Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Braz. j. biol ; 82: e242596, 2022. tab, graf
Article in English | MEDLINE, LILACS, VETINDEX | ID: biblio-1278487

ABSTRACT

Abstract Hops is a new culture in Brazil. Tissue culture can be an important technique for rapid hop propagation. This paper aims to characterize responses from different genotypes under different growth regulators through the interrelationship of response variables important to hop in vitro growth. Three genotypes were cultivated in six culture media with different combinations of growth regulators, BAP (6-benzylaminopurine), IAA (3-indolacetic acid) and GA3 (gibberellic acid). The means were compared by orthogonal contrasts and the interrelationship of the response variables was performed by path analysis. American genotypes showed favorable root development under the BAP + IAA combination, while the use of IAA improved shoot development. The origin of genotypes was important for defining the best protocol for in vitro cultivation. The path coefficient showed that the variable number of shoots has stronger direct effect on the number of nodal segments. Additionally, in tissue culture assays, the use of a covariable and proper error distribution significantly increased experimental accuracy.


Resumo O lúpulo é uma nova cultura no Brasil. A cultura de tecidos pode ser uma técnica importante para a propagação rápida do lúpulo. Este artigo tem como objetivo caracterizar respostas de diferentes genótipos sob diferentes reguladores de crescimento através da inter-relação de variáveis ​​de resposta importantes para o crescimento in vitro. Três genótipos foram cultivados em seis meios de cultura com diferentes combinações de reguladores de crescimento, BAP (6-benzilaminopurina), AIA (ácido 3-indolacético) e GA3 (ácido giberélico). As médias foram comparadas por contrastes ortogonais e a inter-relação das variáveis ​​de resposta foi realizada por análise de trilha. Os genótipos americanos apresentaram desenvolvimento radicular favorável sob a combinação BAP + AIA, enquanto o uso do AIA melhorou o desenvolvimento da parte aérea. A origem dos genótipos foi importante para definir o melhor protocolo para o cultivo in vitro. O coeficiente de trilha mostrou que a variável número de brotos tem um efeito direto mais forte no número de segmentos nodais. Adicionalmente, em experimentos com cultura de tecidos, o uso de uma covariável e distribuição de erro adequada aumentou significativamente a precisão experimental.


Subject(s)
Plant Growth Regulators , Brazil , Plant Shoots/genetics , Culture Media , Genotype
2.
Electron. j. biotechnol ; 51: 17-27, May. 2021. tab, ilus, graf
Article in English | LILACS | ID: biblio-1343317

ABSTRACT

BACKGROUND: In order to produce an effective callus in Echinacea purpurea L.; determination of the explant type and growth regulators that best respond to callus induction and the optimization of the culture conditions to increase the amount of caffeic acid derivatives (CADs) in the obtained callus. CADs contents of callus cultures of E. purpurea were evaluated by establishing an effective callus induction system in vitro. RESULTS: Various medium containing different growth regulators were tested using leaf, petiole, cotyledon and root as the explants. The best callus development was achieved in MS medium with 1.0 mg l 1 2,4- D + 2.0 mg l 1 BAP in leaf, 1.0 mg l 1 NAA + 0.5 mg l 1 TDZ in petiole, 2.0 mg l 1 NAA + 1.0 mg l 1 TDZ in cotyledon and 0.5 mg l 1 NAA + 0.5 mg l 1 BAP in roots. Upon optimisation of callus growth, each type of explant was cultured for 4, 6, 8 and 10 weeks in medium for the analyses of caftaric acid, chlorogenic acid, caffeic acid and chicoric acid contents. The highest amounts of caftaric acid (4.11 mg/g) and chicoric acid (57.89 mg/g) were found from petiole explants and chlorogenic acid (8.83 mg/g) from root explants at the end of the 10-week culture time. CONCLUSIONS: As a result of the present study, the production of caffeic acid derivatives was performed by providing the optimization of E. purpurea L. callus cultures. Effective and repeatable protocols established in this study may offer help for further studies investigating the production of caffeic acid derivatives in vitro.


Subject(s)
Caffeic Acids , Echinacea , Plant Growth Regulators , Time Factors , In Vitro Techniques , Cells, Cultured , Plant Roots/growth & development , Plant Leaves/growth & development , Cotyledon/growth & development , Culture Techniques
3.
Electron. j. biotechnol ; 50: 68-76, Mar. 2021. ilus, tab, graf
Article in English | LILACS | ID: biblio-1292417

ABSTRACT

BACKGROUND: Jasmonic acid (JA) is a signal transducer molecule that plays an important role in plant development and stress response; it can also efficiently stimulate secondary metabolism in plant cells. RESULTS: RNA-Seq technology was applied to identify differentially expressed genes and study the time course of gene expression in Rhazya stricta in response to JA. Of more than 288 million total reads, approximately 27% were mapped to genes in the reference genome. Genes involved during the secondary metabolite pathways were up- or downregulated when treated with JA in R. stricta. Functional annotation and pathway analysis of all up- and downregulated genes identified many biological processes and molecular functions. Jasmonic acid biosynthetic, cell wall organization, and chlorophyll metabolic processes were upregulated at days 2, 6, and 12, respectively. Similarly, the molecular functions of calcium-transporting ATPase activity, ADP binding, and protein kinase activity were also upregulated at days 2, 6, and 12, respectively. Time-dependent transcriptional gene expression analysis showed that JA can induce signaling in the phenylpropanoid and aromatic acid pathways. These pathways are responsible for the production of secondary metabolites, which are essential for the development and environmental defense mechanism of R. stricta during stress conditions. CONCLUSIONS: Our results suggested that genes involved in flavonoid biosynthesis and aromatic acid synthesis pathways were upregulated during JA stress. However, monoterpenoid indole alkaloid (MIA) was unaffected by JA treatment. Hence, we can postulate that JA plays an important role in R. stricta during plant development and environmental stress conditions.


Subject(s)
Cyclopentanes/metabolism , Apocynaceae/genetics , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Stress, Physiological , Flavonoids/biosynthesis , Base Sequence , Gene Expression , Environment , Transcriptome
4.
Braz. j. biol ; 81(1): 18-26, Feb. 2021. tab, graf
Article in English | LILACS | ID: biblio-1153311

ABSTRACT

Abstract Plant growth regulators and improved planting density are the innovative techniques in the establishment of more productive cotton crop. A field study was planned to assess the role of growth regulators in the resource utilization efficiency of cotton cultivars under different row spacing at Agronomic Research Area, Bahauddin Zakariya University Multan and Usmania Agricultural Farm, Shujaabad during Kharif 2012. The study was comprised of cotton cultivars viz. CIM-573 and CIM-598, cultivated under conventional (75 cm), medium (50 cm) and improved ultra-narrow row spacing (25 cm) and foliar spray of growth regulators viz. moringa leaf extract (MLE) and mepiquat chloride (MC), either alone or in combination, distilled water as a control. The application of MLE alone and in combination (MLE + MC) showed the promoting effect on crop growth rate, net assimilation rate, leaf area index, leaf area duration, sympodial branches and number of bolls leading to higher seed cotton yield of both cotton cultivars grown under conventional row spacing. While application of MC averts the plant growth without considerably improving the productivity. MLE being rich source of growth promoting hormone and nutrients showed its potential to a far greater extent under conventional row spacing in efficient utilization of available resources compared to MC and distilled water.


Resumo Reguladores de crescimento de plantas e melhor densidade de plantio são técnicas inovadoras no estabelecimento de culturas mais produtivas de algodão. Um estudo de campo foi planejado com o objetivo de avaliar o papel dos reguladores de crescimento na eficiência de uso de recursos de cultivares de algodão sob diferentes espaçamentos na Área de Pesquisa Agronômica, da Universidade Multil de Bahauddin Zakariya, e na Fazenda Agrícola da Usmania, Shujabad, durante o Kharif 2012. O estudo foi composto de cultivares de algodão CIM-573 e CIM-598, cultivados em espaçamento de linhas convencional (75 cm), médio (50 cm) e superestreito (25 cm) e de pulverização foliar de reguladores de crescimento, a saber, extrato de folhas de moringa (MLE) e cloreto de mepiquat (MC), isoladamente ou em combinação, e água destilada como controle. A aplicação de MLE isoladamente e em combinação (MLE + MC) mostrou efeito promotor na taxa de crescimento da cultura, taxa de assimilação líquida, índice de área foliar, duração de área foliar, ramos simpodiais e número de cápsulas levando à maior produção de algodão nas cultivares com espaçamento de linha convencional. Em contrapartida, a aplicação de MC evitou o crescimento da planta sem melhorar consideravelmente a produtividade. O MLE, por ser uma rica fonte de hormônio promotor de crescimento e nutrientes, mostrou seu potencial em uma extensão muito maior sob o espaçamento convencional entre as linhas no uso eficiente dos recursos disponíveis em comparação com o MC e a água destilada.


Subject(s)
Humans , Plant Growth Regulators/pharmacology , Agriculture , Water
5.
Article in Chinese | WPRIM | ID: wpr-888102

ABSTRACT

Phytohormones play an important role at all stages of plant growth, influencing plant growth and development and regulating plant secondary metabolism, such as the synthesis of flavone, flavonol, anthocyanin, and other flavonoids. Flavonoids, a group of important secondary metabolites ubiquitous in plants, have antioxidative, anti-microbial, and anti-inflammatory activities and thus have a wide range of potential applications in Chinese medicine and food nutrition. With the development of biotechnology, phytohormones' regulation on flavonoids has become a research focus in recent years. This study reviewed the research progress on the mechanism of common phytohormones, such as abscisic acid, gibberellin, methyl jasmonate, and salicylic acid, in regulating flavonoid metabolism, and discussed the molecular mechanism of the synthesis and accumulation of flavonoids, aiming at clarifying the key role of phytohormones in modulating flavonoid metabolism. The result is of guiding significance for improving the content of flavonoids in plants through rational use of phytohormones and of reference value for exploring the mechanism of hormones in regulating flavonoid metabolism.


Subject(s)
Abscisic Acid , Flavonoids , Gene Expression Regulation, Plant , Gibberellins , Plant Development , Plant Growth Regulators
6.
Article in Chinese | WPRIM | ID: wpr-879108

ABSTRACT

Nitrogen fertilizers play an important role in the regulation of plant stress resistance. Impacts of nitrogen fertilizers on abiotic stress resistance and biotic stress resistance of Chinese materia medica(CMM) were summarized in this study. Adequate nitrogen application improves the abiotic stress resistance and weed resistance of CMM, however adverse effect appears when excess nitrogen is used. Generally, pest resistance decreases along with nitrogen deposition, while effects of nitrogen application on disease resistance vary with different diseases. Mechanisms underlying the impact of nitrogen fertilizers on plant stress resistance were also elucidated in this study from three aspects including physical defense mechanisms, biochemistry mechanisms and molecular defense mechanisms. Nitrogen availability modulates physical barrier of CMM like plant growth, formation of lignin and wax cuticle, and density of stomata. Growth of CMM promoted by nitrogen fertilizer may cause some decrease in pest resistance of CMM due to an increase in hiding places for pest along with plant growth. High ambient humidity caused by excessive plant growth facilitates the growth and development of CMM pathogen. Nitrogen application can also interfere with the accumulation of lignin in CMM which makes CMM more vulnerable to pest and pathogen attack. Stomatal closing delays due to nitrogen application is also a causal factor of increasing pathogen infection after nitrogen deposition. Biochemical defenses of plants are mainly achieved through nutrient elements, secondary metabolites, defense-related enzymes and proteins. Nutritional level of CMM and various antioxidant enzymes and resistance-related protein activities are elevated along with nitrogen deposition. These antioxidant enzymes can reduce the damage of reactive oxygen species content produced by plant in response to adversity and therefore enhance stress resistance of CMM. Researches showed that nitrogen application could also cause an increase in nitrogen-containing secondary metabolites content and a decrease in non-nitrogen-containing secondary metabolites content respectively. Nitrogen-mediated molecular defense mechanisms includes multiple plant hormones and nitric oxide signals. Plant hormones related to plant defense like salicylic acid, jasmonic acid and abscisic acid can be modulated by nitrogen application. Negative effect of nitrogen deposition was found on salicylic acid accumulation and the expression of related plant disease resistance genes. However, jasmonic acid level can be elevated by nitrogen. Nitric oxide signals constitute an important part of nitrogen mediated defense mechanisms. Nitric oxide signaling is related to many aspects of plant immunity. The roles of nitrogen fertilizers in CMM stress resistance are complex and may vary with different CMM varieties and environments. Further studies are urgently needed to provide a comprehensive understanding of how to improve stress resistance of CMM by using fertilizers.


Subject(s)
Abscisic Acid , China , Materia Medica , Nitrogen , Plant Growth Regulators
7.
Braz. arch. biol. technol ; 64: e21180505, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285549

ABSTRACT

HIGHLIGHTS Callogenesis was induced from watermelon anthers The auxin 2,4-D at 2.0 and 5.0 μM concentrations induced callus formation. Anthers' responses to the pre-treatment at 4 °C varied according to the watermelon genotype.


Abstract Callus induction is one of the pathways required for haploid plant regeneration through anther culture. Pollen viability, as well as the effect of growth regulators and cold pretreatment on anthers of two watermelon lines (Smile and Sugar Baby) to induce callus formation were herein evaluated. Pollen viability was estimated through the staining technique using 2% acetic carmine. Male flower buds were collected and disinfested to allow removal anthers. These anthers were placed on Murashige and Skoog medium, which was supplemented with 2,4-dichlorophenoxyacetic (2,4-D) at 0.0, 0.5, 1.0, 2.0 or 5.0 μM or with 6-benzylaminopurine at 0.0, 0.5, 1.0, 1.5, or 2.0 μM, in combination with 2.0 μM of 2,4-dichlorophenoxyacetic. Anthers were pretreated at 4 °C, for two days and then placed in vitro. Both watermelon lines provided high pollen viability rates (from 93 to 98%). The 2.0 and 5.0 μM concentrations of 2,4-D stimulated higher friable callus formation. The optimal concentration of 2,4-D was estimated at 3.78 μM and 4.17 μM, which had callus induction rates of 64% and 52%, respectively. The combination of 2.0 μM of 2,4-D and 6-benzylaminopurine did not lead to increased anther response to callus induction. The pre-treatment applied to flower buds at 4 °C enabled callus induction and the anther response to callus induction was genotype-dependent.


Subject(s)
Plant Growth Regulators , Pollen , Citrullus , Genotype
8.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 23(2, cont.): e2301, jul-dez. 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1129392

ABSTRACT

Stingless bees Tetragonisca angustula (Latreille) (Hymenoptera: Meliponinae) are pollinators of native and cultivated plants and are therefore in contact with areas contaminated by pesticides. These native bees were evaluated for changes in gene expression of esterase isoenzymes (EST) and peptides after contamination by contact with growth regulators from insecticides Gallaxy® EC 100, Natuneem and Azamax after 48, 120, 168 hours, 30 and 60 days. EST-4 presented an increase in relative activity after contamination with Gallaxy® EC 100 at 6.2 × 10-2 g a.i./mL; Natuneem at 7.5 × 10-5 g a.i./mL; and Azamax at 1.2 × 10-3 g a.i/mL after 60 days, 48 h, and 60 days, respectively. Inhibition of the relative activity of EST-4 was detected after contamination by Natuneem at 1.5 × 10-5 g a.i./mL and Azamax at 1.2 × 10-3 g a.i./mL after 48 h and 30 days, respectively. The insecticide growth regulators promoted changes in protein synthesis of T. angustula adult workers resulting in an increase or decrease in the relative intensity of bands, and the appearance of new peptides when compared with controls. Changes in protein synthesis have been identified mainly after long period of contamination, 120 and 168 h with the IGRs Gallaxy® EC 100 (at 0.78 and 1.25 g a.i./mL), Azamax (at 1.2 × 10-3 and 6 × 10-3 g a.i./mL), and Natuneem (at 7.5 × 10-5 and 3 × 10-3 g a.i./mL), and at 60 days with Natuneem (at 1.5 × 10-5 g a.i./mL).(AU)


Abelhas sem ferrão Tetragonisca angustula (Latreille) (Hymenoptera: Meliponinae) são polinizadores de plantas nativas e cultivadas e, portanto, estão em contato com áreas contaminadas por biopesticidas. Essas abelhas nativas foram avaliadas quanto a alterações na expressão gênica de isoenzimas esterases (EST) e peptídeos após contaminação por contato com reguladores de crescimento de inseticidas Gallaxy® EC 100, Natuneem e Azamax após 48, 120, 168 horas, 30 e 60 dias. A EST-4 apresentou um aumento na atividade relativa após a contaminação com Gallaxy® 100 EC em 6,2 × 10-2 g i.a./mL, Natuneem em 7,5 × 10-5 g i.a./mL e Azamax em 1,2 × 10-3 g i.a./mL após 60 dias, 48 h e 60 dias, respectivamente. A inibição da atividade relativa de EST-4 foi detectada após contaminação pelo Natuneem a 1,5 × 10-5 g i.a./mL e Azamax a 1,2 × 10-3 g i.a./mL após 48 he 30 dias, respectivamente. Os reguladores de crescimento de inseticidas promoveram alterações na síntese protéica de trabalhadores adultos de T. angustula, resultando em um aumento ou diminuição da intensidade relativa das bandas e no aparecimento de novos peptídeos em comparação com os controles. Alterações na síntese de proteínas foram identificadas principalmente após um longo período de contaminação, 120 e 168 h com o IGRs Gallaxy® EC 100 (0,78 e 1,25 g i.a./mL), Azamax (1,2 × 10-3 e 6 × 10-3 g i.a./mL) e Natuneem (7,5 × 10-5 e 3 × 10-3 g i.a./mL) e 60 dias com Natuneem (1,5 × 10-5 g i.a./mL).(AU)


Las abejas sin aguijón Tetragonisca angustula (Latreille) (Hymenoptera: Meliponinae) son polinizadores de plantas nativas y cultivadas y, por lo tanto, están en contacto con áreas contaminadas por bioplaguicidas. Estas abejas nativas fueron evaluadas para detectar cambios en la expresión génica de isoenzimas esterasa (EST) y péptidos después de la contaminación por contacto con los reguladores del crecimiento insecticidas Gallaxy® EC 100, Natuneem y Azamax después de 48, 120, 168 horas, 30 y 60 días. EST-4 mostró un aumento en la actividad relativa después de la contaminación con Gallaxy® 100 EC a 6.2 × 10-2 g i.a./mL, Natuneem a 7.5 × 10-5 g i.a./mL y Azamax a 1.2 × 10-3 g i.a./mL después de 60 días, 48 hy 60 días, respectivamente. La inhibición de la actividad relativa de EST-4 se detectó después de la contaminación por Natuneem a 1.5 × 10-5 g i.a./mL y Azamax a 1.2 × 10-3 g i.a./mL después de 48 hy 30 días. respectivamente. Los insecticidas reguladores del crecimiento promovieron cambios en la síntesis de proteínas de trabajadores adultos de T. angustula, resultando en un aumento o disminución de la intensidad relativa de las bandas y en la aparición de nuevos péptidos en relación a los controles. Los cambios en la síntesis de proteínas se identificaron principalmente después de un largo período de contaminación, 120 y 168 h con IGRs Gallaxy® EC 100 (0.78 y 1.25 g i.a./mL), Azamax (1.2 × 10-3 y 6 × 10-3 g i.a./mL) y Natuneem (7.5 × 10-5 y 3 × 10-3 g i.a./mL) y 60 días con Natuneem (1.5 × 10-5 g i.a./mL).(AU)


Subject(s)
Animals , Peptides , Plant Growth Regulators , Bees , Esterases , Insecticides
9.
Electron. j. biotechnol ; 43: 8-15, Jan. 2020. tab
Article in English | LILACS | ID: biblio-1087467

ABSTRACT

Background: Plant tissue cultures have the potential to reprogram the development of microspores from normal gametophytic to sporophytic pathway resulting in the formation of androgenic embryos. The efficiency of this process depends on the genotype, media composition and external conditions. However, this process frequently results in the regeneration of albino instead of green plants. Successful regeneration of green plants is affected by the concentration of copper sulfate (CuSO4) and silver nitrate (AgNO3) and the length of induction step. In this study, we aimed at concurrent optimization of these three factors in barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and triticale (x Triticosecale spp. Wittmack ex A. Camus 1927) using the Taguchi method. We evaluated uniform donor plants under varying experimental conditions of in vitro anther culture using the Taguchi approach, and verified the optimized conditions. Results: Optimization of the regeneration conditions resulted in an increase in the number of green regenerants compared with the control. Statistic Taguchi method for optimization of the in vitro tissue culture plant regeneration via anther cultures allowed reduction of the number of experimental designs from 27 needed if full factorial analysis is used to 9. With the increase in the number of green regenerants, the number of spontaneous doubled haploids decreased. Moreover, in barley and triticale, the number of albino regenerants was reduced. Conclusion: The statistic Taguchi approach could be successfully used for various factors (here components of induction media, time of incubation on induction media) at a one time, that may impact on cereals anther cultures to improve the regeneration efficiency


Subject(s)
Agricultural Cultivation , Edible Grain/growth & development , Models, Statistical , Pigments, Biological , Plant Growth Regulators , Pollen , Silver Nitrate , Color , Copper Sulfate , Androgens
10.
Arq. neuropsiquiatr ; 78(1): 21-27, Jan. 2020. graf
Article in English | LILACS | ID: biblio-1088987

ABSTRACT

Abstract Objective: The phytohormone abscisic acid (ABA) as a signaling molecule exists in various types of organisms from early multicellular to animal cells and tissues. It has been demonstrated that ABA has an antinociceptive effect in rodents. The present study was designed to assess the possible role of PKA and phosphorylated ERK (p-ERK) on the antinociceptive effects of intrathecal (i.t.) ABA in male Wistar rats. Methods: The animals were cannulated intrathecally and divided into different experimental groups (n=6‒7): Control (no surgery), vehicle (received ABA vehicle), ABA-treated groups (received ABA in doses of 10 or 20 µg/rat), ABA plus H.89 (PKA inhibitor)-treated group which received the inhibitor 15 min prior to the ABA injection. Tail-flick and hot-plate tests were used as acute nociceptive stimulators to assess ABA analgesic effects. p-ERK was evaluated in the dorsal portion of the spinal cord using immunoblotting. Results: Data showed that a microinjection of ABA (10 and 20 µg/rat, i.t.) significantly increased the nociceptive threshold in tail flick and hot plate tests. The application of PKA inhibitor (H.89, 100 nM/rat) significantly inhibited ABA-induced analgesic effects. Expression of p-ERK was significantly decreased in ABA-injected animals, which were not observed in the ABA+H.89-treated group. Conclusions: Overall, i.t. administration of ABA (10 µg/rat) induced analgesia and p-ERK down-expression likely by involving the PKA-dependent mechanism.


Resumo Objetivo: O ácido fito-hormônio abscísico (ABA) existe como molécula sinalizadora em vários tipos de organismos, de multicelulares a células e tecidos animais. Foi demonstrado que o ABA tem efeito antinociceptivo em roedores. O presente estudo foi desenhado para avaliar o possível papel da PKA e da ERK fosforilada (p-ERK) nos efeitos antinociceptivos do ABA intratecal (i.t.) em ratos Wistar machos. Métodos: Os animais foram canulados por via i.t. e divididos em diferentes grupos experimentais (n=6‒7): controle (sem cirurgia), veículo (veículo ABA recebido), grupos tratados com ABA (recebeu ABA em doses de 10 ou 20 µg/rato), grupo tratado com ABA mais H.89 (inibidor de PKA) que recebeu o inibidor 15 minutos antes da injeção de ABA. Os testes de movimento da cauda e placa quente foram utilizados como estimuladores nociceptivos agudos para avaliar os efeitos analgésicos da ABA. A p-ERK foi avaliada na porção dorsal da medula espinhal por imunotransferência. Resultados: A microinjeção de ABA (10 e 20 µg/rato, i.t.) aumentou significativamente o limiar nociceptivo nos testes de movimento da cauda e placa quente. A aplicação de inibidor de PKA (H.89, 100 nM/rato) inibiu significativamente os efeitos analgésicos induzidos por ABA. A expressão de p-ERK diminuiu significativamente em animais injetados com ABA que não foram observados no grupo tratado com ABA+H.89. Conclusões: No geral, a administração i.t. de ABA (10 µg/rato) induziu a analgesia e expressão negativa de p-ERK provavelmente envolvendo mecanismo dependente de PKA.


Subject(s)
Animals , Male , Plant Growth Regulators/pharmacology , Spinal Cord/metabolism , Abscisic Acid/pharmacology , Cyclic AMP-Dependent Protein Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/drug effects , Analgesics/pharmacology , Reference Values , Spinal Cord/drug effects , Time Factors , Blotting, Western , Reproducibility of Results , Rats, Wistar , Cyclic AMP-Dependent Protein Kinases/analysis , Extracellular Signal-Regulated MAP Kinases/analysis , Intracellular Signaling Peptides and Proteins/pharmacology
11.
Article in Chinese | WPRIM | ID: wpr-828378

ABSTRACT

We used exogenous GA_3 to break the seed dormancy of Thesium chinense. We used high-throughput sequencing technology was used to sequence the transcriptome of dormant seed embryos and dormancy breaking seed embryos of Th. chinense, and the data was analyzed bioinformatically and systematically. The results showed that exogenous GA_3 could effectively break the seed dormancy of Th. chinense; 73 794 up-regulated genes and 42 776 down regulated genes were obtained by transcriptome sequencing; 116 570 diffe-rential genes were annotated by GO function to GO items such as metabolism process, cell process, cell, cell component, binding and catalytic activity. A total of 133 metabolic pathways were found by Pathway analysis of 26 508 differentially expressed genes. In the process of dormancy release, DEGs were mainly enriched in translation, carbohydrate metabolism, folding, classification, degradation and amino acid metabolism. Based on the annotation results in KEGG database, 20 metabolic pathways related to dormancy release were found. Dormancy release of Th. chinense seeds is a complex biological process, including cell morphology construction, secondary metabolite synthesis, sugar metabolism and plant signal transduction, among which plant hormone signal transduction is one of the key factors to regulate dormancy release. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Dormancy , Plant Growth Regulators , Santalaceae , Seeds , Transcriptome
12.
Chinese Journal of Biotechnology ; (12): 666-677, 2020.
Article in Chinese | WPRIM | ID: wpr-827002

ABSTRACT

Transcriptional factors play important roles in plant growth, development and responses to stresses. BBX transcriptional factors are characterized with one or two B-box domains in the protein sequence. They are comprehensively involved in photomorphogenesis, flowering, shade avoidance, signal transduction of phytohormones, biotic and abiotic stress responses in plants by regulating gene transcription and interacting with other transcription factors. The classification, structure and functions of BBX of plants are reviewed in this paper.


Subject(s)
Gene Expression Regulation, Plant , Genetics , Plant Growth Regulators , Genetics , Metabolism , Plant Proteins , Genetics , Metabolism , Stress, Physiological , Genetics , Transcription Factors , Genetics , Metabolism
13.
Chinese Journal of Biotechnology ; (12): 2051-2065, 2020.
Article in Chinese | WPRIM | ID: wpr-878465

ABSTRACT

Plant trichomes are special structures that originate from epidermal outgrowths. Trichomes play an important role in plant defense against pests and diseases, and possess economic and medicinal values. Study on molecular mechanism of plant trichomes will contribute to the molecular design breeding and genetic improvement of crops. In recent years, the regulation mechanism of trichome development has been basically clarified in the model plant Arabidopsis thaliana, while great progresses are also found in other plant species. In this review, we focus on the developmental regulation of trichome formation from gene and phytohormones levels in Arabidopsis and cotton (with unicellular trichomes), as well as in tomato and Artemisia annua (with multicellular trichomes). The research progress associated with trichomes is also introduced in other typical monocotyledons and dicotyledons. Finally, the research and application of plant trichomes are prospected.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Gossypium/genetics , Lycopersicon esculentum , Plant Growth Regulators/metabolism , Trichomes/genetics
14.
NOVA publ. cient ; 17(32): 109-129, jul.-dic. 2019. tab, graf
Article in Spanish | LILACS | ID: biblio-1056793

ABSTRACT

Resumen Una hormona vegetal o fitohormona es un compuesto producido internamente por una planta, que ejerce su función en muy bajas concentraciones y cuyo principal efecto se produce a nivel celular, cambiando los patrones de crecimiento de los vegetales y permitiendo su control. Los reguladores vegetales son compuestos sintetizados químicamente u obtenidos de otros organismos y son, en general, mucho más potentes que los análogos naturales. Es necesario tener en cuenta aspectos críticos como oportunidad de aplicación, dosis, sensibilidad de la variedad, condición de la planta, etc., ya que cada planta requerirá de unas condiciones específicas de crecimiento que pueden afectarse por la concentración de ellos en el medio. Los reguladores vegetales son productos sintéticos que se han convertido en las primeras herramientas capaces de controlar el crecimiento y actividad bioquímica de las plantas por lo que su uso ha aumentado en los últimos años. Esta revisión busca hacer una recopilación bibliográfica de los primeros acontecimientos de la aplicación de los reguladores de crecimiento vegetal. Se presentan las principales características fisiológicas que pueden desarrollar la aplicación de estos sobre el crecimiento vegetal a nivel celular y su repercusión a nivel fenotípico; además, se describen las principales fitohormonas más conocidas en la aplicación biotecnológica. Entre ellas se encuentran auxinas, giberelinas, citoquininas, ácido abscísico, ácido salicílico, poliaminas, jasmonatos y derivados, brasinoesteroides, etileno y estrigolactonas. Se detallan las principales funciones a nivel del metabolismo vegetal y sus posibles interacciones intra e intercelular.


Abstract A vegetal hormone or phytohormone is a compound produced inside by a plant, that work in low concentrations and whose mainly effect occurs at the cellular level, changing the patterns of grow in vegetal organism and allow their control. The plant grows regulators are synthetic chemical compounds that can be obtained by the organism different to the plants and are more stronger that natural analogues, is necessary have in consideration different aspects like application opportunity, concentration, sensibility, plant condition, it's because every plant requires specific conditions of grow that can be affected by phytohormonal concentration in the soil or medium. The vegetal regulators are synthetic products that it has been converted in the mainly tool available to control the growing and biochemical activity of the plant and for that reason their use are increased in the last years. This review makes a bibliography compilation of the first events in the beginning of vegetal plant regulators application and presents the mainly physiologic characteristics that can be developed by application of vegetal hormones and their action in cellular and phenotypic response, furthermore we explain some of the mechanisms of action of the mainly ten phytohormones more knowledge in the biotechnological application: auxins, gibberellins, cytokinins, abscisic acid, salicylic acid, polyamines, jasmonates and derived compounds, brassinosteroids, ethylene, and strigolactones. We describe their mainly functions to vegetal metabolism and their possible interactions intracellular and extracellular.


Subject(s)
Plant Growth Regulators , Biochemistry , Agricultural Cultivation , Plant Shoots , Plant Development , Growth
15.
Biosci. j. (Online) ; 35(6): 1674-1680, nov./dec. 2019. tab
Article in English | LILACS | ID: biblio-1049089

ABSTRACT

Empowerment of wheat genotypes by application of growth regulators, compatible solutes and plant extracts under water restriction is an important strategy for getting sustainable yield. This study aimed to evaluate the effects of drought stress on the growth and yield of wheat genotypes and also monitor and compare the role of ABA, SA as well as moringa and mulbery leaf water extracts in improving drought tolerance of wheat genotypes. The work was performed at the research area of the Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan. Three wheat cultivars Aas-2011, Faisalabad- 2008 and Triple dwarf-1 were subjected to drought stress (skipping the irrigation at grain filling stage). The wheat genotypes were subjected to treatments viz., T1 i.e. All normal irrigation without application of abscisic acid (ABA), salicylic acid (SA), moringa (MLE) and mulberry leaf water extract (MBLE), T2 i.e. skipping the irrigation at grain filling stage and application of 2µM ABA, T3 i.e. skipping the irrigation at grain filling stage and application of 10 m mol SA, T4 i.e. skipping the irrigation at grain filling stage and application of 15% MLE and T5 i.e. skipping the irrigation at grain filling stage and application of 10% MBLE. The experiment was laid out in Randomized Complete Block Design with factorial arrangement and repeated three times. From this study it is concluded that Aas-2011 shown best result under drought condition by applying growth regulators and plant water extracts.


O fortalecimento de genótipos de trigo pela aplicação de reguladores de crescimento, solutos compatíveis e extratos vegetais sob restrição hídrica é uma importante estratégia para obtenção de produção sustentável. Trilha de campo foi realizada na área de pesquisa da Faculdade de Ciências Agrárias, Universidade de Ghazi, Dera Ghazi Khan, Paquistão. Três cultivares de trigo Aas-2011, Faisalabad-2008 e Triple anão-1 foram submetidas a estresse hídrico (pulando a irrigação no estágio de enchimento de grãos). Os genótipos de trigo foram submetidos a tratamentos, T1, ou seja, irrigação normal sem aplicação de ácido abscísico (ABA), ácido salicílico (SA), moringa (MLE) e extrato de água de amoreira (MBLE), T2¬, pular a irrigação em estágio de enchimento de grãos e aplicação de ABA 2µM, T3 ou seja, ignorando a irrigação no estágio de enchimento de grãos e aplicação de 10 m mol SA, T4 ou seja, ignorando a irrigação no estágio de enchimento de grãos e aplicação de 15% MLE e T5 ou seja, ignorando a irrigação no enchimento de grãos estágio e aplicação de 10% MBLE. O experimento foi exposto no delineamento de blocos completos casualizados com arranjo fatorial e repetido três vezes. A partir deste estudo conclui-se que Aas-2011 apresentou melhor resultado sob condição de seca, aplicando reguladores de crescimento e extratos de água de plantas.


Subject(s)
Plant Growth Regulators , Triticum , Moringa , Dehydration , Morus
16.
Braz. j. biol ; 79(3): 383-394, July-Sept. 2019. tab, graf
Article in English | LILACS | ID: biblio-1001447

ABSTRACT

Abstract Bidens pilosa L. is a heterocarpic weed species with two cypselae types that present morpho-physiological differences, being the peripheral type smaller and slower to germinate than the central one. We aimed to verify how the germination mechanism varied between types. We focused on two mechanisms: (1) pericarp constraints (physical and chemical) and (2) hormonal stimulation (Abcisic acid [ABA] and Gibberellin [GA]). Both cypselae types are physically constrained by the pericarp, for when it is excised both seed types increase their germination, but behavioral differences still remain. The pericarp of the peripheral type also has chemical inhibitors that effectively inhibited germination of the intact central cypsela. To test the hormonal effects, we focused on the ABA:GA control. Both cypselae responded to an exogenous ABA concentration gradient, however there is no variation between types on the sensitivity to it. Also, both cypselae types were indifferent to Fluridone (ABA inhibitor), which indicates that the dormancy is not maintained by de novo ABA synthesis. Cypselae types had different sensitivity to an exogenous GA3 gradient, the central type being more sensitive to the treatment than the peripheral one. But when the endogenous GA synthesis was blocked by Paclobutrazol, both types responded equally to same GA3 concentrations. This indicates that endogenous GA synthesis may be related to differences observed on germination of cypselae types. To conclude, seed types differ on their growth potential to overcome the pericarp resistance: while the inhibitor in the peripheral pericarp reduces growth potential, GA increases it.


Resumo Bidens pilosa L. é uma espécie de planta daninha heterocarpica com dois tipos de cipselas que possuem diferenças morfofisiológicas, sendo o tipo periférico de menor tamanho e com germinação lenta se comparado com o central. Nosso objetivo foi verificar como o mecanismo de germinação varia entre os tipos. Focamos em dois mecanismos: (1) restrição causada pelo pericarpo (física e química) e (2) estímulo hormonal (Ácido abscísico [ABA] e Giberelina [GA]). Os tipos de cipselas são fisicamente limitados pelo pericarpo, pois quando ambos os tipos de sementes são excisados há um aumento na germinação, contudo as diferenças no processo se mantém. O pericarpo do tipo periférico ainda possui inibidores que efetivamente retardam a germinação das cipselas centrais intactas. Para testar os efeitos hormonais, nós focamos no controle pelo ABA:GA. Ambas cipselas responderam ao gradiente de concentração de ABA exógeno, contudo não houve variação na sensibilidade entre os tipos. Ainda, ambos tipos de cipselas foram indiferentes à Fluoridona (inibidor de ABA), que indica que a dormência não é mantida pela nova síntese de ABA. Tipos de cipselas apresentam diferentes sensibilidades ao gradiente exógeno de GA3, com o tipo central sendo mais sensível ao tratamento que o periférico. Mas quando a síntese endógena de GA foi bloqueada pelo Paclobutrazol, ambos os tipos responderam de forma similar às concentrações de GA 3. Isso indica que a síntese de GA endógena pode estar relacionada com a diferença observada na germinação dos dois tipos de cipselas. Para concluir, os tipos de sementes diferem no potencial para superar a resistência do pericarpo, sendo o inibidor no pericarpo da cipsela periférica o redutor do potencial de crescimento, enquanto a GA aumenta esse potencial.


Subject(s)
Plant Growth Regulators/pharmacology , Pyridones/pharmacology , Abscisic Acid/pharmacology , Germination/physiology , Bidens/physiology , Herbicides/pharmacology , Seeds/growth & development , Seeds/drug effects , Germination/drug effects , Bidens/drug effects
17.
Electron. j. biotechnol ; 40: 45-51, July. 2019. ilus, tab
Article in English | LILACS | ID: biblio-1053457

ABSTRACT

Background: This research is intended to determine suitable types and concentrations of plant growth regulators (PGRs) to induce callus on stem and leaf sections of 4 species of the genus Garcinia, namely, Garcinia mangostana, Garcinia schomburgkiana, Garcinia cowa, and Garcinia celebica. The base medium was MS medium containing 30 g l -1 sucrose, 0.5 g l-1 polyvinylpyrrolidone (PVP), and 7 g l-1 agar, and for the different treatments, PGRs were added to the medium as follows: thidiazuron (TDZ) at concentrations of 0, 0.1, 0.5, 1, and 2 mg l-1; 6-(3- hydroxybenzylamino) purine (meta-topolin) at concentrations of 0, 0.5, 2.5, and 5 mg l-1; 4-amino-3,5,6- trichloro-2-pyridinecarboxylic acid (picloram) at concentrations of 0, 0.5, 2.5, and 5 mg l-1; and 2,4- dichlorophenoxyacetic acid (2,4-D) at concentrations of 0, 0.5, 1, 2, and 4 mg l-1. The occurrence of callus was observed after 4 weeks. Results: A maximum of 100% and 93% of G. mangostana leaf explants formed callus in the 0.5 mg l-1 and 1 mg l-1 TDZ treatments, respectively, while 100% of G. schomburgkiana stem explants formed callus in the 1 mg l-1 TDZ treatment and 89% of G. schomburgkiana leaf explants formed callus in the 0.5 mg l-1 picloram treatment. The highest callus induction rate for G. cowa was 62% in the 1 mg l-1 TDZ treatment and for G. celebica was 56% in the 0.5 mg l-1•mT-1 treatment. Conclusions: For all 4 species, the greatest amount of large nodular callus was observed in the TDZ treatments. White, friable callus was observed on most of the 2,4-D and picloram treatment groups. Most meta-topolin treatments resulted in minimal callus formation.


Subject(s)
Plant Growth Regulators/metabolism , Garcinia/growth & development , Phytochemicals/metabolism , Phenylurea Compounds , Thiadiazoles , Time Factors , Transformation, Genetic , Clusiaceae/growth & development , Garcinia/physiology , Tissue Culture Techniques
18.
Biosci. j. (Online) ; 35(1): 159-165, jan./fev. 2019. graf, tab
Article in English | LILACS | ID: biblio-1048569

ABSTRACT

Growth regulators have been widely employed as maturation inducers in the sugarcane crop, as an agricultural strategy. However, the response of varieties to the use of these compounds has been poorly studied, mainly in cerrado (savannah-like biome) areas occupied by the crop. This study was carried out to examine the effects of trinexapac-ethyl on important morphological characteristics of sugarcane varieties. The experiment was set up as a randomized block design with a 4 × 2 factorial arrangement consisting of four varieties (RB83-5054, SP80-1816, RB96-6928, and RB85-5156) associated or unassociated with application of trinexapac-ethyl (375 g L­1 of the a.i. ha­1), with four replicates. The ripener was applied at 126, 178, and 228 days after planting (DAP) the first-cycle sugarcane, using the dose of 125 g L­1 a.i. ha­1 per application. Upon harvest, which occurred at 243 DAP, we determined the number of stalks per meter, weight of 30 stalks without top, internode length, number of internodes per stalk, and yield of sugarcane stalks. Ripener application increased the number of stalks in varieties RB96-6928 and RB83-5054 and the weight of 30 stalks in varieties RB96-6928 and RB83-5054 and SP80-1816; reduced internode length in varieties RB85-5156 and RB83-5054; and increased stalk yield per hectare in varieties RB96-6928 and RB83-5054, but did not increase the number of internodes per stalk in any of the tested varieties. The variables number of stalks, stalk weight, internode length, and stalk yield responded in a genotype-dependent manner to the application of trinexapac-ethyl.


O uso de reguladores de crescimento como indutores da maturação em cana-de-açúcar tem sido uma prática agrícola bastante empregada. Entretanto, a resposta das variedades à utilização desses compostos tem sido pouco estudada, principalmente em áreas de cerrado ocupadas pela cultura. O objetivo deste estudo foi avaliar os efeitos do trinexapac-ethyl em características morfológicas importantes para a produtividade de variedades de cana-de-açúcar. O delineamento experimental utilizado foi o de blocos casualizados em esquema fatorial 4 x 2, sendo quatro variedades (RB83-5054, SP80-1816, RB96-6928 e RB85-5156), combinadas com e sem aplicação de trinexapac-ethyl (375 g L-1 do i.a. ha-1) e quatro repetições. A aplicação do maturador ocorreu aos 126, 178 e 228 dias após o plantio (DAP) da cana planta, com dose de 125 g L-1 i.a. ha-1 por vez. Por ocasião da colheita, realizada aos 243 DAP, foram avaliados o número de colmos por metro, massa de 30 colmos sem ponteiro, comprimento de entrenós, número de entrenós por colmo e produtividade de colmos de cana-de-açúcar. Verificou-se que a aplicação do maturador incrementou o número de colmos para as variedades RB96-6928 e RB83-5054, a massa de 30 colmos para as variedades RB96-6928 e RB83-5054 e SP80-1816, maior redução no comprimento de entrenós para as variedades RB85-5156 e RB83-5054 e maior aumento na produção de colmos por hectare para as variedades RB96-6928 e RB83-5054, mas não aumentou o número de entrenós por colmo nas variedades testadas. A resposta das variáveis: número de colmos, massa de colmos, comprimento dos entrenós e produtividade de colmos à aplicação do trinexapac-ethyl mostrou-se genótipo dependente.


Subject(s)
Plant Growth Regulators , Saccharum , Crops, Agricultural , Sugars
19.
Article in English | WPRIM | ID: wpr-776900

ABSTRACT

Anemone flaccida Fr. Schmidt is a perennial medicinal herb that contains pentacyclic triterpenoid saponins as the major bioactive constituents. In China, the rhizomes are used as treatments for a variety of ailments including arthritis. However, yields of the saponins are low, and little is known about the plant's genetic background or phytohormonal responsiveness. Using one-quarter of the 454 pyrosequencing information from the Roche GS FLX Titanium platform, we performed a transcriptomic analysis to identify 157 genes putatively encoding 26 enzymes involved in the synthesis of the bioactive compounds. It was revealed that there are two biosynthetic pathways of triterpene saponins in A. flaccida. One pathway depends on β-amyrin synthase and is similar to that found in other plants. The second, subsidiary ("backburner") pathway is catalyzed by camelliol C synthase and yields β-amyrin as minor byproduct. Both pathways used cytochrome P450-dependent monooxygenases (CYPs) and family 1 uridine diphosphate glycosyltransferases (UGTs) to modify the triterpenoid backbone. The expression of CYPs and UGTs were quite different in roots treated with the phytohormones methyl jasmonate, salicylic acid and indole-3-acetic acid. This study provides the first large-scale transcriptional dataset for the biosynthetic pathways of triterpene saponins and their phytohormonal responsiveness in the genus Anemone.


Subject(s)
Anemone , Genetics , Metabolism , Biosynthetic Pathways , Genetics , Cytochrome P-450 Enzyme System , Genetics , Metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycosyltransferases , Genetics , Metabolism , Oleanolic Acid , Metabolism , Plant Growth Regulators , Pharmacology , Plant Proteins , Genetics , Metabolism , Plants, Medicinal , Rhizome , Genetics , Metabolism , Saponins , Metabolism , Triterpenes , Metabolism
20.
Biol. Res ; 52: 39, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019503

ABSTRACT

In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.


Subject(s)
Plant Growth Regulators/metabolism , Stress, Physiological/physiology , Plant Physiological Phenomena , Secondary Metabolism/physiology , Plants/metabolism , Signal Transduction , Plant Shoots/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant/physiology , Cell Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL