Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 141
Pesqui. bras. odontopediatria clín. integr ; 22: e210114, 2022. tab, graf
Article in English | LILACS, BBO | ID: biblio-1365227


ABSTRACT Objective To compare the cytotoxicity of commercial reparative endodontic cements on human periodontal ligament stem cells (hPDLSCs). Material and Methods The culture of hPDLSCs was established. Cell density was set at 2 × 104 cells/well in 96-well plates. Extracts of Biodentine, Bio-C Repair, Cimmo HD, MTA Repair HP and White MTA were prepared. Then, the extracts were diluted (pure, 1:4 and 1:16) and inserted into cell-seeded wells for 24, 48, and 72 h to assess cell viability through MTT assay. hPDLSCs incubated with culture medium alone served as a negative control group. Data were analyzed by Two-Way ANOVA and Tukey's test (α=0.05). Results At 24 h, pure extract of MTA Repair HP and Biodentine 1:16 presented higher cell viability compared to control. Lower cell viability was found for pure extract of Cimmo HD, MTA Repair HP 1:4 and 1:16, and White MTA 1:16. At 48 h, pure extract of Bio-C Repair and MTA Repair HP presented higher cell viability compared to control. At 72 h, only the pure extract of MTA Repair HP led to higher cell proliferation compared to control. Conclusion Biodentine, Bio-C Repair and MTA Repair HP were able to induce hPDLSCs proliferation. Cimmo HD and White MTA were found to be mostly cytotoxic in hPDLSCs.

Periodontal Ligament/anatomy & histology , Root Canal Filling Materials , Stem Cells/immunology , Cytotoxicity Tests, Immunologic/instrumentation , Dental Cements , Immunologic Tests/instrumentation , Brazil , Cell Count , Analysis of Variance , Endodontics , Primary Cell Culture
Braz. arch. biol. technol ; 63: e20190072, 2020. graf
Article in English | LILACS | ID: biblio-1132180


Abstract In live organisms, there is a balance between the production of reactive oxygen species (ROS) and their neutralization. The increased level of these species leads to a condition called redox imbalance. The aim of this study was to evaluate the protective action of isobenzofuranones in primary cultures of hippocampal neurons subjected to redox imbalance. To accomplish this, MTT and LIVE/DEAD assays were initially performed. In the cultures pretreated with isobenzofuranones 1 and 2, there was a higher number of live cells when compared to that in the untreated ones. Regarding redox imbalance, there was a significant increase in the intracellular levels of ROS. The cultures pretreated with isobenzofuranones showed a reduction in ROS levels. Lipid peroxidation caused by oxidative damage was significantly reduced in the cultures pretreated with isobenzofuranones 1 and 2. Taken together, these data show the ability of isobenzofuranones 1 and 2 to significantly minimize cytotoxicity, cell death, intracellular levels of ROS and lipid peroxidation induced by redox imbalance. These results suggest that isobenzofuranones 1 and 2 represent a possible alternative therapy for the neurodegenerative disturbances that are triggered by ROS production increases.

Animals , Male , Mice , Oxidation-Reduction/drug effects , Benzofurans/pharmacology , Reactive Oxygen Species , Neuroprotective Agents/pharmacology , Hydrogen Peroxide , Benzofurans/chemical synthesis , Cell Death , Primary Cell Culture , Hippocampus/cytology , Neurons/metabolism
Pesqui. vet. bras ; 39(4): 292-298, Apr. 2019. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1002809


The importance of the hoof to the horse health is clear, and the current knowledge regarding the cellular aspects of hoof keratinocytes is poor. Studies on equine keratinocyte culture are scarce. Developing keratinocyte cultures in vitro is a condition for studies on molecular biology, cell growth and differentiation. Some methods have already been established, such as those for skin keratinocyte culture. However, few methodologies are found for lamellar keratinocytes. The objective of this study was to standardize the equine hoof keratinocyte isolation and cultivation, and then characterize the cell immunophenotype. For this, the primary culture method used was through explants obtained from three regions of the equine hoof (medial dorsal, dorsal, and lateral dorsal). After the cell isolation and cultivation, the cell culture and its explants were stained with anti-pan cytokeratin (pan-CK) (AE1/AE3), vimentin (V9), p63 (4A4), and Ki-67 (MIB-1) antibodies. Cells were grown to third passage, were positive for pan-CK, p63 and Ki-67, and few cells had vimentin positive expression. As for the explants, the epidermal laminae were not stained for vimentin or Ki-67. However, some cells presented positive pan-CK and p63 expression. This study demonstrated the viability of lamellar explants of equine hooves as a form of isolating keratinocytes in primary cultures, as well as characterized the proliferation ability of such keratinocytes in monolayers.(AU)

É notória a importância do casco na saúde dos equinos, mas o conhecimento em nível celular é pouco entendido. Estudos envolvendo o cultivo de queratinócitos equinos são escassos. Sabe-se que o desenvolvimento de cultivos de queratinócitos in vitro é uma condição para estudos sobre a biologia molecular, crescimento e diferenciação celular. Alguns métodos já estão estabelecidos, como para cultivo de queratinócitos de pele, mas poucas metodologias são encontradas para queratinócitos lamelares. O objetivo desse estudo foi padronizar o cultivo de queratinócitos provenientes de casco equino visando futuramente associar ao estudo da medicina regenerativa para assim estabelecer um modelo experimental in vitro e indicar o uso criterioso de terapias regenerativas para a laminite equina. Desta forma, o cultivo em monocamada e a caracterização de queratinócitos lamelares foram realizados. Para isso, o método de cultura primária utilizado foi através de explantes obtidos de três regiões do casco (dorso-medial, dorsal e dorso-lateral). As células foram caracterizadas para os marcadores anti pan-cytokeratin (AE1/AE3), vimentin (V9), p63 (4A4) e Ki-67 (MIB-1) nos cultivos e nos explantes. As células foram cultivadas até terceira passagem, tendo marcação positiva para pan-CK, p63 e Ki-67 e fraca marcação para vimentina. Já as lâminas epidermais não tiveram marcação de vimentin e Ki-67, porém marcaram acentuadamente para pan-CK e p63. Este estudo demonstrou a exiquibilidade do uso de explantes lamelares do casco de equinos, como forma de isolamento de queratinócitos em cultivos primários, bem como caracterizou a habilidade de proliferação desses queratinócitos em monocamada.(AU)

Animals , Primary Cell Culture/veterinary , Foot Diseases/veterinary , Hoof and Claw/pathology , Horse Diseases/pathology , Horse Diseases/therapy , Keratinocytes/cytology
Neuroscience Bulletin ; (6): 216-224, 2019.
Article in English | WPRIM | ID: wpr-775435


Diffuse intrinsic pontine glioma (DIPG) is the main cause of brain tumor-related death among children. Until now, there is still a lack of effective therapy with prolonged overall survival for this disease. A typical strategy for preclinical cancer research is to find out the molecular differences between tumor tissue and para-tumor normal tissue, in order to identify potential therapeutic targets. Unfortunately, it is impossible to obtain normal tissue for DIPG because of the vital functions of the pons. Here we report the human fetal hindbrain-derived neural progenitor cells (pontine progenitor cells, PPCs) as normal control cells for DIPG. The PPCs not only harbored similar cell biological and molecular signatures as DIPG glioma stem cells, but also had the potential to be immortalized by the DIPG-specific mutation H3K27M in vitro. These findings provide researchers with a candidate normal control and a potential medicine carrier for preclinical research on DIPG.

Animals , Brain Stem Neoplasms , Genetics , Metabolism , Pathology , Cell Line, Tumor , Cellular Senescence , Female , Glioma , Genetics , Metabolism , Pathology , Histones , Genetics , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplastic Stem Cells , Metabolism , Pathology , Neural Stem Cells , Metabolism , Pathology , Pons , Embryology , Metabolism , Pathology , Primary Cell Culture
Asian Spine Journal ; : 875-889, 2019.
Article in English | WPRIM | ID: wpr-785500


STUDY DESIGN: Development of an in vitro model for assessing the anti-inflammatory efficacies of naringin (Nar) and naringenin (NG).PURPOSE: To evaluate the efficacy of natural flavonoids as therapeutic drugs against anti-inflammatory processes in the nucleus pulposus (NP) cells using in-vitro and in-silico methods.OVERVIEW OF LITERATURE: Intervertebral disc (IVD) disease is a common cause of low back pain. Chronic inflammation and degeneration play a significant role in its etiopathology. Thus, a better understanding of anti-inflammatory agents and their role in IVD degeneration and pro-inflammatory cytokines expression is necessary for pain management and regeneration in IVD.METHODS: We performed primary cell culture of NP cells; immunocytochemistry; gene expression studies of cytokines, metalloproteases, extracellular proteins, and apoptotic markers using quantitative polymerase chain reaction and reverse transcription-polymerase chain reaction (RT-PCR); cytotoxicity assay (MTT); and molecular docking studies using AutoDock 4.2 software (Molecular Graphics Laboratory, La Jolla, CA, USA) to confirm the binding mode of proteins and synthesized complexes. We calculated the mean±standard deviation values and performed analysis of variance and t-test using SPSS ver. 17.0 (SPSS, Inc., Chicago, IL, USA).RESULTS: Molecular docking showed that both Nar and NG bind to the selected genes of interest. Semi-quantitative RT-PCR analysis reveals differential gene expression of collagen (COL)9A1, COL9A2, COL9A3, COL11A2, COMT (catechol-O-methyltransferase), and THBS2 (thrombospondin 2); up regulation of ACAN (aggrecan), COL1A1, COL11A1, interleukin (IL)6, IL10, IL18R1, IL18RAP, metalloprotease (MMP)2, MMP3, MMP9, ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5), IGF1R (insulin-like growth factor type 1 receptor), SPARC (secreted protein acidic and cysteine rich), PARK2 (parkin), VDR (vitamin D receptor), and BCL2 (B-cell lymphoma 2); down regulation of IL1A, CASP3 (caspase 3), and nine genes with predetermined concentrations of Nar and NG.CONCLUSIONS: The present study evaluated the anti-inflammatory and regenerative efficiencies of Nar and NG in degenerated human NP cells. Altered gene expressions of cytokines, metalloproteases, extracellular proteins, apoptotic genes were dose responsive. The molecular docking (in silico) studies showed effective binding of these native ligands (Nar and NG) with genes identified as potent inhibitors of inflammation. Thus, these natural flavonoids could serve as anti-inflammatory agents in the treatment of low back pain and sciatica.

Anti-Inflammatory Agents , Caspase 3 , Collagen , Cysteine , Cytokines , Down-Regulation , Flavonoids , Gene Expression , Humans , Immunohistochemistry , In Vitro Techniques , Inflammation , Interleukin-10 , Interleukins , Intervertebral Disc , Intervertebral Disc Degeneration , Ligands , Low Back Pain , Lymphoma , Metalloproteases , Models, Molecular , Pain Management , Polymerase Chain Reaction , Primary Cell Culture , Regeneration , Sciatica , Thrombospondins , Up-Regulation
Rio de Janeiro; s.n; 2019. 105 p. ilus.
Thesis in Portuguese | LILACS | ID: biblio-1050177


Toxoplasma gondii é um protozoário parasito intracelular obrigatório disseminado pelo mundo, capaz de infectar células nucleadas de todos os animais de sangue quente: aves e mamíferos, incluindo o homem. Com grande promiscuidade em relação aos seus hospedeiros intermediários, T. gondii é altamente específico quanto à etapa sexuada de seu ciclo intestinal no seu hospedeiro definitivo, o felino. Apesar da importância do ciclo enteroepitelial para o ambiente, há grandes lacunas no entendimento deste ciclo. Grande parte do conhecimento atual é produto do desenvolvimento de pesquisas in vivo em décadas passadas. Hoje a eutanásia de gatos para fins científicos é praticamente proibida e como não existem linhagens contínuas de enterócitos de felinos disponíveis comercialmente, dificulta a realização de pesquisas in vitro. Assim, neste estudo aplicamos o modelo de cultura primária de células epiteliais intestinais de felinos (CEIF) como ferramenta para reproduzir o ciclo sexuado in vitro e identificar os estágios enteroepiteliais do parasito

O monitoramento in situ das células epiteliais intestinais de felino mostrou a reprodutibilidade do fenótipo de enterócitos in vitro e sua característica ultraestrutral. Nas nossas condições experimentais, as monobras na variação da proporção parasito:célula hospedeira, confimou que a relação 1:20 foi determinante para o estabelecimento tanto do ciclo lítico e da cistogênese quanto da indução de formas semelhantes a esquizontes, como revelados por microscopia de luz e eletrônica de transmissão. Foram identificados esquizontes dos tipos C, D e E, apresentando características morfológicas similares às previamente descritas na literatura com base na análise de intestino de gatos infectados experimentalmente por T. gondii. Estes dados indicam que as CEIF simulam in vitro o microambiente celular natural intestinal do felino que favorece o desenvolvimento da esquizogonia. Esta metodologia abre novas perspectivas para investigação de aspectos biológicos e moleculares envolvidos no ciclo entérico de T. gondii in vitro. Além disso, possibilita agregar conhecimento para o desenvolvimento de novas estratégias direcionadas à intervenção da transmissão do parasito, visando interferir numa das principais vias pelas quais a toxoplasmose se propaga, pelas fezes de felinos contaminando o meio ambiente. (AU)

Animals , Toxoplasma , Toxoplasmosis , Epithelial Cells , Primary Cell Culture
Article in English | WPRIM | ID: wpr-766013


BACKGROUND: Development of chemotherapeutics for the treatment of advanced hepatocellular carcinoma (HCC) has been lagging. Screening of candidate therapeutic agents by using patient-derived preclinical models may facilitate drug discovery for HCC patients. METHODS: Four primary cultured HCC cells from surgically resected tumor tissues and six HCC cell lines were used for high-throughput screening of 252 drugs from the Prestwick Chemical Library. The efficacy and mechanisms of action of the candidate anti-cancer drug were analyzed via cell viability, cell cycle assays, and western blotting. RESULTS: Guanabenz acetate, which has been used as an antihypertensive drug, was screened as a candidate anti-cancer agent for HCC through a drug sensitivity assay by using the primary cultured HCC cells and HCC cell lines. Guanabenz acetate reduced HCC cell viability through apoptosis and autophagy. This occurred via inhibition of growth arrest and DNA damage-inducible protein 34, increased phosphorylation of eukaryotic initiation factor 2α, increased activating transcription factor 4, and cell cycle arrest. CONCLUSIONS: Guanabenz acetate induces endoplasmic reticulum stress–related cell death in HCC and may be repositioned as an anti-cancer therapeutic agent for HCC patients.

Activating Transcription Factor 4 , Apoptosis , Autophagy , Blotting, Western , Carcinoma, Hepatocellular , Cell Cycle , Cell Cycle Checkpoints , Cell Death , Cell Line , Cell Survival , DNA , Drug Discovery , Drug Repositioning , Endoplasmic Reticulum , Guanabenz , Humans , Mass Screening , Peptide Initiation Factors , Phosphorylation , Primary Cell Culture
Rev. patol. trop ; 48(2): 99-108, 2019.
Article in English | LILACS | ID: biblio-1025792


The cell culture insert system is a culturing system for the study of contact-independent cellular communication. Leishmaniasis is a neglect tropical disease with no vaccines and the available drugs present toxic side effects. Studies on Leishmania interaction with host macrophages aim to develop strategies for parasite control and drug development. The purpose of this study was to evaluate the effects of interaction between non-infected and L. amazonensis-infected human macrophages, by using the cell culture system. The results showed that the infection index was reduced by 56.2% as compared to controls only when infected macrophages were inserted on both sides of the Transwell membranes. An improvement in macrophage viability was also observed in this cell culture. The levels of interleukin-1ß, an inflammatory cytokine, and nitric oxide, a microbicidal molecule, did not increase in L. amazonensis-infected macrophage cultures in the Transwell system; thus other soluble factors were responsible for parasite control

Leishmania mexicana , Leishmaniasis , Primary Cell Culture , Macrophages
Acta bioquím. clín. latinoam ; 52(2): 241-250, jun. 2018. graf
Article in Spanish | LILACS | ID: biblio-949338


La Spirulina maxima (SP) tiene efectos farmacológicos protectores por su contenido de ficobiliproteínas que están relacionados con su actividad antioxidante. La hidroxiurea (HU) es un fármaco antineoplásico, citotóxico y teratógeno que implica la inducción del estrés oxidativo. El objetivo de este trabajo fue determinar si la SP y su extracto acuoso de proteína (SPE) protegen contra el efecto citotóxico de HU en cultivos celulares primarios a partir de embriones de ratón de once días. Los efectos de SP, SPE e HU sobre la viabilidad celular se determinaron por el ensayo de fluorescencia de resazurina en cultivos celulares de embriones completos de ratones de once días, de encéfalo y de brotes de extremidades anteriores. Se demostró que ni SP ni su extracto provocaron efectos citotóxicos en ninguna concentración ensayada, por lo que se aumentaba la viabilidad celular. Se encontró que las células expuestas a HU de embriones completos y encéfalo mostraron mayor toxicidad que las células de los miembros anteriores. La SP y el SPE protegieron contra la citotoxicidad de HU de una manera dependiente de la concentración hasta 48 h después de la exposición al fármaco. Este efecto podría ser adecuado para prevenir la muerte celular que deriva en un proceso teratogénico, atribuido a sus propiedades antioxidantes.

Spirulina maxima (SP) has protective pharmacological effects that are related to the antioxidant activity due to its phycobiliprotein content. Hydroxyurea (HU) is an antineoplastic, cytotoxic and teratogenic drug, which involves the induction of oxidative stress. The aim of this study was to determine whether SP and its aqueous protein extract (SPE) protect against the cytotoxic effect of HU in primary cell cultures from mouse embryos. The effects of SP, SPE, and HU on cell viability were determined by resazurin fluorescence assay in whole embryo cell cultures, encephalon, and eleven-day-old forehead bud outbreaks. It was shown that neither SP nor its extract caused cytotoxic effects at any concentration tested, increasing cell viability. It was found that cells exposed to HU of whole embryos and encephalon showed higher toxicity than cells of the previous limbs. SP and SPE protected HU cytotoxicity in a concentration-dependent manner up to 48 hours after exposure to the drug. This effect could be adequate to prevent cell death resulting in a teratogenic process attributed to its antioxidant properties.

Spirulina maxima (SP) tem efeitos farmacológicos protetores devido a seu conteúdo de ficobiliproteínas, que estão relacionadas com sua atividade antioxidante. A hidroxiureia (HU) é uma droga antineoplásica, citotóxica e teratogênica, que envolve a indução do estresse oxidativo. O objetivo deste estudo foi determinar se a SP e seu extrato aquoso de proteína (SPE) protegem contra o efeito citotóxico da HU em culturas celulares primárias a partir de embriões de camundongo de onze dias. Os efeitos de SP, SPE e HU na viabilidade celular foram determinados pelo ensaio de fluorescência de resazurina em culturas celulares de embriões inteiros de camundongos de onze dias, de encéfalo e de surtos de extremidades anteriores. Demonstrou-se que nem a SP nem seu extrato causaram efeitos citotóxicos em qualquer concentração testada, aumentando a viabilidade celular. Verificou-se que as células expostas à HU de embriões completos e encéfalo mostraram maior toxicidade do que as células dos membros anteriores. SP e SPE protegem contra a citotoxicidade de HU de forma dependente da concentração até 48 h após a exposição ao medicamento. Esse efeito poderia ser adequado para prevenir a morte celular, que resulta em um processo teratogênico atribuído a suas propriedades antioxidantes.

Mice , Teratogens , Spirulina , Hydroxyurea , Toxicology , Brain , Oxidative Stress , Embryonic Structures , Phycobiliproteins , Primary Cell Culture , Antioxidants
Article in English | WPRIM | ID: wpr-776071


OBJECTIVE@#Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related vaccines are difficult. Therefore, it is necessary to develop a novel platform for the propagation of these types of viruses.@*METHODS@#A platform for culturing human airway epithelia in a three-dimensional (3D) pattern using Matrigel as scaffold was developed. The features of 3D culture were identified by immunochemical staining and transmission electron microscopy. Nucleic acid levels of HRV-C and HBoV in 3D cells at designated time points were quantitated by real-time polymerase chain reaction (PCR). Levels of cytokines, whose secretion was induced by the viruses, were measured by ELISA.@*RESULTS@#Properties of bronchial-like tissues, such as the expression of biomarkers CK5, ZO-1, and PCK, and the development of cilium-like protuberances indicative of the human respiration tract, were observed in 3D-cultured human airway epithelial (HAE) cultures, but not in monolayer-cultured cells. Nucleic acid levels of HRV-C and HBoV and levels of virus-induced cytokines were also measured using the 3D culture system.@*CONCLUSION@#Our data provide a preliminary indication that the 3D culture model of primary epithelia using a Matrigel scaffold in vitro can be used to propagate HRV-C and HBoV.

Collagen , Drug Combinations , Enterovirus , Enterovirus Infections , Virology , Enzyme-Linked Immunosorbent Assay , Epithelial Cells , Virology , Human bocavirus , Humans , Laminin , Parvoviridae Infections , Virology , Primary Cell Culture , Methods , Proteoglycans , Real-Time Polymerase Chain Reaction , Respiratory Mucosa , Virology , Virus Cultivation
Article in English | WPRIM | ID: wpr-713307


OBJECTIVE: To determine the localization, expression, and function of Toll-like receptors (TLRs) in fallopian tube epithelial cells. METHODS: The localization of TLRs in fallopian tube epithelial cells was investigated by immunostaining. Surprisingly, the intensity of staining was not equal in the secretory and ciliated cells. After primary cell culture of fallopian tube epithelial cells, ring cloning was used to isolate colonies of ciliated epithelial cells, distinct from non-ciliated epithelial cells. The expression of TLRs 1–10 was examined by quantitative real-time polymerase chain reaction, and protein localization was confirmed by immunostaining. The function of the TLRs was determined by interleukin (IL)-6 and IL-8 production in response to TLR2, TLR3, TLR5, TLR7, and TLR9 ligands. RESULTS: Fallopian tube epithelial cells expressed TLRs 1–10 in a cell-type-specific manner. Exposing fallopian tube epithelial cells to TLR2, TLR3, TLR5, TLR7, and TLR9 agonists induced the secretion of proinflammatory cytokines such as IL-6 and IL-8. CONCLUSION: Our findings suggest that TLR expression in the fallopian tubes is cell-type-specific. According to our results, ciliated cells may play more effective role than non-ciliated cells in the innate immune defense of the fallopian tubes, and in interactions with gametes and embryos.

Clone Cells , Cloning, Organism , Cytokines , Embryonic Structures , Epithelial Cells , Fallopian Tubes , Female , Germ Cells , Humans , Interleukin-6 , Interleukin-8 , Interleukins , Ligands , Primary Cell Culture , Real-Time Polymerase Chain Reaction , Toll-Like Receptors
Natural Product Sciences ; : 194-198, 2018.
Article in English | WPRIM | ID: wpr-741618


Inflammation is a biological response caused by overactivation of the immune system and is controlled by immune cells via a variety of cytokines. The overproduction of pro-inflammatory cytokines enhances abnormal host immunity, resulting in diseases such as rheumatoid arthritis, cardiovascular disease, Alzheimer's disease, and cancer. Inhibiting the production of pro-inflammatory cytokines such as interleukin (IL)-12p40, IL-6, and tumor necrosis factor (TNF)-α might be one way to treat these conditions. Here, we investigated the anti-inflammatory activity of compounds isolated from Cimicifuga dahurica (Turcz.) Maxim., which is traditionally used as an antipyretic and analgesic in Korea. In primary cell culture assays, 12 compounds were found to inhibit the production of pro-inflammatory cytokines (IL-12p40, IL-6, and TNF-α) in vitro in bone marrow-derived dendritic cells stimulated with LPS.

Alzheimer Disease , Arthritis, Rheumatoid , Cardiovascular Diseases , Cimicifuga , Cytokines , Dendritic Cells , Immune System , In Vitro Techniques , Inflammation , Interleukin-6 , Interleukins , Korea , Primary Cell Culture , Ranunculaceae , Tumor Necrosis Factor-alpha
Protein & Cell ; (12): 811-822, 2017.
Article in English | WPRIM | ID: wpr-756922


β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB -28 (A>G) mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE) system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB -28 (A>G) mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB -28 (A>G) homozygous mutation. Data showed that base editor could precisely correct HBB -28 (A>G) mutation in the patient's primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM) oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB -28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.

APOBEC-1 Deaminase , Genetics , Metabolism , Base Sequence , Blastomeres , Cell Biology , Metabolism , CRISPR-Cas Systems , Embryo, Mammalian , Metabolism , Pathology , Female , Fibroblasts , Metabolism , Pathology , Gene Editing , Methods , Gene Expression , HEK293 Cells , Heterozygote , Homozygote , Humans , Point Mutation , Primary Cell Culture , Promoter Regions, Genetic , Sequence Analysis, DNA , beta-Globins , Genetics , Metabolism , beta-Thalassemia , Genetics , Metabolism , Pathology , Therapeutics
Arq. bras. oftalmol ; 79(2): 105-110, Mar.-Apr. 2016. tab, graf
Article in English | LILACS | ID: lil-782803


ABSTRACT Purpose: The goal of the present study was to establish a protocol for primary culture of lacrimal gland acinar cells (LGACs) and to assess the effect of adding insulin to the culture media. Methods: LGACs were isolated and cultured from lacrimal glands of Wistar male rats. The study outcomes included cell number, viability, and peroxidase release over time and in response to three concentrations of insulin (0.5, 5.0, and 50.0 μg/mL). Results: In LGAC primary culture, cells started to form clusters by day 3. There was a time-response pattern of peroxidase release, which rose by day 6, in response to carbachol. Culture viability lasted for 12 days. An insulin concentration of 5.0 μg/mL in the culture medium resulted in higher viability and secretory capacity. Conclusions: The present method simplifies the isolation and culture of LGACs. The data confirmed the relevance of adding insulin to maintain LGACs in culture.

RESUMO Objetivo: O objetivo do estudo foi estabelecer um protocolo de cultura primária para o isolamento de células acinares da glândula lacrimal (CAGL) e avaliar a relevância de insulina no meio de cultura. Métodos: CAGL foram isoladas e cultivadas a partir das glândulas lacrimais de ratos Wistar machos. Os parâmetros analisados foram: o número de células, viabilidade e secreção da peroxidase ao longo do tempo e em resposta a três concentrações de insulina (0,5; 5,0 e 50,0 μg/ml). Resultados: Na cultura primária de CAGL as células passaram a se agrupar por volta do dia 3. A secreção de peroxidase em resposta ao carbacol aumentou no dia 6. O período de cultura viável foi limitado à 12 dias. Insulina à 5,0 μg/ml no meio de cultura resultou em viabilidade e capacidade secretora maior. Conclusão: o estudo descreveu um método para simplificar o isolamento e cultivo de CAGL. Os dados apresentados confirmam a importância da insulina na manutenção da cultura de CAGL.

Animals , Male , Acinar Cells/cytology , Primary Cell Culture/standards , Insulin/pharmacology , Lacrimal Apparatus/cytology , Carbachol/metabolism , Cell Count/methods , Cell Separation/methods , Rats, Wistar , Peroxidase/metabolism , Acinar Cells/drug effects , Acinar Cells/metabolism , Insulin/metabolism , Lacrimal Apparatus/metabolism
Article in English | WPRIM | ID: wpr-285267


Thymosin β4 (Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells (mESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on mESCs. Target genes during mESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the mESCs-derived cardiomyocytes. It was found that Tβ4 decreased mESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, mESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these mESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant β-catenin. Under mESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of mESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed mESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.

Animals , Cell Cycle , Genetics , Cell Differentiation , Cell Movement , Cell Proliferation , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases , Genetics , Metabolism , Gene Expression Regulation , JNK Mitogen-Activated Protein Kinases , Genetics , Metabolism , Mice , Mouse Embryonic Stem Cells , Cell Biology , Metabolism , Myocytes, Cardiac , Cell Biology , Metabolism , Nanog Homeobox Protein , Genetics , Metabolism , Octamer Transcription Factor-3 , Genetics , Metabolism , Patch-Clamp Techniques , Primary Cell Culture , Proto-Oncogene Proteins c-akt , Genetics , Metabolism , Proto-Oncogene Proteins c-fos , Genetics , Metabolism , Proto-Oncogene Proteins c-myc , Genetics , Metabolism , STAT3 Transcription Factor , Genetics , Metabolism , Signal Transduction , Thymosin , Pharmacology
Article in English | WPRIM | ID: wpr-285264


SRT1720, a new discovered drug, was reported to activate silent information regulator 1 (SIRT1) and inhibit the chondrocyte apoptosis. However, the underlying mechanism remains elusive. In the present study, the chondrocytes were extracted from the cartilage tissues of New Zealand white rabbits, cultured in the presence of sodium nitroprusside (SNP) (2.5 mmol/L) and divided into five groups: 1, 5, 10, and 20 μmol/L SRT1720 groups and blank control group (0 μmol/L SRT1720). MTT assay was used to detect the chondrocyte viability and proliferation, and DAPI staining and flow cytometry to measure the chondrocyte apoptosis. The expression levels of SIRT1, p53, NF-κB/p65, Bax, and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) were detected by Western blotting and the expression levels of SIRT1, type II collagen, and aggrecan mRNA by RT-PCR. The results showed that in the SRT1720-treated groups, the nuclei of chondrocytes were morphologically intact and had uniform chromatin. In the blank control group, nuclear rupture into debris was observed in chondrocytes. With the SRT1720 concentration increasing, the chondrocyte viability increased, the apoptosis rate decreased, the protein expression levels of SIRT1 and PGC-1α and the mRNA expression levels of type II collagen and aggrecan increased ({ptP}<0.05), and the expression levels of p53, NF-κB and bax decreased (P<0.05). It was suggested that SRT1720 inhibits chondrocyte apoptosis by activating the expression of SIRT1 via p53/bax and NF-κB/PGC-1α pathways.

Aggrecans , Genetics , Metabolism , Animals , Apoptosis , Cartilage, Articular , Cell Biology , Metabolism , Cell Proliferation , Cell Survival , Chondrocytes , Cell Biology , Metabolism , Chromatin , Chemistry , Metabolism , Collagen Type II , Genetics , Metabolism , Gene Expression Regulation , Heterocyclic Compounds, 4 or More Rings , Pharmacology , Nitroprusside , Toxicity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Genetics , Metabolism , Primary Cell Culture , Rabbits , Signal Transduction , Genetics , Sirtuin 1 , Genetics , Metabolism , Transcription Factor RelA , Genetics , Metabolism , Tumor Suppressor Protein p53 , Genetics , Metabolism , bcl-2-Associated X Protein , Genetics , Metabolism
Article in English | WPRIM | ID: wpr-285258


Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.

Anthracenes , Pharmacology , Chloride Channels , Metabolism , Chlorides , Metabolism , Culture Media , Metabolism , Pharmacology , Dose-Response Relationship, Drug , Evoked Potentials , Physiology , Heart Atria , Cell Biology , Metabolism , Humans , Hypotonic Solutions , Metabolism , Pharmacology , Indoles , Pharmacology , Ion Transport , Maleimides , Pharmacology , Myocytes, Cardiac , Cell Biology , Metabolism , Patch-Clamp Techniques , Phorbol 12,13-Dibutyrate , Pharmacology , Primary Cell Culture , Protein Kinase C , Metabolism
Article in English | WPRIM | ID: wpr-285256


Axl encodes the tyrosine-protein kinase receptor, participating in the proliferation and migration of many cells. This study examined the role of Axl in functions of endothelial progenitor cells (EPCs). Axl was detected by RT-PCR and Western blotting in both placentas and EPCs from normal pregnancy and preeclampsia patients. The Axl inhibitor, BMS777-607, was used to inhibit the Axl signalling pathway in EPCs. Cell proliferation, differentiation, migration and adhesion were measured by CCK-8 assay, cell differentiation assay, Transwell assay, and cell adhesion assay, respectively. Results showed the expression levels of Axl mRNA and protein were significantly higher in both placentas and EPCs from preeclampsia patients than from normal pregnancy (P<0.05). After treatment with BMS777-607, proliferation, differentiation, migration and adhesion capability of EPCs were all significantly decreased. Our study suggests Axl may play a role in the function of EPCs, thereby involving in the pathogenesis of preeclampsia.

Adult , Aminopyridines , Pharmacology , Blood Pressure , Case-Control Studies , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Female , Fetal Blood , Cell Biology , Gene Expression Regulation , Gestational Age , Human Umbilical Vein Endothelial Cells , Pathology , Humans , Placenta , Metabolism , Pre-Eclampsia , Blood , Genetics , Pregnancy , Primary Cell Culture , Protein Kinase Inhibitors , Pharmacology , Proto-Oncogene Proteins , Genetics , Metabolism , Pyridones , Pharmacology , RNA, Messenger , Genetics , Metabolism , Receptor Protein-Tyrosine Kinases , Genetics , Metabolism , Stem Cells , Pathology