Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Braz. j. biol ; 83: e244261, 2023. tab, graf
Article in English | MEDLINE, LILACS, VETINDEX | ID: biblio-1285633

ABSTRACT

Abstract Endophytic bacteria serve key roles in the maintenance of plant health and growth. Few studies to date, however, have explored the antagonistic and plant growth-promoting (PGP) properties of Prunus cerasifera endophytes. To that end, we isolated endophytic bacteria from P. cerasifera tissue samples and used a dual culture plate assay to screen these microbes for antagonistic activity against Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum, and F. moniliforme. Of the 36 strains of isolated bacteria, four (strains P1, P10, P16, and P20) exhibited antagonistic effects against all five model pathogens, and the P10 strain exhibited the strongest antagonistic to five pathogens. This P10 strain was then characterized in-depth via phenotypic assessments, physiological analyses, and 16s rDNA sequencing, revealing it to be a strain of Bacillus subtilis. Application of a P10 cell suspension (1×108 CFU/mL) significantly enhanced the seed germination and seedling growth of tomato in a greenhouse setting. This P10 strain further significantly suppressed tomato Verticillium wilt with much lower disease incidence and disease index scores being observed following P10 treatment relative to untreated plants in pot-based experiments. Tomato plants that had been treated with strain P10 also enhanced defense-related enzymes, peroxidase, superoxide dismutase, and catalase activity upon V. dahliae challenge relative to plants that had not been treated with this endophytic bacterium. The results revealed that the P10 bacterial strain has potential value as a biocontrol agent for use in the prevention of tomato Verticillium wilt.


Resumo As bactérias endofíticas desempenham papel fundamental na manutenção da saúde e do crescimento das plantas. Poucos estudos até o momento, no entanto, exploraram as propriedades antagônicas e promotoras de crescimento de plantas (PGP) de endófitos de Prunus cerasifera. Para esse fim, isolamos bactérias endofíticas de amostras de tecido de P. cerasifera e usamos um ensaio de placa de cultura dupla para rastrear esses micróbios quanto à atividade antagonista contra Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum e F. moniliforme. Das 36 cepas de bactérias isoladas, quatro (cepas P1, P10, P16 e P20) exibiram efeitos antagônicos contra todos os cinco patógenos modelo, e a cepa P10 exibiu o antagonista mais forte para cinco patógenos. Essa cepa P10 foi então caracterizada em profundidade por meio de avaliações fenotípicas, análises fisiológicas e sequenciamento de rDNA 16s, revelando ser uma cepa de Bacillus subtilis. A aplicação de uma suspensão de células P10 (1 × 108 UFC / mL) aumentou significativamente a germinação das sementes e o crescimento das mudas de tomate em casa de vegetação. Essa cepa P10 suprimiu ainda mais a murcha de Verticillium do tomate com incidência de doença muito menor e pontuações de índice de doença sendo observadas após o tratamento com P10 em relação a plantas não tratadas em experimentos baseados em vasos. As plantas de tomate que foram tratadas com a cepa P10 também aumentaram as enzimas relacionadas à defesa, peroxidase, superóxido dismutase e atividade da catalase após o desafio de V. dahliae em relação às plantas que não foram tratadas com essa bactéria endofítica. Os resultados revelaram que a cepa bacteriana P10 tem valor potencial como agente de biocontrole para uso na prevenção da murcha de Verticillium em tomate.


Subject(s)
Lycopersicon esculentum , Verticillium , Prunus domestica , Plant Diseases/prevention & control , Ascomycota , Bacillus subtilis , Fusarium
2.
Braz. arch. biol. technol ; 63: e20180428, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132198

ABSTRACT

Abstract Development of transgenic Bt crops with stable and high level of Bt protein expression over generations under different environmental conditions is critical for successful deployment at field level. In the present study, progenies of transgenic cotton Coker310 event, CH12 expressing novel cry2AX1 gene were evaluated in T3 generation for stable integration, expression and resistance against cotton bollworm, Helicoverpa armigera. The cry2AX1 gene showed stable inheritance and integration in the T3 progeny plants as revealed by PCR and Southern blot hybridization. The expression of Cry2AX1 protein on 90 days after sowing (DAS) was in the range of 1.055 to 1.5 µg/g of fresh leaf tissue except one plant which showed 0.806 µg/g of fresh leaf tissue and after 30 days (i.e., on 120 DAS) three plants recorded in between 0.69 to 0.82 µg/g and other plants are in range of 0.918 to 1.058 µg/g of fresh leaf tissue. Detached leaf bit bioassay in T3 progeny on 110 DAS recorded mortality of 73.33 to 93.33 per cent against H. armigera and severe growth retardation in surviving larvae. These results indicate that the expression of chimeric cry2AX1 is stable and exhibits insecticidal activity against H. armigera in T3 progeny of CH12 event of transgenic cotton.


Subject(s)
Animals , Bacillus thuringiensis/pathogenicity , Pest Control, Biological/methods , Gossypium/genetics , Endotoxins/genetics , Moths , Plant Diseases/prevention & control , Plants, Toxic , Biological Assay , Plants, Genetically Modified
3.
Braz. j. biol ; 79(4): 742-748, Nov. 2019. tab, graf
Article in English | LILACS | ID: biblio-1001482

ABSTRACT

Abstract Citrus fruit production occupies a place of considerable importance in the economy of the world including Pakistan. Tristeza disease caused by Citrus Tristeza Virus (CTV) exists in various forms that may or may not cause symptoms in the plants. The bioactive compounds and antioxidants are naturally present in plants and provide a defense mechanism that is generally accelerated in response to a stress. The objective of the present study was to target and analyze the citrus plants that were CTV positive to observe the changes in the enzymatic and non-enzymatic antioxidants of citrus (Sweet Oranges only). It was observed that in response to CTV infection, both the non-enzymatic antioxidants (total flavonoid, ascorbic acid, phenolic acid) and enzymatic antioxidants (catalase, superoxide dismutase and peroxidase) activities showed an increasing trend overall. The profiling of antioxidants in response to a viral infection may help in the discovery of new biomarkers that can be used as a monitoring tool in disease management.


Resumo As frutas cítricas ocupam um lugar de considerável importância na economia do Paquistão, assim como o resto do mundo. A doença da tristeza causada pelo Vírus da Tristeza dos Citros (CTV) existe em várias formas que podem ou não apresentar sintomas nas plantas. Os compostos bioativos e antioxidantes estão naturalmente presentes nas plantas e fornecem um mecanismo de defesa que é geralmente acelerado em resposta a um estresse. O objetivo do presente estudo foi analisar as alterações causadas pelo CTV nos antioxidantes enzimáticos e não enzimáticos de laranjas doces. Foi observado que, em resposta ao ataque de CTV, os antioxidantes não enzimáticos como flavonoides totais, ácido ascórbico, ácido fenólico e antioxidantes enzimáticos, como as atividades de catalase, superóxido dismutase e peroxidase, geralmente mostram uma tendência crescente. O perfil de antioxidantes em resposta a um ataque viral pode ajudar na descoberta de novos biomarcadores que podem ser usados ​​como uma ferramenta de monitoramento no gerenciamento de doenças.


Subject(s)
Plant Diseases/prevention & control , Plant Diseases/virology , Closterovirus/physiology , Citrus sinensis/enzymology , Citrus sinensis/chemistry , Antioxidants/analysis , Antioxidants/classification , Ascorbic Acid/analysis , Flavonoids/analysis , Catalase/analysis , Peroxidase/analysis
4.
Braz. j. microbiol ; 49(4): 840-847, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974284

ABSTRACT

ABSTRACT Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46 µmol mL-1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02 µmol mL-1, respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease.


Subject(s)
Plant Diseases/prevention & control , Xylariales/chemistry , Paullinia/microbiology , Endophytes/chemistry , Fungicides, Industrial/pharmacology , Phylogeny , Plant Diseases/microbiology , Mass Spectrometry , Xylariales/isolation & purification , Xylariales/genetics , Xylariales/metabolism , Molecular Structure , Colletotrichum/drug effects , Colletotrichum/physiology , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/metabolism , Fungicides, Industrial/isolation & purification , Fungicides, Industrial/chemistry
5.
Braz. j. biol ; 78(3): 429-435, Aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-951570

ABSTRACT

Abstract This study reports the first assessment of endophytic fungi isolated from strawberry leaves and selection of isolates for the control of Duponchelia fovealis, a new pest of strawberries. A total of 400 strawberry leaves of the cultivar 'Albion' were collected in four commercial farms. Leaves were disinfected, cut in fragments, and placed on Petri dishes containing potato dextrose agar media with tetracycline and incubated for 30 days. Following this time, 517 fungal colonies were isolated, and thirteen genera were identified: Cladosporium, Aspergillus, Nigrospora, Fusarium, Trichoderma, Chaetomium, Alternaria, Paecilomyces, Penicillium, Ulocladium, Bipolaris, Diaporthe, and Phoma. Eight isolates belonging to the genera Aspergillus, Diaporthe, Paecilomyces, and Cladosporium were selected for pathogenicity bioassays against third instar larvae of D. fovealis. Isolates of Paecilomyces induced the highest mortality rates.


Resumo Este trabalho apresenta a primeira contribuição no isolamento de fungos endofíticos de folhas de morangueiro e na seleção de isolados para controle de Duponchelia fovealis, uma nova praga do morangueiro. Foram coletadas 400 folhas da cultivar 'Albion' em quatro lavouras comerciais de morangueiro. As folhas foram desinfetadas, cortadas em fragmentos e depositadas em placas de Petri contendo Ágar Batata Dextrose como meio, em conjunto com tetraciclina e incubados durante 30 dias. Um total de 517 colônias fúngicas e treze gêneros foram isolados: Cladosporium, Aspergillus, Nigrospora, Fusarium, Trichoderma, Chaetomium, Alternaria, Paecilomyces, Penicillium, Ulocladium, Bipolaris, Diaporthe e Phoma. Oito isolados pertencentes aos gêneros Aspergillus, Diaporthe, Paecilomyces e Cladosporium foram selecionados para os bioensaios de virulência contra larvas de 3º instar de D. fovealis. Isolados de Paecilomyces causaram as maiores taxas de mortalidade.


Subject(s)
Animals , Plant Diseases/prevention & control , Paecilomyces/pathogenicity , Pest Control, Biological/methods , Lepidoptera/microbiology , Plant Diseases/parasitology , Paecilomyces/isolation & purification , Paecilomyces/physiology , Plant Leaves/parasitology , Fragaria/parasitology , Larva/growth & development , Larva/microbiology , Lepidoptera/growth & development
6.
Braz. j. microbiol ; 49(1): 54-59, Jan.-Mar. 2018. tab
Article in English | LILACS | ID: biblio-889195

ABSTRACT

ABSTRACT Plant Growth Promoting Rhizobacteria (PGPR) have different mechanisms of action in the development of plants, such as growth promotion, production of phytohormones and antibiotic substances and changes in root exudates. These help to control plant diseases. In order to evaluate the potential of microorganisms in the control of Meloidogyne javanica and Ditylenchus spp., five rhizobacteria isolated from rhizosphere of garlic cultivated in the Curitibanos (SC) region were tested. Hatching chambers were set on Petri dishes, in which were added 10 mL of bacterial suspension and 1 mL of M. javanica eggs suspension, at the rate of 4500, on the filter paper of each chamber. The same procedure was performed with 300 juvenile Ditylenchus spp. The experimental design was completely randomized, with four replications. The evaluations were performed every 72 h for nine days. The antagonized population of nematodes was determined in Peters counting chamber, determining the percentage hatching (for M. javanica) and motility (for Ditylenchus spp). Isolates CBSAL02 and CBSAL05 significantly reduced the hatching of M. javanica eggs (74% and 54.77%, respectively) and the motility of Ditylenchus spp. (55.19% and 53.53%, respectively) in vitro. Isolates were identified as belonging to the genera Pseudomonas (CBSAL05) and Bacillus (CBSAL02).


Subject(s)
Animals , Bacillus/physiology , Plant Diseases/prevention & control , Pseudomonas/physiology , Tylenchoidea/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Pest Control, Biological , Plant Diseases/parasitology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Tylenchoidea/physiology
7.
Braz. j. microbiol ; 49(supl.1): 9-14, 2018. tab, graf
Article in English | LILACS | ID: biblio-974335

ABSTRACT

Abstract Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1 tiller−1), and highest plant height (85.8 cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320 m−2), straw yield (8.6 Mg ha−1), and grain yield (4.8 Mg ha−1) were achieved when seeds were inoculated with Bacillus sp. strain 6 + Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6 + Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity.


Subject(s)
Animals , Aphids/growth & development , Pseudomonas/physiology , Bacillus/physiology , Triticum/growth & development , Plant Diseases/parasitology , Plant Diseases/prevention & control , Soil Microbiology , Triticum/microbiology , Triticum/parasitology , Pest Control, Biological , Population Dynamics
8.
Braz. j. microbiol ; 49(supl.1): 236-245, 2018. graf
Article in English | LILACS | ID: biblio-974331

ABSTRACT

ABSTRACT Salinity and alkalinity are major abiotic stresses that limit growth and development of poplar. We investigated biocontrol potential of saline- and alkaline-tolerant mutants of Trichoderma asperellum to mediate the effects of salinity or alkalinity stresses on Populus davidiana × P. alba var. pyramidalis (PdPap poplar) seedlings. A T-DNA insertion mutant library of T. asperellum was constructed using an Agrobacterium tumefaciens mediated transformation system; this process yielded sixty five positive transformants (T1-T65). The salinity tolerant mutant, T59, grew in Potato Dextrose Agar (PDA) containing up to 10% (1709.40 mM) NaCl. Under NaCl-rich conditions, T59 was most effective in inhibiting Alternaria alternata (52.00%). The alkalinity tolerant mutants, T3 and T5, grew in PDA containing up to 0.4% (47.62 mM) NaHCO3. The ability of the T3 and T5 mutants to inhibit Fusarium oxysporum declined as NaHCO3 concentrations increased. NaHCO3 tolerance of the PdPap seedlings improved following treatment with the spores of the WT, T3, and T5 strains. The salinity tolerant mutant (T59) and two alkalinity tolerant mutants (T3 and T5) generated in this study can be applied to decrease the incidence of pathogenic fungi infection under saline or alkaline stress.


Subject(s)
Plant Diseases/microbiology , Trichoderma/physiology , Sodium Chloride/metabolism , Populus/growth & development , Alkalies/metabolism , Alternaria/physiology , Antibiosis , Plant Diseases/prevention & control , Stress, Physiological , Trichoderma/genetics , Populus/microbiology , Seedlings/growth & development , Seedlings/microbiology
9.
Braz. j. microbiol ; 48(4): 706-714, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889164

ABSTRACT

ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu)/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.


Subject(s)
Plant Diseases/microbiology , Lycopersicon esculentum/microbiology , Enterobacter/isolation & purification , Enterobacter/physiology , Antibiosis , Plant Diseases/prevention & control , Botrytis/growth & development , Botrytis/physiology , Enterobacter/classification , Enterobacter/genetics , Alternaria/growth & development , Alternaria/physiology , Fruit/microbiology , Fusarium/growth & development , Fusarium/physiology
10.
An. acad. bras. ciênc ; 89(2): 1155-1166, Apr.-June 2017. tab
Article in English | LILACS | ID: biblio-886710

ABSTRACT

ABSTRACT Melon is one of the most important vegetable crops in the world. With short cycle in a system of phased planting, phytosanitary control is compromised, and a great volume of agricultural chemicals is used to control vegetable leafminer. Genetic control is an ideal alternative to avoid the damage caused by this insect. Thus, the aim of this study was to evaluate Cucumis accessions in regard to resistance to leafminer and correlate the variables analyzed. Fifty-four accessions and four commercial hybrids of melon were tested. The study was divided into two experiments: with and with no choice. The following characteristics were evaluated: with choice, in field - subjective score based on the infestation and the number of mines per leaf; and with no choice, in cage - number of mines per leaf, chlorophyll content, and leaf colorimetry. The results showed variability among the accessions and some genotypes showed favorable results for resistance in both experiments. There was correlation between the two variables in the experiment in the field. The accessions CNPH 11-282, CNPH 06-1047, and CNPH 11-1077 are the most recommended for future breeding programs with aim on introgression of resistance to vegetable leafminer in melon.


Subject(s)
Animals , Phenotype , Pest Control, Biological/methods , Plant Leaves/genetics , Cucumis melo/genetics , Diptera , Genotype , Plant Diseases/prevention & control , Reference Values , Genetic Variation , Chlorophyll/analysis , Genes, Plant , Colorimetry/methods , Statistics, Nonparametric , Plant Leaves/chemistry , Larva
11.
Braz. j. microbiol ; 47(4): 1014-1019, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828192

ABSTRACT

Abstract Apple is one of the most important temperate fruit to Brazil economy, and the use of synthetic chemicals has been the main method for reducing postharvest diseases, such as the blue mold, caused by Penicillium expansum. This work intends to evaluate the practical utilization of chitosan for blue mold control. For this purpose, fruits were treated in a preventive and curative way, immersing the fruits in chitosan solution (5 or 10 mg mL-1), or adding a single drop of this solution (10 mg mL-1) directly into the injuries. The eradicative effect of the polysaccharide was also evaluated in vitro and in vivo. Chitosan did not show a curative effect against the blue mold, and its eradicative effect was only evidenced on the higher concentration (10 mg mL-1). On the other hand, preventively, without the addition of adjuvants, chitosan reduced blue mold incidence in fruits by 24% and 93%, through the immersion or the single drop methods, respectively. Thus, it was found that, for long scale utilization, some improvements in the physico-chemical properties of the chitosan are needed, since it was only capable to prevent the infection by P. expansum when directly added on the fruit injury.


Subject(s)
Penicillium/drug effects , Plant Diseases/microbiology , Plant Diseases/therapy , Malus/microbiology , Chitosan/pharmacology , Antifungal Agents/pharmacology , Plant Diseases/prevention & control , Time Factors , Chitosan/chemistry , Fruit/microbiology , Antifungal Agents/chemistry
12.
Braz. j. microbiol ; 47(1): 10-17, Jan.-Mar. 2016. graf
Article in English | LILACS | ID: lil-775109

ABSTRACT

Abstract The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2%) and Trichoderma atroviride (40.3%) were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69 U/mL) and β-1,3-glucanase activity (61.9 U/mL). Th-m1 also showed high competitive saprophytic ability (CSA) among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%).


Subject(s)
Antibiosis/drug effects , Basidiomycota/growth & development , Mutagenesis , Mutagens/metabolism , Plant Diseases/prevention & control , Trichoderma/drug effects , Trichoderma/physiology , Cicer/microbiology , Hydrolases/analysis , Mutation , Plant Diseases/microbiology , Trichoderma/enzymology , Trichoderma/growth & development
14.
Braz. j. microbiol ; 46(4): 1093-1101, Oct.-Dec. 2015. graf
Article in English | LILACS | ID: lil-769640

ABSTRACT

Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen.


Subject(s)
Antibiosis/microbiology , Antibiosis/physiology , Antibiosis/prevention & control , Ascomycota/microbiology , Ascomycota/physiology , Ascomycota/prevention & control , Mexico/microbiology , Mexico/physiology , Mexico/prevention & control , Plant Diseases/microbiology , Plant Diseases/physiology , Plant Diseases/prevention & control , Sorghum/microbiology , Sorghum/physiology , Sorghum/prevention & control , Trichoderma/microbiology , Trichoderma/physiology , Trichoderma/prevention & control , Zea mays/microbiology , Zea mays/physiology , Zea mays/prevention & control
15.
Braz. j. microbiol ; 46(4): 1077-1085, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769659

ABSTRACT

Abstract The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Isaria fumosorosea were tested for their efficacy in managing the exotic spiraling whitefly Aleurodicus dispersus (Hemiptera, Aleyrodidae) on cassava (Manihot esculenta) during 2 seasons (2011-2012 and 2012-2013). The fungi I. fumosorosea and L. lecanii exhibited promising levels of control (> 70% mortality of the A. dispersus population). The percent mortality increased over time in both seasons. Application of I. fumosorosea was highly pathogenic to A. dispersus in both seasons compared to the other entomopathogenic fungi. Analysis of the percent mortality in both seasons revealed differences in efficacy between 3 and 15 days after treatment. The season also influenced the effects of the fungi on the A. dispersus population. Thus, entomopathogenic fungi have the potential to manage A. dispersus infestation of cassava.


Subject(s)
Animals/microbiology , Animals/parasitology , Animals/physiology , Animals/prevention & control , Hemiptera/microbiology , Hemiptera/parasitology , Hemiptera/physiology , Hemiptera/prevention & control , Hypocreales/microbiology , Hypocreales/parasitology , Hypocreales/physiology , Hypocreales/prevention & control , Manihot/microbiology , Manihot/parasitology , Manihot/physiology , Manihot/prevention & control , Pest Control, Biological/microbiology , Pest Control, Biological/parasitology , Pest Control, Biological/physiology , Pest Control, Biological/prevention & control , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/physiology , Plant Diseases/prevention & control
16.
Rev. argent. microbiol ; 47(1): 62-71, Mar. 2015. tab
Article in English | LILACS | ID: lil-757142

ABSTRACT

The aims of this study were to select microbial isolates from phyllosphere of maize and to examine their antagonistic activity against Exserohilum turcicum. Selection was performed through the ability of isolates to compete with the pathogen using an index of dominance and to affect growth parameters of E. turcicum. Most of the epiphytic populations obtained for the screening were bacteria. These isolates were found in the order of 6 log CFU/g of leaf fresh weight. According to similar morphological characteristics and staining, 44 out of 111 isolates obtained were selected for testing antagonistic effects. At water potential, ψ, −1.38 MPa and −4.19 MPa, three Bacillus isolates showed dominance at a distance (5/0) and a significant reduction of growth rate of the pathogen. Three Bacillus isolates only decreased the growth rate of E. turcicum at −1.38 MPa. At −4.19 MPa the growth rate decreased with three isolates of Pantoea and three Bacillus. In this study a negative and significant correlation was observed between the growth rate of E. turcicum and the dominance index in the interaction of the pathogen with some bacteria. These results show that with decreasing growth rate of the pathogen the dominance index of the interaction increases. Eleven potential biocontrol agents against E. turcicum were selected.


El objetivo de este estudio fue seleccionar aislamientos microbianos de la filósfera de maíz y examinar su actividad antagonista contra Exserohilum turcicum. La selección se realizó a través de la capacidad de los aislamientos de competir con el patógeno usando un índice de dominancia y también la capacidad de afectar los parámetros de crecimiento de E. turcicum. La mayoría de las poblaciones epifíticas aisladas para la selección fueron bacterias. Estos aislamientos se encontraron en el orden de 6 log de UFC por gramo de peso fresco de hoja de maíz. En base a características morfológicas y tintóreas similares, se seleccionaron 44 de 111 aislamientos obtenidos para evaluar su capacidad antagónica. A los potenciales agua, ψ, −1,38 MPa y −4,19 MPa, tres aislados del género Bacillus mostraron dominancia a distancia (5/0) y una reducción significativa de la velocidad de crecimiento del patógeno. Tres aislamientos de Bacillus disminuyeron la velocidad de crecimiento de E. turcicum a −1,38 MPa. A −4,19 MPa la velocidad de crecimiento disminuyó con tres aislamientos de Pantoea y tres de Bacillus. En este estudio se observó una correlación negativa y significante entre la velocidad de crecimiento de E. turcicum y el índice de dominancia cuando el patógeno interactuó con algunas bacterias. Esto estaría indicando que cuando disminuye la velocidad de crecimiento del patógeno se incrementa el índice de dominancia de la interacción. Se seleccionaron once posibles agentes de biocontrol contra E. turcicum.


Subject(s)
Ascomycota , Bacteria , Biological Control Agents , Plant Diseases/prevention & control , Zea mays/microbiology
17.
Indian J Exp Biol ; 2014 Nov; 52(11): 1147-1151
Article in English | IMSEAR | ID: sea-153805

ABSTRACT

The study was undertaken with the aim of exploring novel and beneficial agro activities of rare actinomycetes like Microbispora sp. V2. The antagonistic activity of Microbispora sp. V2 was evaluated as a biocontrol agents against Sclerotium rolfsii, a soil-borne fungal plant pathogen. The methodology performed for evaluation of biocontrol agent was in vitro evaluation assay which comprised of three tests viz., cellophane overlay technique, seed germination test and Thiram (fungicide) tolerance of Microbispora sp. V2. The isolate was found to inhibit the fungal pathogen Sclerotium rolfsii to 91.43% in cellophane assay. In seed germination assay, Microbispora sp. V2 treated seeds resulted in 25.75% increased germination efficiency, as compared to seeds infected by Sclerotium rolfsii. The isolate Microbispora sp. V2 could tolerate 1000 µg mL-1 of Thiram (fungicide). The in vitro assay studies proved that Microbispora sp. V2 can be used as antifungal antagonist and thus posses’ great potential as biocontrol agent against southern blight caused by Sclerotium rolfsii in Zea mays L (Baby corn) which causes large economical losses.


Subject(s)
Actinomycetales/drug effects , Actinomycetales/physiology , Basidiomycota , Biomass , Drug Resistance, Bacterial , Fermentation , Fungicides, Industrial/pharmacology , Germination , In Vitro Techniques , Pest Control, Biological/methods , Phenazines/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Seeds/microbiology , Seeds/physiology , Thiram/pharmacology , Zea mays/microbiology
18.
Rev. biol. trop ; 62(3): 900-907, jul.-sep. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-753660

ABSTRACT

Cacao (Theobroma cacao) is an important cash crop in tropical climates such as that of Latin America. Over the past several decades, the infection of cultivated cacao by Moniliophthora roreri, known commonly as “monilia”, has significantly hindered cacao production in Latin America. Studies have proposed the use of Trichoderma sp. Fungi in biocontrol treatments to prevent and reduce monilia infection, yet tests of Trichoderma-containing spray treatments on cacao agroforests have produced mixed results. Researchers and agricultural workers have suggested that addition of soil, fly ash, or other carbon sources to a Trichoderma spray may improve its efficacy in fighting monilia. To test these suggestions, we designed a series of spray mixtures including Trichoderma cultures, soil, and all necessary controls. We applied the spray mixtures to 80 cacao trees (20 trees for each of four resistant-selected clones to monilia) at the FINMAC organic cacao plantation in Pueblo Nuevo de Guacimo, Limón Province, in northeastern Costa Rica in March-April 2013. Five treatments were applied (control, water, water plus sterilized soil, water plus Trichoderma, and water plus sterilized soil plus Trichoderma). Each treatment was applied to four trees of each clone. We monitored the incidence of moniliainfection under each spray treatment over the course of 35d. We found that spraying entire cacao trees two times with a mixture containing Trichoderma and sterilized soil significantly reduced the incidence of monilia infection by 11% (p<0.05) in only 35d, ascompared to the control. This reduction in loss of cacao pods translates into an increase of plantation mean productivity of 1 500kg dried beans/ha by 198kg/ha up to 1 698kg/ha or by a total increase over the whole 110ha plantation by 21 780kg. We propose that using such an antifungal spray over the whole course of a crop cycle (120 days) would decrease infection incidence even more. Application of this fungal control measure has the potential of revitalizing the production of cacao in the region. Rev. Biol. Trop. 62 (3): 899-907. Epub 2014 September 01.


El cacao (Theobroma cacao) es un cultivo comercial importante en los climas tropicales como los de América Latina. A lo largo de las últimas décadas la infección de cacao cultivado con Moniliophthora roreri, conocida comúnmente como “monilia”, ha dificultado la producción del cacao en América Latina de manera significativa. Algunos estudios han propuesto el uso del hongo Trichoderma sp. en tratamientos de control biológico para prevenir y reducir la infección por monilia. No obstante, pruebas realizadas con tratamientos por aspersión que contenían Trichoderma en cultivos de cacao agroforestales produjeron resultados diversos. Investigadores y trabajadores agrícolas han sugerido que la adición de tierra, cenizas volantes u otras fuentes de carbón a la aspersión de Trichoderma podría mejorar su eficacia en la lucha contra la monilia. Para probar la validez de estas sugerencias, diseñamos una serie de mezclas para la aspersión que incluían cultivos de Trichoderma, tierra y todos los testigos necesarios. Aplicamos aspersiones a 80 árboles de cacao (20 árboles para cada uno de cuatro clones seleccionados anteriormente por su resistencia a la monilia) en la finca de cacao orgánico FINMAC en Pueblo Nuevo de Guácimo, provincia de Limón, noreste de Costa Rica durante marzo y abril de 2013. Se aplicaron cinco tratamientos (testigo, agua, agua con tierra esterilizada, agua con Trichoderma, y agua con tierra esterilizada y Trichoderma). Se aplicó cada tratamiento a cuatro árboles de cada clon. Medimos la tasa de incidencia de infección por monilia bajo cada tratamiento por aspersión durante 35d. La aplicación de dos aspersiones a los árboles completos con una mezcla de Trichoderma y tierra esterilizada redujo la tasa de incidencia de infección por monilia en 11% (p<0.05) en solo 35d, en comparación con el tratamiento testigo. Esta reducción en la pérdida de frutos de cacao representa un aumento de 198kg/ha de semillas secas sobre la producción media de 1 500kg/ha, o un aumento total de 21 780kg en toda la plantación de 110ha. Proponemos que el uso de tal aspersión fungicida a lo largo de todo el ciclo de cultivo (120d) produciría una disminución aún mayor de la tasa de incidencia de infección. La aplicación de este método de control fungicida tiene el potencial de revitalizar la producción de cacao en la región.


Subject(s)
Agaricales , Cacao/microbiology , Pest Control, Biological/methods , Plant Diseases/prevention & control , Trichoderma , Agaricales/growth & development , Costa Rica , Plant Diseases/microbiology
19.
Article in English | IMSEAR | ID: sea-163094

ABSTRACT

Aims: This study was focused on using Lactic Acid Bacteria (LAB) isolated from fresh vegetables which has been molecularly identified for in vitro control of some tomato pathogens. Study Design: The inhibitory potentials of supernatant obtained from previously characterized LAB isolates or vegetable origin were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Place and Duration of Study: Biotechnology Centre of Federal University of Agriculture, Abeokuta, Ogun State, Nigeria, between January 2011 and February 2012. Methodology: The antimicrobial activities of LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The result indicates that cell free culture of LAB from fresh vegetables origin (Weissella paramesenteroides, Lactobacillus pentosus, Weissella cibaria, Pediococcus pentosaceus, Weissella kimchi and Lactobacillus plantarum) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Pediococcus pentosaceus showed the highest zone of inhibition against Xanthomonas campestries at 15 mm radius, Weissella kimchi was the least effective against Pseudomonas syringae at 3.67 mm and Erwinia caratovora at 3.50 mm radius. Conclusion: Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.


Subject(s)
Anti-Infective Agents/physiology , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Lactobacillus/physiology , Lycopersicon esculentum/microbiology , Pest Control, Biological , Plant Diseases/microbiology , Plant Diseases/prevention & control , Vegetables/microbiology
20.
Braz. j. microbiol ; 45(1): 359-364, 2014. ilus
Article in English | LILACS | ID: lil-709492

ABSTRACT

The chemical management of the black leaf streak disease in banana caused by Mycosphaerella fijiensis (Morelet) requires numerous applications of fungicides per year. However this has led to fungicide resistance in the field. The present study evaluated the activities of six fungicides against the mycelial growth by determination of EC50 values of strains collected from fields with different fungicide management programs: Rustic management (RM) without applications and Intensive management (IM) more than 25 fungicide application/year. Results showed a decreased sensitivity to all fungicides in isolates collected from IM. Means of EC50 values in mg L-1 for RM and IM were: 13.25 ± 18.24 and 51.58 ± 46.14 for azoxystrobin, 81.40 ± 56.50 and 1.8575 ± 2.11 for carbendazim, 1.225 ± 0.945 and 10.01 ± 8.55 for propiconazole, 220 ± 67.66 vs. 368 ± 62.76 for vinclozolin, 9.862 ± 3.24 and 54.5 ± 21.08 for fludioxonil, 49.2125 ± 34.11 and 112.25 ± 51.20 for mancozeb. A molecular analysis for β-tubulin revealed a mutation at codon 198 in these strains having an EC50 greater than 10 mg L-1 for carbendazim. Our data indicate a consistency between fungicide resistance and intensive chemical management in banana fields, however indicative values for resistance were also found in strains collected from rustic fields, suggesting that proximity among fields may be causing a fungus interchange, where rustic fields are breeding grounds for development of resistant strains. Urgent actions are required in order to avoid fungicide resistance in Mexican populations of M. fijiensis due to fungicide management practices.


Subject(s)
Ascomycota/drug effects , Drug Resistance, Fungal , Fungicides, Industrial/pharmacology , Musa/microbiology , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/isolation & purification , Drug Utilization , Mexico , Mutation, Missense , Plant Diseases/prevention & control , Plant Diseases/therapy , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL