ABSTRACT
SUMMARY: Acute pancreatitis is a frequent life-threatening inflammatory disease of the pancreas characterized by severe abdominal pain that lasts for days to weeks. We sought to determine whether the antidiabetic and anti-inflammatory drug, metformin can substantially protect against acute pancreatitis in an animal model of L-arginine-induced acute pancreatitis, and whether this is associated with the augmentation of the anti-inflammatory cytokine interleukin-10 (IL-10) and inhibition of the enzyme that promotes tissue damage, myeloperoxidase (MPO). Rats were either injected with two doses of the amino acid L-arginine (2.5 gm/kg; i.p., at one-hour intervals) before being sacrificed after 48 hours (model group) or were pretreated with metformin (50 mg/kg) daily for two weeks prior to L- arginine injections and continued receiving metformin until the end of the experiment (protective group). Using microscopic examination of the pancreas and blood chemistry, we observed that L-arginine induced acute pancreatic injury. This is demonstrated by an enlarged pancreas with patchy areas of haemorrhage, vacuolated cytoplasm and pyknotic nuclei in the acini, disorganized lobular architecture with infiltration of inflammatory cells within the interlobular connective tissue (CT) septa, and the presence of congested blood vessels that were substantially ameliorated by metformin. Metformin also significantly (p<0.05) inhibited L-arginine-induced MPO, lactate dehydrogenase (LDH), and the inflammatory biomarker tumor necrosis factor alpha (TNF-α). Whereas, metformin significantly (p<0.05) increased IL-10 levels that were inhibited by pancreatitis induction. We further demonstrated a significant (p<0.001) correlation between the scoring of the degree of pancreatic lobules damage tissue damage and the blood levels of TNF-α, IL-10, LDH, and MPO. Thus, metformin effectively protects against L-arginine-induced acute pancreatitis, which is associated with the inhibition of MPO and augmentation of IL-10.
RESUMEN: La pancreatitis aguda es una enfermedad inflamatoria del páncreas que amenaza la vida y se caracteriza por un dolor abdominal intenso que dura de días a semanas. Buscamos determinar si la metformina, fármaco antidiabético y antiinflamatorio, puede proteger contra la pancreatitis aguda en un modelo animal de pancreatitis aguda inducida por L-arginina. Además se estudió la asociación con el aumento de la citocina antiinflamatoria interleucina-10. (IL-10) e inhibición de la enzima que promueve el daño tisular, mieloperoxidasa (MPO). Las ratas se inyectaron con dos dosis del aminoácido L-arginina (2,5 g / kg; ip, a intervalos de una hora) antes de ser sacrificadas des- pués de 48 horas (grupo modelo) o se pre trataron con metformina (50 mg / kg) durante dos semanas antes del tratamiento de L- arginina y continuaron recibiendo metformina hasta el final del experimento (grupo protector). Mediante el examen microscópico del páncreas y la química sanguínea, se observó que la L- arginina inducía una lesión pancreática aguda. Se observó un aumento significativo de tamaño del páncreas con áreas hemorrágicas, citoplasma vacuolado y núcleos picnóticos en los acinos, arquitectura desorganizada con infiltración de células inflamatorias dentro de los tabiques del tejido conjuntivo interlobulillar (TC) y la presencia de vasos sanguíneos congestionados mejorados por metformina. Se observó que la metformina inhibió significativamente (p <0,05) la MPO inducida por L- arginina, la lactato deshidrogenasa (LDH) y el factor de necrosis tumoral alfa (TNF-α). Además, demostramos una correlación significativa (p <0,001) entre la puntuación del grado de daño tisular de los lóbulos pancreáticos y los niveles sanguíneos de TNF-α, IL-10, LDH y MPO. Por tanto, la metformina protege eficazmente contra la pancreatitis aguda inducida por L-arginina, que se asocia con la inhibición de MPO y el aumento de IL-10.
Subject(s)
Animals , Rats , Arginine/toxicity , Interleukin-10/metabolism , Peroxidase/antagonists & inhibitors , Pancreatitis, Acute Necrotizing/chemically induced , Pancreatitis, Acute Necrotizing/drug therapy , Metformin/administration & dosage , Pancreas/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Interleukin-10 , Rats, Wistar , Protective Agents , Disease Models, Animal , L-Lactate Dehydrogenase/antagonists & inhibitorsABSTRACT
BACKGROUND: Despite Cryptostegia grandiflora Roxb. ex R. Br. (Apocynaceae) leaves are widely used in folk Caribbean Colombian medicine for their anti-inflammatory effects, there are no studies that support this traditional use. Therefore, this work aimed to evaluate the effect of the total extract and primary fractions obtained from Cryptostegia grandiflora leaves, using in vivo and in vitromodels of inflammation, and further get new insights on the mechanisms involved in this activity. RESULTS: Ethanolic extract of Cryptostegia grandiflora leaves, and its corresponding ether and dichloromethane fractions, significantly reduced inflammation and myeloperoxidase activity (MPO) in ear tissue of mice treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Histological analysis revealed a reduction of edema and leukocyte infiltration. Complementarily, we demonstrated that extract and fractions reduced nitric oxide (NOâ¢) and prostaglandin E2 (PGE2) production in LPS-stimulated RAW 264.7 macrophages, as well as scavenging activity on DPPH and ABTS radicals. CONCLUSIONS: Our results demonstrated for the first time the anti-inflammatory activity of Cryptostegia grandiflora leaves, supporting its traditional use. This activity was related to inhibition of MPO activity, and PGE2 and NO⢠production. These mechanisms and its antioxidant activity could contribute, at least in part, to the anti-inflammatory effect showed by this plant.
Subject(s)
Animals , Female , Mice , Plant Extracts/therapeutic use , Apocynaceae/chemistry , Edema/drug therapy , Macrophages/drug effects , Anti-Inflammatory Agents/pharmacology , Oxytocics/analysis , Dinoprostone/analysis , Peroxidase/antagonists & inhibitors , Plant Leaves/chemistry , Cytotoxins/pharmacology , Cell Line, Tumor/drug effects , Inflammation/drug therapy , Mice, Inbred ICR , Nitric Oxide/analysisABSTRACT
The role of proanthocyanidins (PC), a novel flavonoid extracted from grape seeds was studied in vitro in the modulation of neutrophil and macrophage function. We attempted to assess the levels of non-enzymatic and enzymatic mediators in the presence or absence of PC in 4-phorbol-12--myristate-13-acetate (PMA)-stimulated neutrophils isolated from humans and rats, E. coli endotoxin-stimulated macrophages and macrophages isolated from E. coli endotoxin-induced experimental periodontitis in rats. Addition of PC at a concentration of 50 µg/ml effectively blocked the release of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and exhibited a marked inhibition of myeloperoxidase (MPO) and lysosomal enzymes (p<0.001), as compared to PMA-stimulated neutrophils (human and rats) and neutrophils isolated from experimental periodontitis in rats. The levels of ROS, RNS and lysosomal enzymes were found to be elevated (p<0.001) and addition of PC significantly (p<0.001) reduced these levels as compared to those from E. coli endotoxin-stimulatedmacrophages from rats and macrophages isolated from experimental periodontitis in rats (p<0.001). Thus, the study demonstrated that PC decreased the levels of ROS and RNS and also inhibited the MPO and lysosomal enzymes activities in experimental periodontitis in rats. In addition, this study clearly indicated that PC could be developed as an effective antiinflammatory agent.
Subject(s)
Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Lysosomes/drug effects , Lysosomes/enzymology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Neutrophils/drug effects , Neutrophils/metabolism , Periodontitis/drug therapy , Periodontitis/metabolism , Peroxidase/antagonists & inhibitors , Proanthocyanidins/pharmacology , Rats , Rats, Wistar , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolismABSTRACT
Astilbin (5,7,3,4-tetrahydroxy-2,3-dihydroflavonol-3-ß-o-rhamnoside), a flavonoid with a large range of biological activities, was isolated from Dimorphandra mollis, a shrub common to the Brazilian Cerrado. The purpose of this study is to verify the effects of astilbin on myeloperoxidase (MPO) and horseradish peroxidase (HRP), and its antioxidant activity against hypochlorous acid (HOCl) and total antioxidant activity (TAC) by the 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+). Astilbin inhibited MPO and HRP activities in a concentration-dependent relationship and effectively scavenged HOCl. The TAC by ABTS+ of astilbin (IC50 ~ 20 mM) was higher than that of uric acid, which was used as a positive control. These data demonstrate that astilbin is a potent antioxidant and that it inhibits MPO and HRP activities efficiently.
Subject(s)
Humans , Antioxidants/pharmacology , Fabaceae/chemistry , Flavonols/pharmacology , Free Radical Scavengers/metabolism , Peroxidase/antagonists & inhibitors , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants/isolation & purification , Fabaceae/classification , Flavonols/isolation & purificationABSTRACT
Reactive oxygen species (ROS) and free radical species have been implicated in initiating or accompanying many diseases in living organisms; there is thus, a continual need for antioxidants molecules to inactivate ROS/free radicals. Many studies of plants crude extracts have demonstrated free-radical scavenging and antioxidant action. Salacia species have long been used, in several countries, as traditional medicines against certain diseases and for their anti-inflammatory properties. In this study, Salacia campestris Walp (Hippocrateaceae) root bark ethanol extract (ScEtOH) was assessed for its ability to scavenge free radicals and reactive oxygen species; the results were expressed as percentage inhibition of the active species. ScEtOH was efficient against studied species: DPPH radical (obtained inhibition = 30 percent), ABTSò+ (IC50 = 1.8±0.8 μg/mL), HOCl (IC50 = 1.7 ± 0.1 μg/mL), O2ò- (obtained inhibition = 32 percent), and NOò (obtained inhibition = 18 percent). Peroxidase activity inhibition was evaluated through the guaiacol oxidation reaction catalyzed by hemin, HRP and myeloperoxidase (MPO); data showed that ScEtOH at 10 μg/mL led to 54 and 51 percent of inhibition, respectively, for the hemin and HRP systems. In the MPO system, ScEtOH promoted a 50 percent inhibition at 8.9 μg/mL, whereas quercetin, a powerful MPO inhibitor, inhibited this system at 1.35 μg/mL.
Espécies reativas do oxigênio (ERO) e radicais livres estão relacionados ao início ou à exacerbação de muitas doenças em organismos vivos; existindo portanto uma necessidade contínua por moléculas antioxidantes que inativem as ERO e radicais livres. Muitos estudos com extratos brutos de plantas têm demonstrado propriedades antioxidantes e sequestradoras de radicais livres. Espécies de Salacia são utilizadas, em muitos países, como remédio tradicional contra certas doenças e por suas propriedades antiinflamatórias. Neste estudo, o extrato bruto etanólico da casca da raiz da Salacia campestris Walp (Hippocrateaceae) foi avaliado quanto à sua habilidade em seqüestrar radicais livres e espécies reativas do oxigênio; os resultados são expressos como porcentagem de inibição das espécies ativas. ScEtOH mostrou-se eficiente frente as espécies estudadas: radical DPPH (inibição obtida = 30 por cento), ABTSò+ (IC50 = 1,8±0,8 μg/mL), HOCl (IC50 = 1,7 ± 0,1 μg/mL), O2ò- (inibição obtida = 32 por cento), and NOò (inibição obtida = 18 por cento). A inibição da atividade peroxidásica foi avaliada através da oxidação do guaiacol catalisada pela hemina, HRP e mieloperoxidase (MPO); os dados mostram que 10 μg/mL de ScEtOH promovem 54 e 51 por cento de inibição, respectivamente para os sistemas da hemina e da HRP. No sistema da MPO, ScEtOH promoveu 50 por cento de inibição na dose de 8,9 μg/mL, enquanto a quercetina, um potente inibidor da MPO promoveu tal inibição com 1,35 μg/mL.
Subject(s)
Plant Extracts , Peroxidase/antagonists & inhibitors , Plant Roots , Salacia , Antioxidants/therapeutic use , Free RadicalsABSTRACT
There is abundant evidence that reactive oxygen species are implicated in several physiological and pathological processes. To protect biological targets from oxidative damage, antioxidants must react with radicáis and other reactive species faster than biological substrates do. The aim of the present study was to determine the in vitro antioxidant activity of aqueous extracts from leaves of Bauhinia forficata Link (Fabaceae - Caesalpinioideae) and Cissus sicyoides L. (Vitaceae) (two medicinal plants used popularly in the control of diabetes mellitus), using several different assay systems, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) decolorization, superoxide anión radical (0(2)-) scavenging and myeloperoxidase (MPO) activity. In the ABTS assay for total antioxidant activity, B. forficata showed IC50 = 8.00±0.07 μg/mL, while C. sicyoides showed IC50 = 13.0±0.2 μg/mL. However, the extract of C. sicyoides had a stronger effect on 0(2)- (IC50 = 60.0±2.3 μg/mL) than the extract of B. forficata (IC50 = 90.0±4.4 μg/ mL). B. forficata also had a stronger inhibitory effect on MPO activity, as measured by guaiacol oxidation, than C. sicyoides. These results indicate that aqueous extracts of leaves of B. forficata and C. sicyoides are a potential source of natural antioxidants and may be helpful in the prevention of diabetic complications associated with oxidative stress.
Subject(s)
Bauhinia/chemistry , Cissus/chemistry , Free Radical Scavengers/pharmacology , Hypoglycemic Agents/pharmacology , Peroxidase/antagonists & inhibitors , Plant Extracts/pharmacology , Plants, MedicinalABSTRACT
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37°C in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 æM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72 percent range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 æM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Subject(s)
Humans , Hypochlorous Acid/metabolism , Indoles/pharmacology , Leukocytes/drug effects , Peroxidase/antagonists & inhibitors , Dose-Response Relationship, Drug , Leukocytes/physiology , Oxidation-ReductionABSTRACT
Leukotrienes play a part in inflammatory response. The unique role of the enzyme 5-lipoxygenase (5-LOX) in the production of leukotrienes makes it a likely therapeutic target for inflammatory conditions like asthma, rheumatoid arthritis, psoriasis, and inflammatory bowel disease (IBD). The aim of the present study was to evaluate the effect of zileuton, an orally active selective 5-LOX inhibitor against the events associated with dextran sodium sulphate-induced colitis in a rat model of IBD. The animals were administered simultaneously zileuton (100mg/kg) or sulphasalazine (100mg/kg) orally for 7 days. On day eight, rats were sacrificed, and distal colon isolated to determine myeloperoxidase activity, in vivo superoxide dismutase activity, prostaglandin E2 levels and histological examination. Both zileuton and sulphasalazine significantly prevented the development of inflammatory events associated with colitis. The effect of zileuton was more pronounced towards reducing myeloperoxidase activity and increasing PGE2 levels in distal colon. The results show that chemotactic leukotrienes are responsible for inflammatory surge in damaged colon and, zileuton, significantly improved healing by inhibition of neutrophil recruitment and indirectly through increase in prostaglandins at the site of inflammation. It is suggested that inhibitors of 5-LOX enzyme may have useful therapeutic role in the treatment of chronic intestinal inflammation.