverse effects , Maternal Exposure/adverse effectsABSTRACT
To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.