Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1538020

ABSTRACT

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Subject(s)
Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Article in English | LILACS | ID: biblio-1538056

ABSTRACT

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Subject(s)
Plant Leaves/chemistry , Croton/chemistry , Plant Extracts/metabolism , Plant Extracts/chemistry , Plant Structures/metabolism , Plant Structures/chemistry , Plant Leaves/metabolism , Croton/metabolism , Anti-Inflammatory Agents , Antioxidants
3.
Braz. j. biol ; 84: e257739, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355883

ABSTRACT

Abstract Under salt stress conditions, plant growth is reduced due to osmotic, nutritional and oxidative imbalance. However, salicylic acid acts in the mitigation of this abiotic stress by promoting an increase in growth, photosynthesis, nitrogen metabolism, synthesis of osmoregulators and antioxidant enzymes. In this context, the objective was to evaluate the effect of salicylic acid doses on the growth and physiological changes of eggplant seedlings under salt stress. The experiment was conducted in a greenhouse, where the treatments were distributed in randomized blocks using a central composite matrix Box with five levels of electrical conductivity of irrigation water (CEw) (0.50; 1.08; 2.50; 3.92 and 4.50 dS m-1), associated with five doses of salicylic acid (SA) (0.00; 0.22; 0.75; 1.28 and 1.50 mM), with four repetitions and each plot composed of three plants. At 40 days after sowing, plant height, stem diameter, number of leaves, leaf area, electrolyte leakage, relative water content, and total dry mass were determined. ECw and SA application influenced the growth and physiological changes of eggplant seedlings. Increasing the ECw reduced growth in the absence of SA. Membrane damage with the use of SA remained stable up to 3.9 dS m-1 of ECw. The relative water content independent of the CEw increased with 1.0 mM of SA. The use of SA at the concentration of 1.0 mM mitigated the deleterious effect of salinity on seedling growth up to 2.50 dS m-1 of ECw.


Resumo Em condições de estresse salino, o crescimento das plantas é reduzido, em virtude, do desequilíbrio osmótico, nutricional e oxidativo. Contudo, o ácido salicílico atua na mitigação desse estresse abiótico por promover incremento no crescimento, fotossíntese, metabolismo do nitrogênio, síntese de osmorreguladores e enzimas antioxidantes. Nesse contexto, objetivou-se avaliar o efeito de doses de ácido salicílico sobre o crescimento e alterações fisiológicas de mudas de berinjela sob estresse salino. O experimento foi conduzido em casa de vegetação, onde os tratamentos foram distribuídos em blocos ao acaso utilizando uma matriz composta central Box com cinco níveis de condutividade elétrica da água de irrigação (CEa) (0,50; 1,08; 2,50; 3,92 e 4,50 dS m-1), associada a cinco doses de ácido salicílico (AS) (0,00; 0,22; 0,75; 1,28 e 1,50 mM), com quatro repetições e cada parcela composta por três plantas. Aos 40 dias após a semeadura, foram determinados a altura da planta, diâmetro do caule, número de folhas, área foliar, vazamento de eletrólito, teor relativo de água e massa seca total. A CEa e a aplicação de AS influenciaram no crescimento e nas alterações fisiológicas das mudas de berinjela. O aumento da CEa reduziu o crescimento na ausência de AS. O dano de membrana com o uso de AS manteve-se estável até 3,9 dS m-1 de CEa. O conteúdo relativo de água independentemente da CEa aumentou com 1 mM de SA. O uso de AS na concentração de 1 mM mitigou o efeito deletério da salinidade no crescimento das mudas até 2,50 dS m-1 de CEa.


Subject(s)
Salicylic Acid/pharmacology , Solanum melongena/metabolism , Photosynthesis , Stress, Physiological , Plant Leaves/metabolism , Seedlings , Salinity , Salt Tolerance , Antioxidants/metabolism
4.
China Journal of Chinese Materia Medica ; (24): 1319-1329, 2023.
Article in Chinese | WPRIM | ID: wpr-970603

ABSTRACT

This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.


Subject(s)
Mice , Male , Animals , Ginsenosides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Panax/genetics , Lipopolysaccharides/adverse effects , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Acute Lung Injury/genetics , Lung/metabolism , Superoxide Dismutase/metabolism , Plant Leaves/metabolism , RNA, Messenger
5.
China Journal of Chinese Materia Medica ; (24): 220-225, 2023.
Article in Chinese | WPRIM | ID: wpr-970517

ABSTRACT

This paper aimed to investigate the effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/peroxisome proliferator-activated receptor γ(PPARγ) pathway in arrhythmic rats. SD rats were randomly divided into a control group, a model group, a low-dose(20 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a medium-dose(40 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a high-dose(80 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a propranolol hydrochloride(2 mg·kg~(-1)) group, with 12 rats in each group. Except the control group, rats in other groups were prepared as models of arrhythmia by sublingual injection of 1 mL·kg~(-1) of 0.002% aconitine. After grouping and intervention with drugs, the arrhythmia, myocardial cells apoptosis, myocardial tissue glutathione peroxidase(GSH-Px), catalase(CAT), malondialdehyde(MDA), serum interleukin-6(IL-6), prostaglandin E2(PGE2) levels, myocardial tissue apoptosis, and Wnt/β-catenin/PPARγ pathway-related protein expression of rats in each group were measured. As compared with the control group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA levels in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels increased significantly in the model group, whereas the GSH-Px and CAT levels, and Bcl-2 and PPARγ protein expression levels in myocardial tissues reduced significantly. As compared with the model group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA leve in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels reduced in the drug intervention groups, whereas the GSH-Px and CAT levels and Bcl-2 and PPARγ protein expression levels in myocardial tissues increased. The groups of total flavonoids of buckwheat flower and leaf were in a dose-dependent manner. There was no significant difference in the levels of each index in rats between the propranolol hydrochloride group and the high-dose group of total flavonoids of buckwheat flower and leaf. The total flavonoids of buckwheat flower and leaf inhibit the activation of Wnt/β-catenin pathway, up-regulate the expression of PPARγ, reduce oxidative stress and inflammatory damage in myocardial tissues of arrhythmic rats, reduce myocardial cell apoptosis, and improve the symptoms of arrhythmia in rats.


Subject(s)
Rats , Animals , PPAR gamma/metabolism , Fagopyrum/genetics , Rats, Sprague-Dawley , bcl-2-Associated X Protein , beta Catenin/metabolism , Interleukin-6 , Flavonoids/pharmacology , Propranolol/pharmacology , Ventricular Fibrillation , Dinoprostone , Wnt Signaling Pathway , Plant Leaves/metabolism , Flowers/metabolism , Apoptosis , Cardiac Complexes, Premature
6.
China Journal of Chinese Materia Medica ; (24): 4967-4973, 2023.
Article in Chinese | WPRIM | ID: wpr-1008666

ABSTRACT

A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.


Subject(s)
Carthamus tinctorius , Seeds , Peroxidase/metabolism , Plant Leaves/metabolism , Antioxidants
7.
China Journal of Chinese Materia Medica ; (24): 2178-2186, 2022.
Article in Chinese | WPRIM | ID: wpr-928158

ABSTRACT

The present study investigated the main components of fenugreek(Trigonella foenum-graecum L.) leaf flavonoids(FLFs) and their antioxidant activity. FLFs were prepared and enriched by solvent extraction, and the flavonoids were characterized by high-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS). The protective effect of FLFs against H_2O_2-induced stress damage to L02 hepatocytes was also investigated. Firstly, the cell viability was measured by MTT assay. The oxidative stress injury model was induced by H_2O_2 in L02 cells. The release of lactate dehydrogenase(LDH), the content of reduced glutathione(GSH) and malondialdehyde(MDA), and the activities of superoxide dismutase(SOD) and catalase(CAT) were measured by assay kits. Hoechst fluorescence staining was performed to observe the cell apoptosis. The expression levels of c-Jun N-terminal kinase(JNK), extracellular signal-regulated kinase 1/2(ERK1/2), nuclear factor erythroid-2 related factor 2(Nrf2), heme oxygenase 1(HO-1), and their phosphorylated proteins were detected by Western blot. Based on the MS fragment ion information and data in databases, FLFs contained eight flavonoids with quercetin and kaempferol as the main aglycons. The cell viabi-lity assay revealed that as compared with the conditions in the H_2O_2 treatment group, 3.125-25 μg·mL~(-1) FLFs could increase the viability of L02 cells, reduce LDH release and MDA content in a dose-dependent manner, potentiate the activities of SOD, CAT, and GSH, decrease the phosphorylation of JNK and ERK1/2 proteins, and up-regulate the expression of Nrf2 and HO-1. The results of fluorescence staining showed that the nucleus of the H_2O_2 treatment group showed concentrated and dense strong blue fluorescence, while the blue fluorescence intensity of the FLFs group decreased significantly. FLFs showed a protective effect against H_2O_2-induced oxidative damage in L02 cells, and the underlying mechanism is associated with the enhancement of cell capability in clearing oxygen free radicals and the inhibition of apoptosis by the activation of the MAPKs/Nrf2/HO-1 signaling pathway. The antioxidant effect of fenugreek leaf is related to its rich flavonoids.


Subject(s)
Antioxidants/pharmacology , Apoptosis , Flavonoids/pharmacology , Hepatocytes/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Tandem Mass Spectrometry , Trigonella/metabolism
8.
China Journal of Chinese Materia Medica ; (24): 4712-4720, 2021.
Article in Chinese | WPRIM | ID: wpr-888176

ABSTRACT

Leaves of Euryale ferox are rich in anthocyanins. Anthocyanin synthesis is one of the important branches of the flavonoid synthesis pathway, in which flavonoid 3'-hydroxylase(F3'H) can participate in the formation of important intermediate products of anthocyanin synthesis. According to the data of E. ferox transcriptome, F3'H cDNA sequence was cloned in the leaves of E. ferox and named as EfF3'H. The correlation between EfF3'H gene expression and synthesis of flavonoids was analyzed by a series of bioinforma-tics tools and qRT-PCR. Moreover, the biological function of EfF3'H was verified by the heterologous expression in yeast. Our results showed that EfF3'H comprised a 1 566 bp open reading frame which encoded a hydrophilic transmembrane protein composed of 521 amino acid residues. It was predicted to be located in the plasma membrane. Combined with predictive analysis of conserved domains, this protein belongs to the cytochrome P450(CYP450) superfamily. The qRT-PCR results revealed that the expression level of EfF3'H was significantly different among different cultivars and was highly correlated with the content of related flavonoids in the leaves. Eukaryotic expression studies showed that EfF3'H protein had the biological activity of converting kaempferol to quercetin. In this study, EfF3'H cDNA was cloned from the leaves of E. ferox for the first time, and the biological function of the protein was verified. It provi-ded a scientific basis for further utilizing the leaves of E. ferox and laid a foundation for the further analysis of the biosynthesis pathway of flavonoids in medicinal plants.


Subject(s)
Anthocyanins , Cytochrome P-450 Enzyme System/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Transcriptome
9.
Journal of Zhejiang University. Science. B ; (12): 71-83, 2019.
Article in English | WPRIM | ID: wpr-1010444

ABSTRACT

In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate (ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids (BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273 (100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency (Fv/Fm), quantum yield of photosystem II (ФPSII), net photosynthetic rate (Pn), and chlorophyll meter value (soil and plant analyzer development (SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species (ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase (ALS)-a key enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants was studied using various concentrations of BCAAs (10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs (100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Antioxidants/metabolism , Benzoates/pharmacology , Biomass , Chlorophyll/metabolism , Herbicides/pharmacology , Hordeum/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Seedlings/metabolism
10.
Braz. j. biol ; 78(3): 509-516, Aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-951583

ABSTRACT

Abstract Typha domingensis (cattail) is a native macrophyte known by its capacity to tolerate several heavy metals effects and the potential use for phytoremediation. However, in despite that cadmium (Cd) is one of the most toxic pollutants; its effects in T. domingensis biology remain uninvestigated. Thus, the objective of this study was to study the tolerance of T. domingensis to cadmium contamination by evaluating its growth, Cd uptake, leaf anatomy and gas exchange. The experiment was designed using three cadmium concentrations (0, 10 and 50 µM) and ten replicates for 90 days. The cadmium uptake, growth, gas exchange, chlorophyll content and leaf anatomy were evaluated. Data was submitted to ANOVA and Scott-Knott test for P<0.05. Typha domingensis accumulates Cd proportionally to its concentration on the solution and the content of this metal was higher in roots as compared to shoots. Plants showed no significant modifications on growth parameters such as the biomass production, number of leaves, number of clones and the biomass allocation to organs. The photosynthesis, transpiration and chlorophyll content were not modified by Cd. Most anatomical traits evaluated were not modified by the metal but the stomatal density and the proportion of vascular tissues were reduced under 50 µM of Cd. In despite, the leaf anatomy showed no toxicity evidences for any Cd level. The absence of growth reduction and the stability of anatomical and physiological traits give insight about the Cd tolerance of this species. Therefore, T. domingensis is able to overcome Cd toxicity and shows potential for phytoremediation.


Resumo A espécie Typha domingensis (taboa) é uma macrófita nativa conhecida por sua tolerância a vários metais pesados e potencial uso na fitorremediação. Contudo, apesar de que o Cd é um dos poluentes mais tóxicos; Seus efeitos em T. domingensis ainda não foram investigados. Assim, o objetivo desse estudo foi avaliar a tolerância de T. domingensis ao cádmio, avaliando o crescimento, absorção de Cd, anatomia foliar e trocas gasosas. O experimento foi conduzido utilizando três concentrações de Cd (0, 10 e 50 µM) e dez repetições por 90 dias.. O crescimento, trocas gasosas e o teor de clorofila e anatomia foliar foram avaliados. Os dados foram submetidos à ANOVA e ao teste de Scott-Knott para P<0,05. A absorção de cádmio, crescimento, trocas gasosas, teor de clorofila e anatomia foliar foram analisados. As plantas de T. domingensis podem acumular Cd proporcionalmente à sua concentração na solução e o teor deste metal foi maior nas raízes em comparação com a parte aérea. As plantas não apresentam modificações significativas nos parâmetros de crescimento como produção de biomassa, número de folhas, número de clones produzidos e alocação de biomassa nos órgãos. A fotossíntese, transpiração e conteúdo de clorofila não foram afetados de forma significativa pelo Cd. A maioria das características anatômicas avaliadas não apresentou diferenças, mas houve redução na densidade estomática e na proporção de tecidos vasculares na concentração de 50 µM de Cd. A anatomia foliar não mostrou evidências de toxicidade em nenhum dos níveis de Cd. A ausência de redução de crescimento e estabilidade das características anatômicas e fisiológicas caracteriza alta tolerância da espécie ao Cd. Portanto, T. domingensis é capaz de superar a toxicidade do Cd e demostra potencial para fitorremediação.


Subject(s)
Cadmium/metabolism , Plant Leaves/metabolism , Typhaceae/growth & development , Typhaceae/metabolism , Photosynthesis/physiology , Biodegradation, Environmental , Cadmium/toxicity , Chlorophyll/metabolism , Chlorophyll/chemistry , Plant Roots/metabolism , Plant Roots/chemistry , Plant Leaves/chemistry , Biomass , Dose-Response Relationship, Drug
11.
Braz. j. biol ; 78(4): 686-690, Nov. 2018. graf
Article in English | LILACS | ID: biblio-951609

ABSTRACT

Abstract Kiwifruit are a popular fruit worldwide; however, plant growth is threatened by abiotic stresses such as drought and high temperatures. Niacin treatment in plants has been shown to increase NADPH levels, thus enhancing abiotic stresses tolerance. Here, we evaluate the effect of niacin solution spray treatment on NADPH levels in the kiwifruit cultivars Hayward and Xuxiang. We found that spray treatment with niacin solution promoted NADPH and NADP+ levels and decreased both O2·- production and H2O2 contents in leaves during a short period. In fruit, NADPH contents increased during early development, but decreased later. However, no effect on NADP+ levels has been observed throughout fruit development. In summary, this report suggests that niacin may be used to increase NADPH oxidases, thus increasing stress-tolerance in kiwifruit during encounter of short-term stressful conditions.


Resumo Kiwis são uma fruta popular em todo o mundo; No entanto, o crescimento das plantas é ameaçado por estresses abióticos como a seca e as altas temperaturas. O tratamento com niacina em plantas mostrou aumentar os níveis de NADPH, aumentando assim a tolerância a stress abiótico. Aqui, avaliamos o efeito do tratamento com spray de solução de niacina sobre os níveis de NADPH nos cultivares de kiwis Hayward e Xuxiang. Descobrimos que o tratamento por spray com solução de niacina promoveu níveis de NADPH e NADP + e diminuiu a produção de O2·- e os teores de H2O2 nas folhas durante um curto período. Nos frutos, os teores de NADPH aumentaram durante o desenvolvimento precoce, mas diminuíram mais tarde. No entanto, não se observou qualquer efeito nos níveis de NADP + ao longo do desenvolvimento do fruto. Em resumo, este relatório sugere que a niacina pode ser utilizada para aumentar NADPH oxidases, aumentando assim a tolerância ao estresse em kiwis durante o encontro de condições estressantes de curto prazo.


Subject(s)
NADPH Oxidases/drug effects , Actinidia/drug effects , Fruit/drug effects , Niacin/pharmacology , Oxidation-Reduction , Plant Leaves/drug effects , Plant Leaves/metabolism , Free Radicals/metabolism , Fruit/growth & development , NADP/metabolism
12.
Braz. j. microbiol ; 49(1): 45-53, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889199

ABSTRACT

ABSTRACT Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF) under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium), and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa). Under high salinity, the field consortium increased aerial dry weight (more than 1 g) and osmotic potential (0.54 MPa), as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.


Subject(s)
Cucurbita/microbiology , Mycorrhizae/physiology , Fungi/physiology , Soil/chemistry , Water/analysis , Water/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Biomass , Cucurbita/growth & development , Cucurbita/physiology , Mycorrhizae/isolation & purification , Mycorrhizae/classification , Desert Climate , Salinity , Droughts , Fungi/isolation & purification , Fungi/classification , Mexico
13.
Biol. Res ; 51: 49, 2018. tab, graf
Article in English | LILACS | ID: biblio-1011393

ABSTRACT

BACKGROUND: Antarctic bryophytes (mosses and liverworts) are resilient to physiologically extreme environmental conditions including elevated levels of ultraviolet (UV) radiation due to depletion of stratospheric ozone. Many Antarctic bryophytes synthesise UV-B-absorbing compounds (UVAC) that are localised in their cells and cell walls, a location that is rarely investigated for UVAC in plants. This study compares the concentrations and localisation of intracellular and cell wall UVAC in Antarctic Ceratodon purpureus, Bryum pseudotriquetrum and Schistidium antarctici from the Windmill Islands, East Antarctica. RESULTS: Multiple stresses, including desiccation and naturally high UV and visible light, seemed to enhance the incorporation of total UVAC including red pigments in the cell walls of all three Antarctic species analysed. The red growth form of C. purpureus had significantly higher levels of cell wall bound and lower intracellular UVAC concentrations than its nearby green form. Microscopic and spectroscopic analyses showed that the red colouration in this species was associated with the cell wall and that these red cell walls contained less pectin and phenolic esters than the green form. All three moss species showed a natural increase in cell wall UVAC content during the growing season and a decline in these compounds in new tissue grown under less stressful conditions in the laboratory. CONCLUSIONS: UVAC and red pigments are tightly bound to the cell wall and likely have a long-term protective role in Antarctic bryophytes. Although the identity of these red pigments remains unknown, our study demonstrates the importance of investigating cell wall UVAC in plants and contributes to our current understanding of UV-protective strategies employed by particular Antarctic bryophytes. Studies such as these provide clues to how these plants survive in such extreme habitats and are helpful in predicting future survival of the species studied.


Subject(s)
Pigments, Biological/radiation effects , Pigments, Biological/metabolism , Ultraviolet Rays , Cell Wall/radiation effects , Cell Wall/metabolism , Bryophyta/radiation effects , Bryophyta/metabolism , Seasons , Time Factors , Pigmentation/radiation effects , Analysis of Variance , Chromatography, High Pressure Liquid , Spectroscopy, Fourier Transform Infrared/methods , Plant Leaves/radiation effects , Plant Leaves/metabolism , Microscopy, Confocal , Bryophyta/cytology , Antarctic Regions
14.
Journal of Zhejiang University. Science. B ; (12): 263-273, 2018.
Article in English | WPRIM | ID: wpr-1010386

ABSTRACT

Rice leaf color mutants play a great role in research about the formation and development of chloroplasts and the genetic mechanism of the chlorophyll (Chl) metabolism pathway. pgl3 is a rice leaf color mutant derived from Xiushui11 (Oryza sativa L. spp. japonica), treated with ethyl methane sulfonate (EMS). The mutant exhibited a pale-green leaf (pgl) phenotype throughout the whole development as well as reduced grain quality. Map-based cloning of PGL3 revealed that it encodes the chloroplast signal recognition particle 43 kDa protein (cpSRP43). PGL3 affected the Chl synthesis by regulating the expression levels of the Chl synthesis-associated genes. Considerable reactive oxygen species were accumulated in the leaves of pgl3, and the transcription levels of its scavenging genes were down-regulated, indicating that pgl3 can accelerate senescence. In addition, high temperatures could inhibit the plant's growth and facilitate the process of senescence in pgl3.


Subject(s)
Chlorophyll/metabolism , Chloroplasts/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Hot Temperature , Mutation , Oryza/physiology , Phenotype , Photosynthesis , Plant Leaves/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism
15.
Journal of Zhejiang University. Science. B ; (12): 130-146, 2018.
Article in English | WPRIM | ID: wpr-1010374

ABSTRACT

The well-known detrimental effects of cadmium (Cd) on plants are chloroplast destruction, photosynthetic pigment inhibition, imbalance of essential plant nutrients, and membrane damage. Jasmonic acid (JA) is an alleviator against different stresses such as salinity and drought. However, the functional attributes of JA in plants such as the interactive effects of JA application and Cd on rapeseed in response to heavy metal stress remain unclear. JA at 50 µmol/L was observed in literature to have senescence effects in plants. In the present study, 25 µmol/L JA is observed to be a "stress ameliorating molecule" by improving the tolerance of rapeseed plants to Cd toxicity. JA reduces the Cd uptake in the leaves, thereby reducing membrane damage and malondialdehyde content and increasing the essential nutrient uptake. Furthermore, JA shields the chloroplast against the damaging effects of Cd, thereby increasing gas exchange and photosynthetic pigments. Moreover, JA modulates the antioxidant enzyme activity to strengthen the internal defense system. Our results demonstrate the function of JA in alleviating Cd toxicity and its underlying mechanism. Moreover, JA attenuates the damage of Cd to plants. This study enriches our knowledge regarding the use of and protection provided by JA in Cd stress.


Subject(s)
Brassica napus/metabolism , Cadmium/toxicity , Catalase/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Photosynthesis , Plant Leaves/metabolism , Superoxide Dismutase/metabolism
16.
Braz. j. biol ; 77(3): 535-541, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-888779

ABSTRACT

Abstract Golden trumpet, Tabebuia chrysotricha, is a native tree from the Brazilian Atlantic rain forest, with a broad latitudinal distribution. In this study, we investigated the potential effects of short-term changes in micro-weather conditions on structural features, and total protein and carbohydrate content of golden trumpet leaves, using structural and histochemical approaches. Leaves were harvested in four different micro-weather conditions: 1. Afternoon, after a hot, sunny day; 2. at dawn, after a previously hot, sunny day; 3. at noon, of a hot, sunny day; and 4. at noon, of a cold, cloudy day. Leaflets exposed to low light irradiance showed flattened chloroplasts, uniformly distributed within the cells, throughout the palisade parenchyma. Conversely, leaflets exposed to high light irradiance presented flattened and rounded chloroplasts, in the upper and lower palisade parenchyma cells, respectively. The strongest protein staining was found for leaves harvested at the coldest period, whereas the weakest protein staining was found for leaves harvested after a hot, sunny day. The largest and most numerous starch grains were found for leaves harvested in the afternoon, after a hot, sunny day. Conversely, the smallest and less numerous starch grains were found for leaves harvested at dawn. Analysis of the data reported herein suggests that the leaflet responses to transient changes in micro-weather conditions are likely to contribute to the golden trumpet successful establishment in the broad latitudinal distribution in which the species is found.


Resumo Ipê amarelo é uma árvore nativa da floresta Atlântica brasileira, encontrada em uma ampla distribuição latitudinal. Neste estudo, nós investigamos os efeitos potenciais de alterações de curto prazo nas condições micro-climáticas sobre características estruturais, proteína e carboidratos histoquimicamente marcados, de folhas de ipê amarelo, usando estratégias de análise estrutural e histoquímicas. As folhas foram marcadas em quatro condições microclimáticas distintas: 1. Tarde, após um dia quente e ensolarado; 2. Amanhecer, após um dia quente e ensolarado; 3. Ao meio-dia, de um dia quente e ensolarado; e 4. Ao meio-dia, de um dia frio e nublado. Folíolos expostos à baixa irradiância luminosa apresentaram cloroplastos achatados, uniformemente distribuídos no interior das células, por todo o parênquima paliçádico, enquanto que folíolos expostos à alta irradiância apresentaram cloroplastos achatados e arredondados, nas células superiores e inferiores do parênquima paliçádico, respectivamente. A marcação mais intensa para proteína foi observada para folhas coletadas no momento mais frio de coleta, enquanto que a marcação mais fraca foi observada para folhas coletadas após um dia quente e ensolarado. Os grãos de amido maiores e mais numerosos foram observados em folhas coletadas durante a tarde de dia quente e ensolarado, enquanto que os menores e menos numerosos grãos de amido foram observados em folhas coletadas ao amanhecer.


Subject(s)
Plant Proteins/metabolism , Weather , Plant Leaves/metabolism , Tabebuia/anatomy & histology , Tabebuia/metabolism , Carbohydrate Metabolism , Brazil , Chloroplasts/metabolism , Rainforest , Microclimate
17.
Rev. bras. parasitol. vet ; 26(2): 171-176, Apr.-June 2017. graf
Article in English | LILACS | ID: biblio-899271

ABSTRACT

Abstract Plants respond to wounding caused by mechanical stress or herbivory by synthesizing defense proteins. There are no studies reporting the action of induced plant proteins against ticks. The aim of this study was to investigate the effect of mechanically wounded Leucaena leucocephala leaves against Rhipicephalus (Boophilus) microplus. Initially, we carried out time course experiments to evaluate the impact of mechanical wounding on the protein content and the peroxidase, catalase and protease inhibitor activities in L. leucocephala. We then evaluated the acaricidal activity on R. (B.) microplus from protein extract collected from L. leucocephala after mechanical wounding. L. leucocephala leaves were artificially wounded, and after 6, 12, 24 and 48h, the leaves were collected for protein extraction. Quantitative and qualitative analyses of the proteins were performed. The protein content and peroxidase and protease activities increased 12h after wounding, and the acaricidal activity of this protein extract was evaluated using engorged R. (B.) microplus females. The protein extract obtained after wounding reduced egg production (8.5%) compared to those without wounding. Furthermore, the extract reduced egg hatching by 47.7% and showed an overall efficacy of 56.3% at 0.1 mgP/mL of the protein. We demonstrated that L. leucocephala defensive proteins could be effective against R. (B.) microplus.


Resumo As plantas respondem a injúria causada por estresse mecânico ou por ataque de herbívoros através da síntese de proteínas de defesa. Não há estudos de proteínas induzidas de plantas contra carrapatos. O objetivo deste estudo foi verificar a atividade acaricida de extratos protéicos de folhas Leucaena leucocephala após injúria mecânica, sobre Rhipicephalus (Boophilus) microplus. Inicialmente foram conduzidos experimentos em diferentes intervalos de tempo para avaliar o impacto da injúria mecânica no conteúdo de proteína, atividade de peroxidase, catalase e inibidor de protease de L. leucocephala. Em seguida foi avaliada a atividade acaricida sobre R. (B.) microplus de um extrato protéico após injúria mecânica. Folhas de L. leucocephala foram artificialmente feridas e após 6, 12, 24 e 48h, as folhas foram coletadas para extração de proteínas. Análises quantitativas e qualitativas das proteínas foram realizadas. A quantidade de proteína e atividades de peroxidase e protease aumentaram 12h após a injúria. O extrato proteico obtido após injúria (12h) reduziu a produção de ovos (8,5%) em comparação com extratos de plantas sem injúria. O extrato reduziu 47,7% a eclosão de ovos e apresentou eficácia geral de 56,3% a 0,1 miligrama de proteína por mL (mgP/mL). Apresentamos que proteínas de defesa de L. leucocephala podem ter atividade sobre R. (B.) microplus.


Subject(s)
Animals , Female , Stress, Mechanical , Plant Extracts/pharmacology , Plant Leaves/metabolism , Rhipicephalus/drug effects , Acaricides/pharmacology , Fabaceae/metabolism , Acaricides/metabolism , Larva/drug effects
18.
An. acad. bras. ciênc ; 89(2): 1167-1174, Apr.-June 2017. graf
Article in English | LILACS | ID: biblio-886713

ABSTRACT

ABSTRACT Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN) and blue (BN) both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade). The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.


Subject(s)
Photosynthesis/physiology , Sunlight , Oils, Volatile/metabolism , Piper/growth & development , Piper/radiation effects , Piper/metabolism , Photosynthesis/radiation effects , Time Factors , Chlorophyll/analysis , Chlorophyll/metabolism , Reproducibility of Results , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Leaves/metabolism
19.
Rev. biol. trop ; 65(1): 321-334, Jan.-Mar. 2017. tab, ilus
Article in Spanish | LILACS | ID: biblio-897544

ABSTRACT

ResumenLas condiciones ecológicas de los ríos altoandinos tropicales estan amenazadas por numerosas actividades humanas que incluyen aquellas derivadas del cambio de la cobertura y uso del suelo de la cuenca. Para su evaluación se han propuesto protocolos que diagnostican el estado de la estructura pero no del funcionamiento de estos ecosistemas fluviales. En este trabajo se propone una herramienta de evaluación adaptada a las condiciones locales, incluyendo la metodología y los valores umbrales, utilizando el proceso de descomposición de la hojarasca como una medida del funcionamiento y salud de los ríos altoandinos del sur del Ecuador. Se seleccionaron 15 tributarios distribuidos en tres microcuencas (Mazán, Llaviuco y Matadero) dentro o en las adyacencias del Parque Nacional Cajas. En cada tributario se incubaron bolsas de descomposición elaboradas con dos tipos de malla (gruesa y fina) para separar la contribución de macroinvertebrados y microorganismos en el proceso. Como substrato vegetal se emplearon hojas de Alnus acuminata y Miconia bracteolata. Las bolsas fueron colocadas en los ríos y mantenidas durante 15, 28 y 64 días. Las tasas de descomposición (-K) fueron obtenidas a partir del período de tiempo en el cual se produjo la pérdida de aproximadamente el 50 % de la masa seca libre de ceniza. En cada período de recolección se determinaron parámetros físicos y químicos. Adicionalmente, se aplicaron los índices de calidad de ribera (QBR-And) y de habitat fluvial (IHF). Para la elaboración de los umbrales de condición funcional se utilizaron las métricas Ktotal y el cociente entre la tasa de descomposición en malla gruesa y malla fina (Kg/Kf). Para probar la sensibilidad de las métricas se emplearon métodos gráficos, Anova de una vía y se calculó la eficiencia discriminativa (ED) de las mismas. Los resultados del análisis de usos y coberturas del suelo revelaron un gradiente de intervención Matadero ≥ Llaviuco > Mazán. La composición de las variables ambientales de las corrientes de la microcuenca Mazán resultaron diferentes con respecto a las de Llaviuco y Matadero, cuyos valores parecen ser más semejantes entre sí. La evaluación de la calidad de ribera mediante el índice QBR-And muestra un gradiente importante desde valores muy bajos en las corrientes de Matadero (27.5), valores medios a altos en Llaviuco (66.5) y valores más altos en los tributarios de Mazán (87). Las tasas de descomposición de la hojarasca de los tributarios de la microcuenca del Río Mazán resultaron significativamente más rápidas que en los tributarios de los Ríos Matadero y Llaviuco para las hojas de A. acuminata pero no para las hojas de Miconia. La métrica Kg/Kf se consideró sensible y suficiente para discriminar los impactos en las áreas estudiadas. Los valores del cociente Kg/Kf resultaron significativamente mayores en Mazán en comparación a Llaviuco y Matadero, que no resultaron diferentes entre sí. Nuestros resultados apoyan la utilización del proceso de descomposición de la hojarasca como una herramienta adecuada para evaluar la condición ecológica funcional, complementando las evaluaciones estructurales, de los ríos altoandinos.


Abstract:The ecological condition of tropical Andean rivers are threatened by many human activities including changes in land use and cover in watersheds. Current protocols diagnose the structural condition of streams but not their function. In this study we proposed an assessment tool using the leaf-litter breakdown as a measure of the functional condition and health of high Andean streams in Southern Ecuador, including methodology and threshold values adapted to local conditions. We selected 15 streams in three micro-basins (Mazán, Llaviuco and Matadero) within or in the vicinity of Cajas National Park where we deployed litterbags for 15, 28 and 64 days. We used two types of mesh (coarse and fine) for the litterbags in order to separate the contribution of macro-invertebrates and microorganisms in the decomposition process and also tested two different leaf substrates: Alder (Alnus acuminata) and Miconia (Miconia bracteolata). In each collection period we determined physical and chemical parameters, applied the riparian quality index (QBR-And) and river habitat index (IHF). Decomposition rates (-k) were determined from the time period at which approximately 50 % ash-free mass would have been lost. We used Ktotal and the ratio of the rate of decomposition between coarse and fine mesh (Kg/Kf) to define the functional condition thresholds. To test the metrics sensitivity we used graphical methods, one-way ANOVA and discriminative efficiency (ED). The analysis of watershed land-use and cover showed a gradient of intervention: Matadero ≥ Llaviuco > Mazán. The composition of the environmental variables of Mazán streams were different with respect to Llaviuco and Matadero, whose values were similar to each other. The QBR-And index showed a significant gradient from very low levels in Matadero (27.5), moderately high values in Llaviuco (66.5) to high values in Mazán (87). Alder leaf-litter breakdown rates were significantly faster in Mazán than in Matadero and Llaviuco streams, while breakdown rates of Miconia were not significantly different among watersheds. The Kg/Kf ratio was significantly higher in Mazán compared to Llaviuco and Matadero, which did not differ. We consider the Kg/Kf metric sensitive enough to discriminate impacts in the studied areas. Our results support the use of the leaf-litter breakdown as an appropriate tool to assess functional ecological condition, complementing the structural assessments of these Andean rivers. Rev. Biol. Trop. 65 (1): 321-334. Epub 2017 March 01.


Subject(s)
Biodegradation, Environmental , Ecosystem , Plant Leaves/metabolism , Rivers/chemistry , Reference Values , Water Quality/standards , Reproducibility of Results , Analysis of Variance , Conservation of Natural Resources/methods , Ecuador
20.
Braz. j. biol ; 77(1): 43-51, Jan-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-839155

ABSTRACT

Abstract Soil flooding is an environmental stressor for crops that can affect physiological performance and reduce crop yields. Abiotic stressors cause changes in protein synthesis, modifying the levels of a series of proteins, especially the heat shock proteins (HSP), and these proteins can help protect the plants against abiotic stress. The objective of this study was to verify if tomato plants cv. Micro-Tom from different genotypes with varying expression levels of MT-sHSP23.6 (mitochondrial small heat shock proteins) have different responses physiological to flooding. Plants from three genotypes (untransformed, MT-sHSP23.6 sense expression levels and MT-sHSP23.6 antisense expression levels) were cultivated under controlled conditions. After 50 days, the plants were flooded for 14 days. After this period half of the plants from each genotype were allowed to recover. Chlorophyll fluorescence, gas exchange, chlorophyll index, leaf area and dry matter were evaluated. Flood stress affected the photosynthetic electron transport chain, which is related to inactivation of the oxygen-evolving complex, loss of connectivity among units in photosystem II, oxidation-reduction of the plastoquinone pool and activity of photosystem I. The genotype with MT-sHSP23.6 sense expression levels was less sensitive to stress from flooding.


Resumo O alagamento do solo é um estressor ambiental para as culturas e pode afetar o desempenho fisiológico e reduzir a produtividade das culturas. Estresses abióticos causam mudanças na síntese de proteínas, modificando os níveis de uma série de proteínas, em especial as proteínas de choque térmico (HSP) e essas proteínas são conhecidas por proteger as plantas contra estresses abióticos. O objetivo deste estudo foi verificar se as plantas do tomateiro cv. Micro-Tom de distintos genótipos com diferentes níveis de expressão da MT-sHSP23.6 (proteínas mitocondriais de choque térmico com pequena massa molecular), têm diferentes respostas fisiológicas ao alagamento. As plantas de três genótipos (não-transformado, transformado com orientação antisense e transformado com orientação sense para MT-sHSP23.6) foram cultivadas sob condições controladas. Após 50 dias as plantas foram alagadas durante 14 dias. Após esse período as plantas de cada genótipo foram recuperadas. Foram avaliados fluorescência da clorofila, trocas gasosas, índice de clorofila, área foliar e massa seca. O estresse por alagamento afetou a cadeia de transporte de elétrons da fotossíntese, que está relacionado à inativação do complexo de evolução do oxigênio, perda da conectividade entre as unidades do fotossistema II, de oxidação e redução do pool de plastoquinona e atividade do fotossistema I. O genótipo com orientação sense MT-sHSP23.6 foi menos sensível ao estresse por alagamento.


Subject(s)
Stress, Physiological , Solanum lycopersicum/physiology , Heat-Shock Proteins, Small/metabolism , Floods , Mitochondria/metabolism , Photosynthesis/physiology , Chlorophyll/metabolism , Plant Leaves/metabolism , Photosystem I Protein Complex/metabolism , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL