ABSTRACT
In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.
Subject(s)
Plant Growth Regulators/metabolism , Stress, Physiological/physiology , Plant Physiological Phenomena , Secondary Metabolism/physiology , Plants/metabolism , Signal Transduction , Plant Shoots/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant/physiology , Cell Culture TechniquesABSTRACT
Abstract High copper (Cu) levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P) absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis) and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM), height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels.
Subject(s)
Copper/growth & development , Copper/metabolism , Copper/microbiology , Fungi/growth & development , Fungi/metabolism , Fungi/microbiology , Mycorrhizae/growth & development , Mycorrhizae/metabolism , Mycorrhizae/microbiology , Phosphorus/growth & development , Phosphorus/metabolism , Phosphorus/microbiology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/microbiology , Soil Pollutants/growth & development , Soil Pollutants/metabolism , Soil Pollutants/microbiology , Vitis/growth & development , Vitis/metabolism , Vitis/microbiologyABSTRACT
We studied the influence of sucrose and nitrogen concentration on in vitro flowering and fruit setting in elongated shoots of Withania somnifera. BA (1.5 mg/l) and IAA (0.3 mg/l) on MS medium supplemented with 4% sucrose showed 67% of in vitro flower induction frequency, 9 flowers/shoot, 4 fruits/shoot and 11 seeds/fruit in elongated-shoots. Different concentrations of nitrogen sources (L-glutamine, adenine sulphate, ammonium nitrate, potassium nitrate and sodium nitrate 5-25 mg/l) were tested in combination with 4% sucrose and BA at 1.5 mg/l and IAA at 0.3 mg/l. Highest number of flowers (20 flowers/shoot; 2.2-fold) and fruits (16 fruits/shoot; 3.39-fold), fruit setting (12 seeds/fruit; 1.08-fold) at a higher frequency (88 %) were achieved on MS medium augmented with 15 mg/l adenine sulphate with same PGRs and sucrose concentration. The maximum production of withanolide A (0.68 mg/g DW) and withanolide B (0.77 mg/g DW) was recorded in in vitro fruits. Highest accumulation of withaferin A (2 mg/g DW) was quantified from in vitro flowers, whereas, it was low in in vitro fruits (0.49 mg/g DW withaferin A). However, withanone (0.23 mg/g DW) was found accumulated uniformly in both in vitro flowers and fruits compared to control.
Subject(s)
Adenine/metabolism , Adenine/pharmacology , Carbon/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Flowers/chemistry , Flowers/growth & development , Fruit/chemistry , Fruit/growth & development , Germination/drug effects , Glutamine/metabolism , Glutamine/pharmacology , Hydroponics , Nitrates/metabolism , Nitrates/pharmacology , Nitrogen/metabolism , Plant Shoots/chemistry , Plant Shoots/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Withania/chemistry , Withania/growth & development , Withania/metabolism , Withanolides/metabolismABSTRACT
The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 mM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 M of Ca2+; 50 M of Fe2+ and 60 M of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) and peanut (Arachis hypogaea) seeds. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.
Subject(s)
Arachis/drug effects , Arachis/growth & development , Arachis/metabolism , Biodegradation, Environmental/drug effects , Chlorophyll/metabolism , Enterobacter/drug effects , Enterobacter/metabolism , Enterobacter/physiology , Germination/drug effects , Host-Pathogen Interactions , Metals, Heavy/metabolism , Metals, Heavy/pharmacology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/pharmacology , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Soil/chemistry , Soil Microbiology , Spectroscopy, Fourier Transform Infrared , Triticum/drug effects , Triticum/growth & developmentABSTRACT
BACKGROUND: Salinity is a serious factor limiting the productivity of agricultural plants. One of the potential problems for plants growing under saline conditions is the inability to up take enough K+. The addition of K+ may considerably improve the salt tolerance of plants grown under salinity. It is assumed that increasing the K+ supply at the root zone can ameliorate the reduction in growth imposed by high salinity. The present study aims to determine whether an increase in the K/Na ratio in the external media would enhance the growth of date palm seedlings under in vitro saline conditions. METHODS: Date palm plants were grown at four concentrations of Na + K/Cl (mol/m³) with three different K/Na ratios. The 12 salt treatments were added to modified MS medium. The modified MS medium was further supplemented with sucrose at 30 g/l. RESULTS: Growth decreased substantially with increasing salinity. Growth expressed as shoot and root weight, enhanced significantly with certain K/Na ratios, and higher weight was maintained in the presence of equal K and Na. It is the leaf length, leaf thickness and root thickness that had significant contribution on total dry weight. Na+ contents in leaf and root increased significantly increased with increasing salinity but substantial decreases in Na+ contents were observed in the leaf and root with certain K/Na ratios. This could be attributed to the presence of a high K+ concentration in the media. The internal Na+ concentration was higher in the roots in all treatments, which might indicate a mechanism excluding Na+ from the leaves and its retention in the roots. K/Na ratios up to one significantly increased the leaf and root K+ concentration, and it was most pronounced in leaves. The K+ contents in leaf and root was not proportional to the K+ increase in the media, showing a high affinity for K+ uptake at lower external K+ concentrations, but this mechanism continues to operate even with high external Na+ concentrations. CONCLUSION: Increasing K/Na ratios in the growing media of date plam significantly reduced the absorption of Na+ less than 200 mM and also balance ions compartmentalization.
Subject(s)
Potassium/metabolism , Sodium/metabolism , Crops, Agricultural , Salinity , Phoeniceae/physiology , Sucrose/pharmacology , In Vitro Techniques , Cell Compartmentation/physiology , Plant Shoots/metabolism , Plant Roots/metabolism , Plant Leaves/metabolism , Phoeniceae/growth & development , Absorption, PhysicochemicalABSTRACT
Chromium (Cr) contamination in soil is a growing concern in sustainable agriculture production and food safety. We performed pot experiment with chromium (30 mg/ soil) to assess the accumulation potential of Zea mays and study the influence of four fertilizers, viz. Farm Yard Manure (FYM), NPK, Panchakavya (PK) and Vermicompost (VC) with respect to Cr accumulation. The oxidative stress and pigment (chlorophyll) levels were also examined. The results showed increased accumulation of chromium in both shoots and roots of Zea mays under FYM and NPK supply, and reduced with PK and VC. While the protein and pigment contents decreased in Cr treated plants, the fertilizers substantiated the loss to overcome the stress. Similarly, accumulation of Cr increased the levels of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) indicating the enhanced damage control activity. However, these levels were relatively low in plants supplemented with fertilizers. Our results confirm that the maize can play an effective role in bioremediation of soils polluted with chromium, particularly in supplementation with fertilizers such as farm yard manure and NPK.
Subject(s)
Biodegradation, Environmental , Catalase/metabolism , Chlorophyll/metabolism , Chromium/metabolism , Ecosystem , Fertilizers/classification , Manure , Oxidative Stress , Peroxidase/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil/chemistry , Superoxide Dismutase/metabolism , Zea mays/growth & development , Zea mays/metabolismABSTRACT
The medicinal plant Plumbago contains a very potent secondary metabolite, plumbagin having many therapeutic properties. Callus culture was induced using explants, leaf, stem and shoot apex, from P. auriculata. Murashige and Skoog media fortified with various growth hormones like NAA, IAA, IBA and 2, 4-D individually and in various combinations were checked for callus induction. Among the growth hormones used, 1 mg/L 2, 4-D showed best callusing. The hormonal combinations of 1 mg/L IAA and 1.5 mg/L NAA in the media exhibited best callus induction using stem internode as an explant. Plumbagin content from root, stem, leaf and callus was analyzed by using thin layer chromatographic technique. The callus derived from stem showed comparable plumbagin content to the in vivo plant parts. Quantitative spectrophotometric analysis of plumbagin from plant samples and callus indicated that plumbagin content was maximum in roots which was followed by callus, stem and leaf samples respectively. Generation of in vitro sources for plumbagin, for therapeutic applications will serve as a continuous supply and will contribute to preserve the natural plant recourses.
Subject(s)
Chromatography, Thin Layer , Colorimetry , Cytokinins/pharmacology , Indoleacetic Acids/pharmacology , Naphthoquinones/analysis , Naphthoquinones/metabolism , Organ Specificity , Organoids/drug effects , Plant Cells/drug effects , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Plant Stems/metabolism , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Plumbaginaceae/growth & development , Plumbaginaceae/metabolism , Tissue Culture TechniquesABSTRACT
Seed characteristics and in vitro culture of C. tamala embryos were studied. Embryos desiccated below 50% (fresh weight) exhibited poor morphogenetic response in vitro and confirmed the recalcitrant nature of seeds. The immature embryos of various developmental ages (4-16 week after flowering, WAF) were cultured on different strengths of MS medium. Morphogenesis responses were recorded after 10 days of culture. The best culture responses were achieved from the immature embryos of 12 WAF on MS medium with sucrose (3%, w/v), polyvinyl pyrollidone (100 mg L-1) and benzyl adenine (12 µM). Under optimum condition ~60% explants responded; and ~7.3 shoots buds developed per explants after 35 days of culture initiation. The shoot buds could be converted into micro-shoots on MS medium with sucrose (3%) and kinetin (3 µM). About 5.3 micro-shoots/shoot buds sprouted per sub-culture. The micro-shoots were rooted by maintaining them on MS medium with α-naphthalene acetic acid (3 µM) where within 6-8 wk of culture ~8-10 roots developed. The rooted plantlets were acclimatized in vitro before they were transferred to community potting mix and maintained in the poly-shade ca 75% shading. The transplants registered ~70% survival after two months of transfer.
Subject(s)
Cinnamomum/drug effects , Cinnamomum/metabolism , Culture Media , Plant Shoots/drug effects , Plant Shoots/metabolism , Seeds/drug effects , Seeds/metabolism , Tissue Culture Techniques/methodsABSTRACT
The objective of this work was to study the stress tolerance and regeneration capability of transgenic pepper plants carrying a sod gene, encoding a tomato chloroplast-localized Cu/Zn SOD protein. The expression of the sod gene was confirmed by enzymatic staining following polyacrylamide gel electrophoresis (PAGE), revealing a novel band, which could represent a heterodimeric enzyme. Transgenic T1 and T2 progeny plants were exposed to different oxidative stresses including Methyl viologen (MV) and drought and found to have an increased resistance to oxidative damage. Furthermore, the SOD carrying transgenic pepper plants showed increased levels of regeneration efficiency compared to the wild type pepper plants. Pepper is a recalcitrant species in terms of its in vitro regeneration ability but it could be extremely useful for the development of pharmaceuticals. This approach enables the extent use of pepper for genetic transformation and the production of high valuable products in plants particularly the large fruit varieties.
Subject(s)
Animals , Plant Shoots/growth & development , Plant Shoots/enzymology , Plant Shoots/metabolism , Capsicum , Capsicum/genetics , Capsicum/metabolism , Oxidative Stress/genetics , Stress, Physiological , Superoxide Dismutase/metabolism , Superoxide Dismutase/therapeutic use , Electrophoresis, Gel, Two-Dimensional , Electrophoresis/methods , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Polymerase Chain Reaction/methods , Droughts/methodsABSTRACT
Arsenic (As) contamination of water and soil has become a subject of prime interest due to its direct effect on human health through drinking water and food. In present study two varieties (CSG-8962 and C-235) of chickpea, Cicer arietinum L., which is a major supplementary food in many parts of India and a valuable source of protein, has been selected to estimate the level of arsenate in root and shoot of five day old seedlings vis-à-vis effect of arsenate on seedling growth and induction of thiols including glutathione (GSH) and phytochelatins (PCs) and their homologues. Both varieties accumulated arsenate to similar levels and most of the metalloid was confined to roots, only about 2.5% was translocated to shoot. Plant growth was also not affected significantly in both the varieties. Arsenate exposure significantly induced the levels of thiols including PCs and homophytochelatins (hPCs). The induction of thiols was much higher in roots than shoots and was greater in var C-235 between the two tested ones. Thus, both varieties tolerated and detoxified arsenic through chelation with GSH, PCs and hPCs, primarily in roots, however var C-235 performed better
Subject(s)
Arsenic/metabolism , Chromatography, High Pressure Liquid , Cicer/growth & development , Phytochelatins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolismABSTRACT
Three basal plant tissue culture media, namely, N6, MS, and modified Y3, were compared to optimize micropropagation protocol for E. guineensis. Full strength media were used separately to regenerate plantlets directly using immature zygotic embryos (IZEs), and through somatic embryogenesis of calli obtained from IZEs. The plantlets regenerated by direct regeneration on three media were examined for shoot length and rooting percentage. For the induction of callus, somatic embryogenesis, and rooting modified Y3 medium was the most effective. In conclusion, the results indicate that modified Y3 medium is the most suitable for direct regeneration, callus induction and somatic embryogenesis in E. guineensis.
Subject(s)
Chlorides/chemistry , Culture Media/metabolism , Germination , Ions , Oils , Plant Extracts/metabolism , Plant Physiological Phenomena , Plant Roots/metabolism , Plant Shoots/metabolism , Regeneration , Time FactorsABSTRACT
The effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism (alpha and beta amylases, sucrose phosphate synthase, sucrose synthase, acid and alkaline invertases) in wheat (Triticum aestivum L.) was investigated in the seedlings of drought-sensitive (PBW 343) and drought-tolerant (C 306) cultivars. The water deficit was induced by adding 6% mannitol (water potential -0.815 Mpa) in the growth medium. The water deficit reduced starch content in the shoots of tolerant seedlings as compared to the sensitive ones, but increased sucrose content in the shoots and roots of tolerant seedlings, indicating their protective role during stress conditions. It also decreased the alpha-amylase activity in the endosperm of seedlings of both the cultivars, but increased alpha and beta amylase activities in the shoots of tolerant ones. Sucrose phosphate synthase (SPS) activity showed a significant increase at 6 days of seedling growth (DSG) in the shoots of stressed seedlings of tolerant cultivar. However, SPS activity in the roots of stressed seedlings of sensitive cultivar was very low at 4 DSG and appeared significantly only at day 6. Sucrose synthase (SS) activity was lower in the shoots and roots of stressed seedlings of tolerant cultivar than sensitive ones at early stage of seedling growth. Higher acid invertase activity in the shoots of seedlings of tolerant cultivar appeared to be a unique characteristic of this cultivar for stress tolerance. Alkaline invertase activity, although affected under water deficit conditions, but was too low as compared to acid invertase activity to cause any significant affect on sucrose hydrolysis. In conclusion, higher sucrose content with high SPS and low acid invertase and SS activities in the roots under water deficit conditions could be responsible for drought tolerance of C 306.
Subject(s)
Carbohydrate Metabolism/physiology , Glucosyltransferases/metabolism , Mannose/chemistry , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Seedlings/enzymology , Sucrose/metabolism , Triticum/enzymology , Water/metabolism , alpha-Amylases/metabolism , beta-Amylase/metabolism , beta-Fructofuranosidase/metabolismABSTRACT
Reduction of vitrification in in vitro raised shoots derived from shoot bases and immature floral buds along with inflorescence axis used as explants of C. borivilianum, a rare medicinal herb is described. Shoot multiplication was obtained on MS medium with 2 mg l(-1) benzylaminopurine (BAP) + 0.1 mg l(-1) indole-3-butyric acid (IBA) and MS medium with 2 mg l(-1) kinetin (Kin) + 0.1 mg l(-1) 2,4-dichlorophenoxy acetic acid (2,4-D) from shoot bases and inflorescence axis respectively. Best multiplication rates were obtained from both the explants on MS medium with 2 mg l(-1) BAP. Vitrification of shoots in cultures appeared during the multiplication stage. Culture bottles with aerated caps reduced the vitrification to 80%. Reduction of BAP concentration from 2 mg l(-1) to zero during subsequent subcultures also minimized vitrification. Use of 0.5-2 mg l(-1) Kin produced healthy shoots when compared to BAP. In vitro raised shoots rooted on Knop salts containing iron and vitamins of MS medium, 2 mg l(-1) IBA and 0.1% activated charcoal. About 80% plantlets survived upon soil transfer. Scanning electron microscopic and image analyzer studies reveal the morphological structural differences between the leaves of normal and vitrified plantlets.
Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacology , Benzyl Compounds/pharmacology , Cytokinins/metabolism , Herbal Medicine , Image Processing, Computer-Assisted , Indoles/pharmacology , Kinetin/pharmacology , Microscopy, Electron, Scanning , Plant Roots/metabolism , Plant Shoots/metabolism , Plants, Medicinal/metabolism , Purines/pharmacology , Time FactorsABSTRACT
In vitro clonal multiplication of apple rootstock MM 111 using axillary buds and shoot apices were carried out. Vegetative axillary buds of the size of 0.2-2.0 cm and shoot apices measuring 4 mm in length were initiated to shoot proliferation on MS medium supplemented with BA (0.5 - 1.0 mgl(-1)), GA3(0.5 mgl(-1)), with or without IBA(0.05 - 0.1 mgl(-1)). Small size explants showed less phenol exudation and less contamination. Following establishment phase, the small shoots emerged from explants were subcultured on MS medium supplemented with different combinations and concentrations of growth regulators. BA (1.0 mgl(-1)) and GA3 (0.5 mgl(-1)) combination showed highest multiplication rate (1:5), andcl also produced longer shoots. Two step rooting was done by transferring microcuttings to auxin free solid medium after root initiation in dark on 1/2 strength MS liquid medium containing IBA (0.5 mgl(-1) ). Rooted plantlets were transferred to peat containing paper cups and resulting plants of MM 111 acclimated successfully for transfer to field.
Subject(s)
Cell Culture Techniques/methods , Cloning, Molecular/methods , Culture Media/pharmacology , Culture Techniques , Fruit , Indoleacetic Acids , Malus/cytology , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolismABSTRACT
Large-scale in vitro propagation protocol for Dendrobium hybrids Sonia 17 and 28, two highly prized commercial cut flower cultivars through shoot multiplication using flower stalk node explants and protocorm-like bodies (PLBs) formation was accomplished. Both hybrids did not exhibit significant differences in initiation, multiplication, rooting, and field establishment. Flower stalk nodes cultured on half strength Murashige and Skoog (MS) medium supplemented with 6.97 microM kinetin (Kn), or 15% coconut water (CW) or 13.3 microM of N6-benzyladenine (BA) evoked bud break. Kn showed better growth of the initiated bud. Excision and culture of the initiated shoots on medium having same amount of Kn developed more than 5 shoots per shoot directly from the base. Subsequent culture enhanced the rate of shoot induction. Transfer of isolated shoots onto 44.4 microM of BA enriched medium displayed induction of more than 6 PLBs from the base within 60 days. PLBs underwent rapid multiplication upon transferral to medium having the same concentration of BA (44.4 microM). Subsequent culture increased the proliferation of PLBs. No decline was observed in the proliferation of shoots as well as PLBs up to 15th subculture. PLBs transferred onto half strength MS medium with 6.97 microM of Kn underwent conversion of more than 90% PLBs to shoots. The shoots were rooted at the best on half strength MS medium with 2 g l(-1) activated charcoal. Survival rate of the plantlets of the two hybrid cultivars after acclimatization was more than 80%.
Subject(s)
Chimera , Culture Techniques/methods , Dendrobium/metabolism , Flowers/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Time FactorsABSTRACT
Effect of unamended and variously amended tailings of Rajpura-Dariba mines, Udaipur, India was studied on certain physiological and biochemical responses of plants. Plants grown in unamended tailings, showed reduction in shoot-root length, shoot-root dry weight, chlorophyll content and an increase in total phenol contents and peroxidase activity. Ameliorations resulted in an increase in growth and chlorophyll contents, a decrease in total phenol contents and reduction in peroxidase activity in the test plants.
Subject(s)
Biodegradation, Environmental , Humans , Metals, Heavy/analysis , Mining , Phaseolus/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Soil Pollutants/analysisABSTRACT
Axillary buds obtained from field grown plants of D. hamiltonii were used to initiate multiple shoots on Murashige and Skoog's medium (MS) supplemented with 2 mg L(-1) 6-benzyl aminopurine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Profuse rooting was achieved when the actively growing shoots were cultured on MS medium supplemented with 1.0 mg l(-1) indole-3-butyric acid (IBA). Regenerated plants were grown successfully in the plains, in contrast to wild growth in high altitudes and rocky crevices of hilly regions. Roots of different sizes from one-year-old tissue culture raised field grown plants had the same profile of 2-hydroxy-4-methoxybenzaldehyde as that of wild plants. A maximum of 0.14% and 0.12% 2-hydroxy-4-methoxybenzaldehyde was produced in roots of one year old tissue culture derived plants and greenhouse grown plants respectively.
Subject(s)
Benzaldehydes/chemistry , Cell Division , Culture Techniques , Gas Chromatography-Mass Spectrometry , India , Indoleacetic Acids/metabolism , Models, Chemical , Plant Roots/metabolism , Plant Shoots/metabolism , Plants/metabolism , TemperatureABSTRACT
Influence of different environmental factors on accumulation of wedelolactone, a potential anti-hepatotoxic principle of E. alba in shoot cultures was investigated. A significant increase in the content of wedelolactone due to kinetin treatment, temperature change and photoperiod alteration in shoot cultures was observed. Incorporation of phenylalanine in the medium also increased content of wedelolactone significantly in a dose-dependent manner.