Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 77
Braz. arch. biol. technol ; 64: e21200319, 2021. tab, graf
Article in English | LILACS | ID: biblio-1345491


Abstract Alkaline pectinase is the utmost significant industrial enzyme of the bioscouring process. By considering bio scouring of cotton, 30 microbial isolates from fruit and vegetable waste rich dump soil of Solang Valley and Vasishta (Manali, Himachal Pradesh, India) were isolated and screened for the alkaline pectinase production in the current research work. Only four isolates P3, P16, P21, and P27 were capable to produce extracellular alkaline pectinase at pH 9. Further by applying submerged fermentation, the alkaline pectinase production was quantitatively screened. The most efficient isolate was P3 identified as Bacillus tropicus, based on morphological, biochemical, and molecular characterization. Molecular characteristics confirmed by 16S rDNA sequence analysis. The nucleotide sequence of the isolate was novel with a 97% similarity index and submitted to the GenBank with accession number MK332379. The Bacillus strain selected was active at broad pH range from 8-10.5 and a temperature range from 25-50 oC. Optimum pH and temperature observed were 9 and 37 oC respectively and can be suitably used for the bio scouring process for the pretreatment of the fabrics.

Polygalacturonase , Bacillus/isolation & purification , Fermentation , Garbage
Biosci. j. (Online) ; 36(3): 924-931, 01-05-2020. tab
Article in English | LILACS | ID: biblio-1146988


Fungi are capable of sensing light from ultraviolet to far-red and they use light as a source of information about the environment anticipating stress and adverse conditions. Lentinus crinitus is a lignin-degrading fungus which produces laccase and other enzymes of biotechnological interest. The effect of blue light on fungal enzymatic activity has been studied; however, it has not been found studies on the effect of the blue light on carbohydrate-active enzymes and on mycelial biomass production of L. crinitus. We aimed to investigate carbohydrate-active enzymes activity and mycelial biomass production of L. crinitus cultivated under continuous illumination with blue light. L. crinitus was cultivated in malt extract medium in the dark, without agitation, and under continuous illumination with blue light-emitting diodes. The blue light reduced the total cellulase, pectinase and xylanase activities but increased the endoglucanase activity. Blue light reduced the mycelial growth of L. crinitus in 26% and the enzymatic activity-to-mycelial biomass ratio (U mg-1 dry basis) increased in 10% total cellulase, 33% endoglucanase, and 16% pectinase activities. Also, it is suggested that L. crinitus has a photosensory system and it could lead to new process of obtaining enzymes of biotechnological interest.

Fungos são capazes de sentir a luz com comprimentos de onda que variam do ultravioleta ao infravermelho e usam a luz como fonte de informação sobre o ambiente, antecipando condições adversas e de estresse. Lentinus crinitus é um fungo ligninolítico que produz lacase e outras enzimas de interesse biotecnológico. O efeito da luz azul na atividade enzimática de fungos já foi estudado, contudo, ainda não há estudos sobre o efeito da luz azul na produção de enzimas ativas sobre carboidratos (CAZymes, carbohydrate-active enzymes) e de biomassa micelial de L. crinitus. O objetivo deste estudo foi investigar a avitivade de CAZymes e a produção de biomassa micelial de L. crinitus cultivado sob iluminação continua com luz azul. L. crinitus foi cultivado em meio extrato de malte, sem agitação, na ausência de luz e sob luz continua fornecida por diodos emissores de luz azul. A luz azul reduziu a atividade de cellulase total, pectinase e xilanase, mas aumentou a atividade de endoglucanase. A luz azul reduziu o crescimento micelial de L. crinitus em 26% e aumentou a razão atividade enzimática/biomassa micelial (U mg-1 em base seca) de cellulase total em 10%, endoglucanase em 33% e pectinase em 16%. Além disso, sugere-se que L. crinitus possua um sistema fotossensorial que poderia ser explorado para a otimização de bioprocessos que visam a obtenção de enzimas de interesse biotecnológico.

Polygalacturonase , Lentinula , Cellulases , Light
Electron. j. biotechnol ; 44: 41-46, Mar. 2020. tab, ilus
Article in English | LILACS | ID: biblio-1087698


Background: The main objective of this study was to isolate fungi associated with Anthopleura xanthogrammica and measure their antimicrobial and enzymatic activities. A total of 93 fungal strains associated with A. xanthogrammica were isolated in this study, of which 32 isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analysis. The antibacterial activities of 32 fungal isolates were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Edwardsiella tarda, Vibrio harveyi, Fusarium oxysporum, and Pyricularia oryzae by agar diffusion assay. Extracellular hydrolytic enzyme activities of the fungal isolates were determined by agar diffusion assays. Enzyme activities were detected from clear halo size. Results: The isolated fungi belonged to 18 genera within 7 taxonomic orders of 1 phylum. The genera Aspergillaceae were the most diverse and common. The antimicrobial activities of 32 isolates were evaluated, and 19 (59.4%) of fungi isolate displayed unique antimicrobial activities. All fungal strains displayed at least one enzyme activity. The most common enzyme activities in the fungi isolates were amylase and protease, while the least common were pectinase and xylanase. Conclusions: This is first report on the sea anemone-derived fungi with antimicrobial and enzyme activities. Results indicated that sea anemone is a hot spot of fungal diversity and a rich resource of bioactive natural products.

Aspergillus/isolation & purification , Sea Anemones/microbiology , Anti-Bacterial Agents/isolation & purification , Peptide Hydrolases/metabolism , Phylogeny , Polygalacturonase/metabolism , Aspergillus/enzymology , Aspergillus/genetics , Bacteria/drug effects , DNA, Ribosomal Spacer , Biodiversity , Fungi/isolation & purification , Fungi/genetics , Amylases/metabolism , Anti-Bacterial Agents/pharmacology
Braz. arch. biol. technol ; 63: e20190515, 2020. tab
Article in English | LILACS | ID: biblio-1132218


Abstract The objective of the present study was to develop a cost-effective medium, using agro-industrial wastes for the production of a polygalacturonase by Wickerhanomyces anomalus of interest in cassava starch industries. The effect of several raw agro-industrial wastes and others nutrients on polygalacturonase production by W. anomalus, were evaluated, in a reference fermentation medium, using statistical designs, by batch culture. The ability of the cell-free supernatant to extract cassava starch was evaluated. Lemon peel was the best inducer for the production of PGase. Statistical analysis of the data showed that lemon peel, Mg+2 and PO4HK2 had significant effect on PGase production, and the others variables (yeast extract, Ca+2, Fe+2, amino acid and trace element solution) were no significant. PGase synthesis reached ~31 EUmL-1, in the OFM (glucose, lemon peel, urea, vitamins, KH2PO4 and MgSO4), after 12 h of culture, at a lab scale bioreactor. PGase of W. anomalus, was able to disintegrate cassava tuber tissue, and the starch granules contained within the cells were released into the reaction medium. Lemon peel can be used as inducer for PGase production by W. anomalus, in a low cost culture medium, appropriate for the production of the enzyme at large scale.

Polygalacturonase/biosynthesis , Bioreactors , Starch and Fecula , Industrial Waste , Cost-Benefit Analysis , Agriculture , Fermentation
Electron. j. biotechnol ; 40: 71-77, July. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1053491


Background: Burdock (Arctium lappa L.) is a fructan-rich plant with prebiotic potential. The aim of this study was to develop an efficient enzymatic route to prepare fructooligosaccharides (FOS)-rich and highly antioxidative syrup using burdock root as a raw material. Results: Endo-inulinase significantly improved the yield of FOS 2.4-fold while tannase pretreatment further increased the yield of FOS 2.8-fold. Other enzymes, including endo-polygalacturonase, endo-glucanase and endo-xylanase, were able to increase the yield of total soluble sugar by 11.1% (w/w). By this process, a new enzymatic process for burdock syrup was developed and the yield of burdock syrup increased by 25% (w/w), whereas with FOS, total soluble sugars, total soluble protein and total soluble polyphenols were enhanced to 28.8%, 53.3%, 8.9% and 3.3% (w/w), respectively. Additionally, the scavenging abilities of DPPH and hydroxyl radicals, and total antioxidant capacity of the syrup were increased by 23.7%, 51.8% and 35.4%, respectively. Conclusions: Our results could be applied to the development of efficient extraction of valuable products from agricultural materials using enzyme-mediated methods.

Oligosaccharides/chemistry , Plant Roots/chemistry , Fructose/chemistry , Glycoside Hydrolases/metabolism , Antioxidants/chemistry , Oligosaccharides/metabolism , Polygalacturonase/metabolism , Carboxylic Ester Hydrolases/metabolism , Chromatography, High Pressure Liquid , Hydroxyl Radical , Arctium , Functional Food , Polyphenols , Fructose/metabolism , Antioxidants/metabolism
Rev. ciênc. farm. básica apl ; 4001/01/2019. ilus, tab
Article in English | LILACS | ID: biblio-1100196


Pectinases are important enzymes not only for their potential applications in different industries such animal feed, agricultural, textile, beverage, food processing, oil extraction, etc. Ten fungal species were isolated from the soil and screened for production of pectinase enzyme by using the pectin agar medium. Pectinolytic enzymes synthesis were attained at a temperature of 30 °C and activities were determined after a seven-days culture of Aspergillus sp. 391 and Aspergillus sp. 031, in a basic medium containing 2% citrus pectin and as the sole carbon source. The extract enzymatic showed an optimum activity for exo-polygalacturonase (PG) and pectin lyase (PNL) against galacturonic acid and pectin at pH 4.5 and 5.5, respectively. There were variations in PG and PNL enzymes levels produced in culture filtrates obtained of Aspergillus sp. 391 with addition of citrus waste (2.0 and 4.0 % w/v) to the medium. Maximum activity for PNL activity was observed in the medium containing 5% pectin or 4% citrus waste, as sole carbon source, after 7 days of growth. The results showed that the isolate Aspergillus sp. 391 is a promising for pectinolytic enzymes production at the industrial level.(AU)

Polygalacturonase , Aspergillus/isolation & purification , Citrus sinensis , Substrates for Biological Treatment , Garbage
Journal of Zhejiang University. Science. B ; (12): 264-272, 2019.
Article in English | WPRIM | ID: wpr-1010456


β-Glucosidase activity assays constitute an important indicator for the early diagnosis of neonatal necrotizing enterocolitis and qualitative changes in medicinal plants. The drawbacks of the existing methods are high consumption of both time and reagents, complexity in operation, and requirement of expensive instruments and highly trained personnel. The present study provides a simplified, highly selective, and miniaturized glucometer-based strategy for the detection of β-glucosidase activity. Single-factor experiments showed that optimum β-glucosidase activity was exhibited at 50 °C and pH 5.0 in a citric acid-sodium citrate buffer when reacting with 0.03 g/mL salicin for 30 min. The procedure for detection was simplified without the need of a chromogenic reaction. Validation of the analytical method demonstrated that the accuracy, precision, repeatability, stability, and durability were good. The linear ranges of β-glucosidase in a buffer solution and rat serum were 0.0873-1.5498 U/mL and 0.4076-2.9019 U/mL, respectively. The proposed method was free from interference from β-dextranase, snailase, β-galactosidase, hemicellulase, and glucuronic acid released by baicalin. This demonstrated that the proposed assay had a higher selectivity than the conventional dinitrosalicylic acid (DNS) assay because of the specificity for salicin and unique recognition of glucose by a personal glucose meter. Miniaturization of the method resulted in a microassay for β-glucosidase activity. The easy-to-operate method was successfully used to detect a series of β-glucosidases extracted from bitter almonds and cultured by Aspergillus niger. In addition, the simplified and miniaturized glucometer-based assay has potential application in the point-of-care testing of β-glucosidase in many fields, including medical diagnostics, food safety, and environmental monitoring.

Animals , Rats , Aspergillus niger , Calibration , Cellulase/analysis , Chemistry, Clinical/methods , Dextranase/analysis , Enterocolitis, Necrotizing/diagnosis , Equipment Design , Flavonoids/analysis , Glucose/analysis , Glucuronic Acid/analysis , Glucuronidase/analysis , Glycoside Hydrolases/analysis , Hydrogen-Ion Concentration , Linear Models , Multienzyme Complexes/analysis , Plants, Medicinal , Polygalacturonase/analysis , Reproducibility of Results , beta-Galactosidase/analysis , beta-Glucosidase/analysis
Biosci. j. (Online) ; 34(4): 1025-1032, july/aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-967254


The present study deals with the isolation screening and optimization of fungal strain for pectinase production. The fungal strains were isolated from different sources, including soil, fruits etc. Qualitative screening was performed on the basis of the pectin hydrolysis zone. While, quantitative screening was carried out employing submerged fermentation. Among all the strains the strains showing highest pectinolytic potential were selected identified and assigned the code Aspergillus niger ABT-5.The influence of different fermentation media on pectinase production was evaluated. The M5 medium containing 10g wheat bran, nutrient medium containing (g/l) of (NH4)2SO4 6.0, K2HPO4 6.0, KH2PO4 6.0, MgSO4.7H2O 0.1 gave the highest pectinase production. The other important physico chemical parameters including incubation period, temperature, and volume of media, size of inoculum, carbon and nitrogen sources were also optimized for pectinase production. The highest pectinase production (15.5U/ml) was obtained at 72h of incubation, pH 6, temperature 30°C, volume of media 50ml. Fructose and urea were designated as best carbon and nitrogen sources subsequently.

O presente estudo trata da triagem de isolamento e otimização da cepa fúngica para produção de pectinase. As cepas fúngicas foram isoladas de diferentes fontes, incluindo solo, frutas, etc. A triagem qualitativa foi realizada com base na zona de hidrólise da pectina. Enquanto, a triagem quantitativa foi realizada utilizando fermentação submersa. Entre todas as cepas, as cepas que apresentaram maior potencial pectinolítico foram selecionadas e atribuídas ao código Aspergillus niger ABT-5. Avaliou-se a influência de diferentes meios de fermentação na produção de pectinase. O meio M5 contendo 10g de farelo de trigo, meio nutriente contendo (g / l) de (NH4)2SO4 6.0, K2HPO4 6.0, KH2PO4 6.0, MgSO4.7H2O 0.1, proporcionou a maior produção de pectinase. Os outros parâmetros físico-químicos importantes, incluindo período de incubação, temperatura e volume dos meios, tamanho do inóculo, fontes de carbono e nitrogênio também foram otimizados para a produção de pectinase. A maior produção de pectinase (15,5U / ml) foi obtida às 72h de incubação, pH 6, temperatura 30 ºC, volume dos meios 50ml. A frutose e a ureia foram designadas como melhores fontes de carbono e nitrogênio posteriormente.

Polygalacturonase , Aspergillus niger , Triticum , Fermentation
Acta sci., Biol. sci ; 40: 41512-41512, 20180000. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460803


The conversion of agroindustrial residues by microorganisms has been explored from fermentative processes to obtain several bioactive molecules. The objective of this work was to isolate and select filamentous fungi present in cassava liquid waste for the production of amylase, carboxymethylcellulose (CMCase), pectinase and xylanase using the same residue as induction substrate in fermentative processes. A total of 65 filamentous fungi were isolated and qualitative tests indicated that approximately 86% of these strains were able to produce at least one of the enzymes and 32% capable of producing the four enzymes. Fermentation assays in cassava liquid residue-containing medium showed 6 fungal lines as potential enzyme producers. The maximum activities of pectinase, xylanase, amylase and CMCase were respectively observed at 96 hours of fermentation by the strain by the strain Aspergillus sp. B5C; at 120 hours (163.6 ± 0.13 nKat mL-1), by Aspergillus sp. B4I; at 144 hours (99.8 ± 0.24 nKat mL-1), by Penicillium sp. B3A; and at 48 hours (55.5 ± 0.21 nKat mL-1), by Aspergillus sp. B4O. These results suggest that cassava liquid waste was source of filamentous fungi producing amylase, CMCase, pectinase and xylanase, as well as a promising alternative substrate for bioprocesses aiming the production of enzymes.

A conversão de resíduos agroindustriais por micro-organismos tem sido explorada a partir de processos fermentativos para obtenção de diversas moléculas bioativas. O objetivo deste trabalho foi isolar e selecionar fungos filamentosos presentes em manipueira para produção de amilase, carboximetilcelulase (CMCase), pectinase e xilanase utilizando o próprio resíduo como substrato indutor. Um total de 65 fungos filamentosos foi isolado e testes qualitativos indicaram que, aproximadamente, 86% dessas linhagens foram hábeis em produzir pelo menos uma das enzimas e 32% capazes de produzir as quatro enzimas. Ensaios fermentativos em meio contendo manipueira apontaram 6 linhagens fúngicas como potenciais produtoras de enzimas. As atividades máximas de pectinase, xilanase, amilase e CMCase foram observadas, respectivamente, às 96 horas de fermentação (67.4 ± 0,6 nKat mL-1), pela linhagem Aspergillus sp. B5C; às 120 horas (163.6 ± 0,13 nKat mL-1), por Aspergillus sp. B4I; às 144 horas (99.8 ± 0,24 nKat mL-1), por Penicillium sp. B3A; e às 48 horas (55.5 ± 0,21 nKat mL-1), por Aspergillus sp. B4O. Estes resultados sugerem a manipueira como fonte de fungos filamentosos produtores de amilase, CMCase, pectinase e xilanase, além de um promissor substrato alternativo para bioprocessos visando a produção dessas enzimas.

Amylases , Fermentation , Fungi/enzymology , Polygalacturonase
Biol. Res ; 51: 28, 2018. tab, graf
Article in English | LILACS | ID: biblio-983933


BACKGROUND: Pectinase enzymes catalyze the breakdown of pectin, a key component of the plant cell wall. At industrial level, pectinases are used in diverse applications, especially in food-processing industry. Currently, most of the industrial pectinases have optimal activity at mesophilic temperatures. On the contrary, very little is known about the pectinolytic activities from organisms from cold climates such as Antarctica. In this work, 27 filamentous fungi isolated from marine sponges collected in King George Island, Antarctica, were screened as new source of cold-active pectinases. RESULTS: In semi-quantitative plate assays, 8 out 27 of these isolates showed pectinolytic activities at 15 °C and one of them, Geomyces sp. strain F09-T3-2, showed the highest production of pectinases in liquid medium containing pectin as sole carbon source. More interesting, Geomyces sp. F09-T3-2 showed optimal pectinolytic activity at 30 °C, 10 °C under the temperature of currently available commercial mesophilic pectinases. CONCLUSION: Filamentous fungi associated with Antarctic marine sponges are a promising source of pectinolytic activity. In particular, pectinases from Geomyces sp. F09-T3-2 may be potentially suitable for biotechnological applications needing cold-active pectinases. To the best of our knowledge, this is the first report describing the production of pectinolytic activity from filamentous fungi from any environment in Antarctica.

Animals , Polygalacturonase/biosynthesis , Porifera/microbiology , Fungi/enzymology , Cold Temperature , Antarctic Regions
Arq. bras. med. vet. zootec. (Online) ; 70(5): 1633-1640, set.-out. 2018. tab
Article in English | LILACS, VETINDEX | ID: biblio-947775


A study was conducted to investigate the effect of Dietary Fiber Concentrates (DFCs) on growth performance, gut morphology, and hepatic metabolic intermediates in jundiá (Rhamdia quelen). At the end of the trial, growth and intestinal villus height was significantly (P< 0.05) higher in fish fed diets supplemented with DFCs. However, the animals in commercial prebiotic group showed higher values for this variable compared to the other treatments. Regarding the thickness of the epithelium bowel, it was greater in the Control group compared to animals supplemented with ß-glucan+mannan. Likewise, treatment with commercial prebiotic showed higher values of epithelium bowel compared to the DFCs. The fish supplemented with DFCs, had higher glycogen storage compared to the control group. These results indicate that DFCs can be considered as a beneficial dietary supplement for improving growth performance, gut morphology, and hepatic metabolic intermediates of jundiá.(AU)

O presente estudo foi conduzido para investigar o efeito de concentrados de fibras alimentares (CFAs) sobre o desempenho de crescimento, a morfologia intestinal e os parâmetros intermediários metabólicos hepáticos de jundiás (Rhamdia quelen). No final do experimento, o crescimento e a altura das vilosidades intestinais foram significativamente (P<0,05) maiores em peixes alimentados com dietas suplementadas com CFAs. No entanto, os animais suplementados com prebiótico comercial apresentaram valores mais elevados para essa variável em comparação com os outros tratamentos. Em relação à espessura do epitélio intestinal, esta foi maior nos animais do grupo controle em comparação com os animais suplementados com ß-glucano + manano. Da mesma forma, os peixes suplementados com prebiótico comercial apresentaram valores mais elevados do epitélio intestinal em comparação com os peixes suplementados com CFAs. Os peixes suplementados com CFAs obtiveram maior armazenamento de glicogênio em relação ao grupo controle. Esses resultados indicam que os CFAs podem ser utilizados como um suplemento alimentar benéfico para melhorar o desempenho do crescimento, a morfologia intestinal e os intermediários metabólicos hepáticos do jundiá.(AU)

Animals , Dietary Fiber/adverse effects , Fishes/growth & development , Prebiotics/administration & dosage , Polygalacturonase/analysis
Rev. argent. microbiol ; 48(4): 267-273, dic. 2016. graf, tab
Article in English | LILACS | ID: biblio-843173


Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on many commercially important species. Damages caused by this pathogen in soybean and maize crops in Argentina during drought and hot weather have increased due its ability to survive as sclerotia in soil and crop debris under non-till practices. In this work, we explored the in vitro production of plant cell wall-degrading enzymes --#91;pectinases (polygalacturonase and polymethylgalacturonase); cellulases (endoglucanase); hemicellulases (endoxylanase) and the ligninolytic enzyme laccase--#93; by several Argentinean isolates of M. phaseolina, and assessed the pathogenicity of these isolates as a preliminary step to establish the role of these enzymes in M. phaseolina-maize interaction. The isolates were grown in liquid synthetic medium supplemented with glucose, pectin, carboxymethylcellulose or xylan as carbon sources and/or enzyme inducers and glutamic acid as nitrogen source. Pectinases were the first cell wall-degrading enzymes detected and the activities obtained (polygalacturonase activity was between 0.4 and 1.3 U/ml and polymethylgalacturonase between 0.15 and 1.3 U/ml) were higher than those of cellulases and xylanases, which appeared later and in a lesser magnitude. This sequence would promote initial tissue maceration followed by cell wall degradation. Laccase was detected in all the isolates evaluated (activity was between 36 U/l and 63 U/l). The aggressiveness of the isolates was tested in maize, sunflower and watermelon seeds, being high on all the plants assayed. This study reports for the first time the potential of different isolates of M. phaseolina to produce plant cell wall-degrading enzymes in submerged fermentation.

Macrophomina phaseolina es un fitopatógeno polífago, causante de podredumbre carbonosa. Los daños que genera en cultivos de soja y maíz bajo siembra directa en Argentina, en períodos secos y calurosos, se incrementaron por su habilidad para sobrevivir como esclerocios en suelos y restos de cosecha. El propósito del trabajo fue estudiar la producción in vitro de enzimas degradadoras de pared celular vegetal (pectinasas --#91;poligalacturonasa y polimetilgalacturonasa--#93;; celulasas --#91;endoglucanasa--#93;; hemicelulasas --#91;endoxilanasa--#93; y la enzima ligninolítica lacasa) de varios aislamientos argentinos de M. phaseolina y evaluar la patogenicidad de esos aislamientos, como paso preliminar para establecer el papel de estas enzimas en la interacción M. phaseolina-maíz. Se estudió la cinética de crecimiento del hongo y la de la producción de dichas enzimas en medios de cultivo líquidos sintéticos con ácido glutámico como fuente de nitrógeno y con pectina, carboximetilcelulosa (CMC) o xilano como fuentes de carbono. Las pectinasas fueron las primeras enzimas detectadas y los máximos títulos registrados (1,4 UE/ml --#91;poligalacturonasa--#93; y 1,2 UE/ml --#91;polimetilgalacturonasa--#93;, respectivamente) superaron a los de celulasas y xilanasas, que aparecieron más tardíamente y en menor magnitud. Esta secuencia promovería la maceración inicial del tejido, seguida luego por la degradación de la pared celular vegetal. Se detectó actividad lacasa en todos los aislamientos (36 a 63 U/l). La agresividad de todos los aislamientos resultó alta en los 3 hospedantes evaluados: semillas de maíz, de girasol y de melón. En este trabajo se investiga por primera vez el potencial de distintos aislamientos de M. phaseolina para producir enzimas degradadoras de pared celular vegetal en cultivo líquido.

In Vitro Techniques/methods , Cell Wall/enzymology , Zea mays/enzymology , Zea mays/parasitology , Polygalacturonase/isolation & purification , Cellulase/isolation & purification , Endo-1,4-beta Xylanases/isolation & purification
Braz. j. microbiol ; 46(3): 815-823, July-Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-755801


Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking.


Ascomycota/enzymology , Cryptococcus/enzymology , Polygalacturonase/metabolism , Rhodotorula/enzymology , Vitis/microbiology , Wine/microbiology , Argentina , Ascomycota/isolation & purification , Cryptococcus/isolation & purification , Fermentation/physiology , Molecular Sequence Data , Molecular Typing , Mycological Typing Techniques , Polymerase Chain Reaction , Pectins/metabolism , RNA, Ribosomal/genetics , Rhodotorula/isolation & purification
Electron. j. biotechnol ; 18(3): 161-168, May 2015. ilus, tab
Article in English | LILACS | ID: lil-750642


Background The high capacity of chloroplast genome response to integrate and express transgenes at high levels makes this technology a good option to produce proteins of interest. This report presents the stable expression of Pectin lyase (PelA gene) and the first stable expression of manganese peroxidase (MnP-2 gene) from the chloroplast genome. Results pES4 and pES5 vectors were derived from pPV111A plasmid and contain the PelA and MnP-2 synthetic genes, respectively. Both genes are flanked by a synthetic rrn16S promoter and the 3'UTR from rbcL gene. Efficient gene integration into both inverted repeats of the intergenic region between rrn16S and 3'rps'12 was confirmed by Southern blot. Stable processing and expression of the RNA were confirmed by Northern blot analysis. Enzymatic activity was evaluated to detect expression and functionality of both enzymes. In general, mature plants showed more activity than young transplastomic plants. Compared to wild type plants, transplastomic events expressing pectin lyase exhibited enzymatic activity above 58.5% of total soluble protein at neutral pH and 60°C. In contrast, MnP-2 showed high activity at pH 6 with optimum temperature at 65°C. Neither transplastomic plant exhibited an abnormal phenotype. Conclusion This study demonstrated that hydrolytic genes PelA and MnP-2 could be integrated and expressed correctly from the chloroplast genome of tobacco plants. A whole plant, having ~ 470 g of biomass could feasibly yield 66,676.25 units of pectin or 21,715.46 units of manganese peroxidase. Also, this study provides new information about methods and strategies for the expression of enzymes with industrial value.

Polygalacturonase/genetics , Polygalacturonase/metabolism , Nicotiana , Chloroplasts/genetics , Peroxidase/genetics , Peroxidase/metabolism , Temperature , Bacteria/enzymology , Transformation, Genetic , Cell Wall , Blotting, Southern , Polymerase Chain Reaction , Fungi/enzymology , Hydrogen-Ion Concentration , Hydrolases
Mycobiology ; : 81-86, 2015.
Article in English | WPRIM | ID: wpr-729856


To promote the selection of promising monokaryotic strains of button mushroom (Agaricus bisporus) during breeding, 61 progeny strains derived from basidiospores of two different lines of dikaryotic parental strains, ASI1038 and ASI1346, were analyzed by nucleotide sequencing of the intergenic spacer I (IGS I) region in their rDNA and by extracellular enzyme assays. Nineteen different sizes of IGS I, which ranged from 1,301 to 1,348 bp, were present among twenty ASI1346-derived progeny strains, while 15 different sizes of IGS I, which ranged from 700 to 1,347 bp, were present among twenty ASI1038-derived progeny strains. Phylogenetic analysis of the IGS sequences revealed that different clades were present in both the ASI10388- and ASI1346-derived progeny strains. Plating assays of seven kinds of extracellular enzymes (beta-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease) also revealed apparent variation in the ability to produce extracellular enzymes among the 40 tested progeny strains from both parental A. bisporus strains. Overall, this study demonstrates that characterization of IGS I regions and extracellular enzymes is useful for the assessment of the substrate-degrading ability and heterogenicity of A. bisporus monokaryotic strains.

Humans , Agaricales , Amylases , Breeding , Cellulases , DNA, Ribosomal , Enzyme Assays , Parents , Polygalacturonase
Mycobiology ; : 458-466, 2015.
Article in English | WPRIM | ID: wpr-729590


Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were sampled from larvae and adult beetles (female and male) of P. koryoensis in Cheonan, Goyang, and Paju; 8 species were identified by based on their morphological, biochemical and molecular analyses. Meyerozyma guilliermondii and Candida kashinagacola were found to be the two dominant species. Among the 8 species, Candida homilentoma was a newly recorded yeast species in Korea, and thus, its mycological characteristics were described. The P. koryoensis symbiont R. quercusmongolicae did not show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure; however, C. kashinagacola and M. guilliermondii did show the three extracellular enzymatic activities. Extracelluar CM-cellulase activity was also found in Ambrosiozyma sp., C. homilentoma, C. kashinagacola, and Candida sp. Extracelluar pectinase activity was detected in Ambrosiozyma sp., C. homilentoma, Candida sp., and M. guilliermondii. All the 8 yeast species displayed compatible relationships with R. quercus-mongolicae when they were co-cultivated on yeast extract-malt extract plates. Overall, our results demonstrated that P. koryoensis carries the yeast species as a symbiotic fungal associate. This is first report of yeast diversity associated with P. koryoensis.

Adult , Humans , Ambrosia , Coleoptera , Candida , Cellulases , Fungi , Korea , Larva , Platypus , Polygalacturonase , Quercus , Symbiosis , Wood , Yeasts
Salud(i)ciencia (Impresa) ; 20(6): 614-618, jun.2014.
Article in Spanish | LILACS | ID: lil-796468


El cáncer de colon es uno de los tipos de cáncer más frecuentes en el mundo y una de las principales causas de mortalidad por cáncer. El hallazgo epidemiológico del papel protector de las frutas contra el cáncer propone que los fitoquímicos presentes en estos alimentos pueden ser responsables de la disminución del riesgo. Actualmente, se avanza en la identificación de más y nuevos compuestos naturales o alimentos con propiedades quimio preventivas, capaces de interferir en las primeras etapas de la carcinogénesis, evitar la aparición de lesiones pre neoplásicas y limitar la aparición de nuevas células tumorales. Los agentes quimio preventivos se clasifican en bloqueadores de la iniciación y supresores de la promoción o progresión, entre los cuales se encuentran componentes de las frutas mango (Mangifera indica) y manzana (Malus spp, Rosacea) como ácido ascórbico, carotenoides, mangiferina, quercetina, pectina y procianidinas. Los extractos, fracciones enriquecidas con estos fitoquímicos, o jugos han sido capaces de influir sobre diferentes mecanismos importantes para prevenir el cáncer de colon en estudio sin vitro, algunos validados en modelos in vivo. Estos incluyen actividad antioxidante, modulación de las vías de transducción de señales, del metabolismo de poliaminas, algunos eventos epigenéticos, antiproliferación, alteración o bloqueo del ciclo celular, apoptosis y disminución de lesiones pre neoplásicas en modelos con animales...

Humans , Malus , Mangifera , Colonic Neoplasms , Antioxidants , Carotenoids , Phytochemicals , Polyphenols , Polygalacturonase , Quercetin , Chemoprevention , Ascorbic Acid
Braz. j. microbiol ; 45(1): 97-104, 2014. ilus, tab
Article in English | LILACS | ID: lil-709484


Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T660nm = 97.0%) of juice was attained after 2 h of incubation at 50 ºC in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property.

Aspergillus/enzymology , Beverages , Food Handling/methods , Polygalacturonase/isolation & purification , Polygalacturonase/metabolism , alpha-Amylases/isolation & purification , alpha-Amylases/metabolism , Aspergillus/growth & development , Culture Media/chemistry , Free Radical Scavengers/analysis , Phenols/analysis , Temperature , Time Factors
São Paulo; s.n; s.n; jul. 2013. 117 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-837019


As proteínas inibidoras de poligalacturonases (PGIPs) presentes na parede celular são capazes de limitar o potencial destrutivo da poligalacturonase (PG) fúngica e, assim, constituem um tipo importante dentre os diversos sistemas de defesa do tecido vegetal frente à infecção fúngica. No mamão, o ataque fitopatogênico é o principal causador de danos pós-colheita, e sua alta susceptibilidade pode estar relacionada com a baixa eficácia ou pouca abundância dos meios de defesa anti-fitopatogênica. Uma vez que isso pode estar relacionado com as PGIPs e nada se conhece sobre o papel dessas proteínas nesse fruto, o objetivo do trabalho foi clonar os genes das PGIPs de mamoeiro e definir seu padrão de expressão em diferentes órgãos e tecidos e ao longo do amadurecimento. Para tanto, foram identificadas no genoma do mamoeiro, a partir de critérios que definem a identidade de uma PGIP, duas prováveis sequências dentre 13 candidatas iniciais. Ambas foram clonadas a partir das sequências genômicas e de cDNA, sequenciadas e sua identidade confirmada, sendo denominadas Cppgip4 e Cppgip6. As análises de expressão relativa em diversos tecidos e idades fisiológicas do mamoeiro demonstraram que os dois genes apresentaram diminuição da expressão com o desenvolvimento dos frutos, sendo que com a polpa apresentou redução dos níveis de expressão relativa de Cppgip4 em até 18 vezes dos 30 dias pós-antese (DPA) ao 9 dias pós-colheita (DPC). Na casca também houve redução significativa da expressão com o desenvolvimento. Para a expressão absoluta, nos frutos, sementes, caules, raízes e folhas, o número de cópias de ambos os transcritos decresceu com o desenvolvimento, sendo cerca de cem mil vezes mais abundante para Cppgip6 que para Cppgip4. As tentativas de expressão de proteínas recombinantes em Pichia pastoris não geraram resultado positivo, provavelmente em virtude das condições ideais de indução ainda não terem sido estabelecidas corretamente para o ensaio. A atividade de PGIPs extraídas diretamente do tecido foi medida por análise de difusão em ágar empregando pectinase de Aspergillus niger e revelou uma tendência à diminuição da porcentagem de inibição à medida que os frutos se desenvolveram, em concordância com os resultados da análise por qPCR. O conjunto de resultados sugere que a expressão varia com o estádio de desenvolvimento do fruto e é tecido-específica, possivelmente em resposta à diferente susceptibilidade dos tecidos ao ataque fitopatogênico, indicando que menores níveis de transcritos e atividade no amadurecimento, período de maior susceptibilidade, poderiam sinalizar para a regulação do processo degradativo marcando o início da senescência

Polygalacturonase inhibiting proteins (PGIPs) present in plant cell walls are able to inhibit the destructive action of fungal polygalacturonase (PG). In this way, they constitute an important type of plant defense system against fungal infections. In papaya fruit, the pathogenic attack is the main cause of post harvesting loss, and its high susceptibility may be related to the low efficiency or low abundance of anti-phytopathogenic defense. Since this fact could be related to PGIPs expression and little is known about the response of these proteins in the fruit, the aim of the present work was to clone the genes of PGIPs papaya fruit and set their expression pattern in different organs and tissues throughout fruit ripening. Thus, two probable PGIP sequences among 13 initial candidates were identified in the papaya genome by using specific criteria. Both sequences were cloned from cDNA and genomic samples, sequenced and confirmed its identity, and then being named Cppgip4 and Cppgip6. Analysis of relative expression in various tissues at different physiological stages demonstrated that both genes were down regulated during fruit development. The relative expression levels of Cppgip4 in papaya pulp was reduced by 18 times from the 30 days post-anthesis (DPA) to the 9 days post-harvest (DPH). Similarly, gene expression in papaya peel was significant down regulated during fruit development. Absolute expression analysis revealed gene expressions in the fruit pulp, seed, stem, root and leaf were also down regulated within development. Moreover, Cppgip6 gene expression was a hundred thousand times more abundant than Cppgip4. The recombinant protein expression in Pichia pastoris did not result positive, probably because of the ideal conditions of induction have not been properly established the yet. The activity of PGIPs extracted directly from the tissue was measured by the agar diffusion assay using pectinase from Aspergillus niger and showed decrease of inhibition during fruit developed in accordance with the results of the qPCR analysis. Based on the results it is possible to suggest the expression of these genes varies temporally with the developmental stage of the fruit and is tissue-specific, possibly in response to the different susceptibility of tissues to pathogenic attack. In addition, the lowest levels of PGIP expression were achieved at the fruit ripening, when the susceptibility to fungal infection is high and could signal for regulating the degradation process characterized by the onset of senescence

Polygalacturonase , Polygalacturonase/analysis , Microbial Sensitivity Tests/instrumentation , Cloning, Organism/methods , Carica/classification , Pichia , Aspergillus niger , Gene Expression , Fungal Capsules , Infections , Molecular Biology/methods
Pakistan Journal of Pharmaceutical Sciences. 2013; 26 (4): 691-697
in English | IMEMR | ID: emr-126960


Utilization of highly specific enzymes for various industrial processes and applications has gained huge momentum in the field of white biotechnology. Selection of a strain by efficient plate-screening method for a specific purpose has also favored and boosted the isolation of several industrially feasible microorganisms and screening of a large number of microorganisms is an important step in selecting a potent culture for multipurpose usage. Five new bacterial isolates of Bacillus licheniformis were discovered from indigenous sources and characterized on the basis of phylogeny using 16S rDNA gene analysis. Studies on morphological and physiological characteristics showed that these isolates can easily be cultivated at different temperatures ranging from 30°C to 55°C with a wide pH values from 3.0 to 11.0 All these 05 isolates are salt tolerant and can grow even in the presences of high salt concentration ranging from 7.0 to 12.0%. All these predominant isolates of B. licheniformis strains showed significant capability of producing some of the major industrially important extracellular hydrolytic enzymes including alpha-amylase, glucoamylase, protease, pectinase and cellulase in varying titers. All these isolates hold great potential as commercial strains when provided with optimum fermentation conditions

Phylogeny , alpha-Amylases , Glucan 1,4-alpha-Glucosidase , Polygalacturonase , Fermentation