Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
1.
Chinese Journal of Biotechnology ; (12): 1189-1204, 2021.
Article in Chinese | WPRIM | ID: wpr-878624

ABSTRACT

The innate immune system initiates innate immune responses by recognizing pathogen-related molecular patterns on the surface of pathogenic microorganisms through pattern recognition receptors. Through cascade signal transduction, it activates downstream transcription factors NF-κB and interferon regulatory factors (IRFs), and then leads to the production of inflammatory cytokines and type Ⅰ interferon, which resists the infection of pathogenic microorganism. TBK1 is a central adapter protein of innate immune signaling pathway and can activate both NF-κB and IRFs. It is a key protein kinase in the process of anti-infection. The finetuning regulation of TBK1 is essential to maintain immune homeostasis and resist pathogen invasion. This paper reviews the biological functions and ubiquitin modification of TBK1 in innate immunity, to provide theoretical basis for clinical treatment of pathogenic infections and autoimmune diseases.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Protein-Serine-Threonine Kinases/genetics , Signal Transduction , Ubiquitin
2.
Acta Physiologica Sinica ; (6): 115-125, 2021.
Article in Chinese | WPRIM | ID: wpr-878241

ABSTRACT

In eukaryotic cells, the endoplasmic reticulum (ER) is the key quality control organelle for cellular protein synthesis and processing. It also serves as an important site for Ca


Subject(s)
Adipose Tissue , Diabetes Mellitus, Type 2 , Endoplasmic Reticulum Stress , Endoribonucleases , Humans , Protein-Serine-Threonine Kinases , eIF-2 Kinase
3.
Chinese Medical Journal ; (24): 2054-2065, 2021.
Article in English | WPRIM | ID: wpr-887637

ABSTRACT

BACKGROUND@#The Nuclear Dbf2-related (NDR1) kinase is a member of the NDR/LATS family, which was a supplementary of Hippo pathway. However, whether NDR1 could inhibit glioblastoma (GBM) growth by phosphorylating Yes-associated protein (YAP) remains unknown. Meanwhile, the role of NDR1 in GBM was not clear. This study aimed to investigate the role of NDR1-YAP pathway in GBM.@*METHODS@#Bioinformation analysis and immunohistochemistry (IHC) were performed to identify the expression of NDR1 in GBM. The effect of NDR1 on cell proliferation and cell cycle was analyzed utilizing CCK-8, clone formation, immunofluorescence and flow cytometry, respectively. In addition, the xenograft tumor model was established as well. Protein interaction was examined by Co-immunoprecipitation and immunofluorescence to observe co-localization.@*RESULTS@#Bioinformation analysis and IHC of our patients' tumor tissues showed that expression of NDR1 in tumor tissue was relatively lower than that in normal tissues and was positively related to a lower survival rate. NDR1 could markedly reduce the proliferation and colony formation of U87 and U251. Furthermore, the results of flow cytometry showed that NDR1 led to cell cycle arrest at the G1 phase. Tumor growth was also inhibited in xenograft nude mouse models in NDR1-overexpression group. Western blotting and immunofluorescence showed that NDR1 could integrate with and phosphorylate YAP at S127 site. Meanwhile, NDR1 could mediate apoptosis process.@*CONCLUSION@#In summary, our findings point out that NDR1 functions as a tumor suppressor in GBM. NDR1 is identified as a novel regulator of YAP, which gives us an in-depth comprehension of the Hippo signaling pathway.


Subject(s)
Animals , Cell Nucleus/metabolism , Cell Proliferation , Glioblastoma , Humans , Mice , Phosphorylation , Protein-Serine-Threonine Kinases/metabolism , Signal Transduction
4.
Clin. biomed. res ; 41(3): 245-253, 20210000.
Article in Portuguese | LILACS | ID: biblio-1348794

ABSTRACT

Dentre os sistemas neurais responsáveis pela ingestão dos alimentos, destaca-se a via dopaminérgica mesolímbica que, através da liberação de dopamina nos núcleos de accumbens, desperta prazer e motivação para recompensas químicas e naturais. Esta via de recompensa age através dos receptores dopaminérgicos transmembranares, que variam de DRD1 a DRD5. Desta forma, considerando os efeitos prazerosos despertados pela ingestão alimentar, é plausível que variações genéticas em genes do sistema dopaminérgico possam ter um papel na arquitetura genética da obesidade. Este estudo tem como objetivo realizar uma revisão narrativa da literatura sobre a influência de variantes genéticas nos receptores dopaminérgicos em fenótipos relacionados com a obesidade. Em conjunto, os principais achados desta revisão indicaram que os genes codificadores dos receptores DRD2 e DRD4 possam ser os mais relevantes no contexto da obesidade e fenótipos relacionados. No entanto, a obesidade é uma doença complexa e multifatorial e novos estudos são ainda necessários para uma melhor compreensão do impacto da dopamina nos desfechos relacionado à obesidade. É importante também destacar que esses efeitos podem ser específicos para subgrupos de pacientes e que outros fatores, além das variantes genéticas, devem ser considerados. (AU)


Among the neural systems responsible for food ingestion, the mesolimbic dopaminergic pathway stands out by eliciting pleasure and motivation for chemical and natural rewards through the release of dopamine in the nucleus accumbens. This reward pathway is regulated by transmembrane dopaminergic receptors, which range from DRD1 to DRD5. Thus, considering the pleasurable effects aroused by food intake, it is plausible that genetic variations in genes of the dopaminergic system may have a role in the genetic architecture of obesity. This study aims to conduct a narrative review of the literature on the influence of genetic variants of dopaminergic receptors on obesity-related phenotypes. Taken together, the main findings of this review indicated that the genes encoding the DRD2 and DRD4 receptors may be the most relevant in the context of obesity and related phenotypes. However, obesity is a complex and multifactorial disease and new studies are still being conducted to better understand the impact of dopamine on obesity-related outcomes. It is also important to note that these effects can be specific to subgroups of patients and that other factors, in addition to genetic variants, must be considered. (AU)


Subject(s)
Dopamine , Receptors, Dopamine , Feeding Behavior , Obesity , Protein-Serine-Threonine Kinases
5.
Braz. j. med. biol. res ; 54(8): e10062, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249323

ABSTRACT

Long non-coding RNA (lncRNA) is an essential regulator of carcinogenesis and cancer progression. In the study, we explored the role of lncRNA DLGAP1-AS1 in gastric cancer (GC). qRT-PCR was carried out to detect DLGAP1-AS1 expression in GC tissues and cell lines. CCK-8 assay, EdU assay, and transwell experiments were employed to detect the malignant biological behaviors of GC cells with DLGAP1-AS1 knockdown or overexpression. Bioinformatics and dual-luciferase report assay were used to confirm the binding relationship between DLGAP1-AS1 and miR-515-5p. MARK4 expression was detected by western blot after DLGAP1-AS1/miR-515-5p was selectively regulated. DLGAP1-AS1 was up-regulated in GC tissues and cell lines, and its high expression was closely associated with larger tumor size, higher TNM stage, and lymph node metastasis. Furthermore, DLGAP1-AS1 overexpression enhanced cell proliferation, migration, and invasion, and miR-515-5p could reverse these effects. DLGAP1-AS1 participated in the regulation of the MARK4 signaling pathway by targeting miR-515-5p. DLGAP1-AS1 promoted GC progression through miR-515-5p/MARK4 signaling pathway.


Subject(s)
Humans , Stomach Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Protein-Serine-Threonine Kinases , Cell Line, Tumor
6.
Article in English | WPRIM | ID: wpr-888498

ABSTRACT

To investigate the effects of salt-inducible kinase 2 (SIK2) on energy metabolism in rats with cerebral ischemia-reperfusion. Adult SD male rats were divided into 5 groups: sham group, ischemia group, reperfusion group, adenovirus no-load group, and SIK2 overexpression group with 5 animals in each group. The middle cerebral artery occlusion (MCAO) was induced with the modified Zea-Longa line thrombus method to establish the cerebral ischemia reperfusion model. Eight days before the MCAO, SIK2 overexpression was induced by injecting 7 μL adenovirus in the right ventricle, then MCAO was performed for followed by reperfusion HE staining was used to observe the pathological changes of cerebral tissue in rats; TTC staining was used to observe the volume of cerebral infarct. The levels of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) in rat brain tissue were detected by ELISA; the levels of SIK2 and hypoxia-inducible factor 1α (HIF-1α) in the rat brain tissues were detected by RT-qPCR and Western blotting. Compared with the sham group, SIK2 level was decreased in the ischemia group, and it was further declined in the reperfusion group (<0.05). Compared with the sham group and ischemic group, the pathological injury in reperfusion group were more severe, and the infarct size was larger; compared with the reperfusion group and adenovirus no-load group, the pathological injury of the SIK2 overexpression group was milder, and the infarct size is less. Compared with the sharn group, HIF-1α was increased in both ischemia group and reperfusion group, especially in ischemia group (all <0.05); HIF-1α level in the SIK2 overexpression group was higher than that in the reperfusion group and adenovirus no-load group (all <0.05). ATP level in ischemia group and reperfusion group was lower than that in the sham group, and the reperfusion group decreased more significantly than the ischemia group (<0.05); ADP content was increased in the ischemia and reperfusion group, and the ADP content in reperfusion group was significantly higher than that in the ischemia group (<0.05). ATP level in the SIK2 overexpression group was higher than that in the reperfusion group and adenovirus no-load group (all <0.05), and ADP was decreased in the SIK2 overexpression group (all <0.05). SIK2 can up-regulate the ATP level and down-regulate the ADP level in rat brain tissue and alleviate cerebral ischemia-reperfusion injury by increase the level of HIF-1α.


Subject(s)
Animals , Brain Ischemia , Energy Metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Infarction, Middle Cerebral Artery , Male , Protein-Serine-Threonine Kinases , Rats , Rats, Sprague-Dawley , Reperfusion , Reperfusion Injury
7.
Chinese Journal of Biotechnology ; (12): 2298-2312, 2020.
Article in Chinese | WPRIM | ID: wpr-878487

ABSTRACT

Polo-like kinase 1 (Plk1) is widely regarded as one of the most promising targets for cancer therapy due to its essential role in cell division and tumor cell survival. At present, most Plk1 inhibitors have been developed based on kinase domain, some of which are in clinical trial. However, inhibitors targeting kinase domain face off-target effect and drug resistance owing to the conserved nature and the frequent mutations in the ATP-binding pocket. In addition to a highly conserved kinase domain, Plk1 also contains a unique Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. Inhibitors targeting Plk1 PBD show stronger selectivity and less drug resistance for cancer therapy. Therefore, Plk1 PBD is an attractive target for the development of anti-cancer agents. In this review, we will summarize the up-to date drug discovery for targeting Plk1 PBD, including the molecular structure and cellular functions of Plk1 PBD. Small-molecule inhibitors targeting Plk1 PBD not only provide an opportunity to specifically inhibit Plk1 activity for cancer treatment, but also unveil novel biological basis regarding the molecular recognition of Plk1 and its substrates.


Subject(s)
Cell Cycle Proteins/genetics , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics
8.
Article in Chinese | WPRIM | ID: wpr-880765

ABSTRACT

OBJECTIVE@#To screen the key genes related to the prognosis of lung adenocarcinoma through big data analysis and explore their clinical value and potential mechanism.@*METHODS@#We analyzed GSE18842, GSE27262, and GSE33532 gene expression profile data obtained from the Gene Expression Omnibus (GEO). Bioinformatics methods were used to screen the differentially expressed genes in lung adenocarcinoma tissues and KEGG and GO enrichment analysis was performed, followed by PPI interaction network analysis, module analysis, differential expression analysis, and prognosis analysis. The expressions of MAD2L1 and TTK by immunohistochemistry were verified in 35 non-small cell lung cancer specimens and paired adjacent tissues.@*RESULTS@#We identified a total of 256 genes that showed significant differential expressions in lung adenocarcinoma, including 66 up-regulated and 190 down-regulated genes. Thirty-two up-regulated core genes were screened by functional analysis, and among them 29 were shown to significantly correlate with a poor prognosis of patients with lung adenocarcinoma. All the 29 genes were highly expressed in lung adenocarcinoma tissues compared with normal lung tissues and were mainly enriched in cell cycle pathways. Seven of these key genes were closely related to the spindle assembly checkpoint (SAC) complex and responsible for regulating cell behavior in G2/M phase. We selected SAC-related proteins TTK and MAD2L1 to test their expressions in clinical tumor samples, and detected their overexpression in lung adenocarcinoma tissues as compared with the adjacent tissues.@*CONCLUSIONS@#Seven SAC complex-related genes, including TTK and MAD2L1, are overexpressed in lung adenocarcinoma tissues with close correlation with the prognosis of the patients.


Subject(s)
Adenocarcinoma of Lung/genetics , Big Data , Cell Cycle Proteins/genetics , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , M Phase Cell Cycle Checkpoints , Mad2 Proteins/genetics , Protein-Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics
9.
Braz. j. med. biol. res ; 53(4): e9175, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089352

ABSTRACT

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are the predominant mediators of glutamate-induced excitatory neurotransmission. It is widely accepted that AMPA receptors are critical for the generation and spread of epileptic seizure activity. Dysfunction of AMPA receptors as a causal factor in patients with intractable epilepsy results in neurotransmission failure. Brain-specific serine/threonine-protein kinase 1 (SAD-B), a serine-threonine kinase specifically expressed in the brain, has been shown to regulate AMPA receptor-mediated neurotransmission through a presynaptic mechanism. In cultured rat hippocampal neurons, the overexpression of SAD-B significantly increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Here, we showed that SAD-B downregulation exerted antiepileptic activity by regulating AMPA receptors in patients with temporal lobe epilepsy (TLE) and in the pentylenetetrazol (PTZ)-induced epileptic model. We first used immunoblotting and immunohistochemistry analysis to demonstrate that SAD-B expression was increased in the epileptic rat brain. Subsequently, to explore the function of SAD-B in epilepsy, we used siRNA to knock down SAD-B protein and observed behavior after PTZ-induced seizures. We found that SAD-B downregulation attenuated seizure severity and susceptibility in the PTZ-induced epileptic model. Furthermore, we showed that the antiepileptic effect of SAD-B downregulation on PTZ-induced seizure was abolished by CNQX (an AMPA receptor inhibitor), suggesting that SAD-B modulated epileptic seizure by regulating AMPA receptors in the brain. Taken together, these findings suggest that SAD-B may be a potential and novel therapeutic target to limit epileptic seizures.


Subject(s)
Humans , Animals , Male , Female , Child , Adolescent , Adult , Middle Aged , Young Adult , Drugs, Chinese Herbal/therapeutic use , Protein-Serine-Threonine Kinases/metabolism , Receptors, AMPA/metabolism , Excitatory Amino Acid Agonists/metabolism , Epilepsy, Temporal Lobe/drug therapy , Pentylenetetrazole , Rats, Sprague-Dawley , Epilepsy, Temporal Lobe/chemically induced
10.
Article in Chinese | WPRIM | ID: wpr-828861

ABSTRACT

OBJECTIVE@#To investigate the expression of BUB1 gene in gastric cancer.@*METHODS@#Oncomine, GEPIA, BioGPS and Kaplan-Meier Plotter databases were used to analyze the difference of BUB1 gene expression between gastric cancer tissue and normal gastric tissue. The association of BUB1 expression level with the prognosis of gastric cancer patients was also analyzed. The Cancer Cell Line Encyclopedia (CCLE) was explored to analyze the expression of BUB1 in T cells and B cells in gastric cancer patients, and the String database was used to generate the network map of BUB1-related proteins and functional annotation of gene ontology (GO). The related pathways of KEGG were analyzed. Tumor immune assessment resource (TIMER) database was used to analyze the expression of BUB1 in immune infiltration and its effect on prognosis of gastric cancer patients. To further verify the results of gene chip analysis in Oncomine database, we collected 30 pairs of surgical specimens of gastric adenocarcinoma and adjacent tissues from patients admitted to the First Affiliated Hospital of Chengdu Medical College from March, 2018 to July, 2019. The results of BUB1 gene expression in Oncomine database were verified by PCR and immunohistochemistry.@*RESULTS@#Oncomine, GEPIA and BioGPS analyses showed that BUB1 was highly expressed in gastric cancer compared with normal gastric tissue. Kaplan-Meier survival analysis showed that the progression-free survival time (HR=0.52, 95% :0.41-0.67, < 0.05) and the overall survival time (HR=0.67, 95% :0.55-0.82, < 0.05) were prolonged in gastric cancer patients with a high expression of BUB1. Through String data collection, BUB1-related proteins were mainly enriched in 13 cellular components, 4 molecular functions and 12 biological processes, involving 4 signal pathways. TIMER database analysis showed that CD4 T cells and macrophages with high expressions of BUB1 mRNA in the immune microenvironment were associated with a favorable 5-year survival outcome of patients with gastric cancer. In the surgical specimens, real-time quantitative PCR showed that the expression level of BUB1 mRNA was significantly higher in gastric cancer tissues than in the adjacent gastric mucosa tissues, and immunohistochemical results demonstrated positive BUB1 staining in the gastric cancer tissues.@*CONCLUSIONS@#BUB1 gene is highly expressed in gastric cancer. BUB1 may reduce tumor immunosuppression and helps to evaluate the prognosis of patients with gastric cancer.


Subject(s)
Computational Biology , Humans , Kaplan-Meier Estimate , Prognosis , Protein-Serine-Threonine Kinases , Genetics , Stomach Neoplasms , Genetics , Tumor Microenvironment
11.
Article in Chinese | WPRIM | ID: wpr-828367

ABSTRACT

This study aimed to investigate the effect and possible mechanism of Bidens pilosa decoction on non-alcoholic fatty liver disease(NAFLD) induced by high fat and high glucose in mice. Bald/c mice were randomly divided into normal group, model group, metformin(200 mg·kg~(-1)) treatment group, Bidens pilosa decoction(10 g·kg~(-1)) treatment group, metformin and B. pilosa decoction(100 mg·kg~(-1)+5 g·kg~(-1)) treatment group. Except for the normal group, mice in the other four groups were fed with high-fat and high-glucose diet for 8 weeks to establish the non-alcoholic fatty liver model. After 4 weeks of treatment, blood was collected from the eyeballs, the mice were sacrificed, and relevant indicators were detected. The results showed that compared with the model group, blood lipid and blood glucose levels of each treatment group were significantly lower(P<0.05); HE staining results showed that liver pathological damage in each treatment group was significantly improved; oil red O staining results showed fat distribution in each treatment group significantly reduced(P<0.01); immunohistochemical staining showed that glucose regulated the protein expression of protein 78(GRP78) in liver tissues of each treatment group was also significantly reduced(P<0.01); Western blot results showed that endoplasmic reticulum stress signal pathway-related factors GRP78, phosphorylated-protein kinase R-like ER kinase(p-PERK), eukaryotic translation-initiation factor 2α(eIF2α), activating transcription factor 4(ATF4), C/EBP homologous protein(Chop), inositol requiring 1α(IRE1α), and cleaved-cysteinyl aspartate specific proteinase 12(cleaved-caspase-12) were significantly reduced(P<0.01). The results of the combined drug treatment group were better than those of the single drug treatment group. These results showed that B. pilosa decoction had the effect in improving non-alcoholic fatty liver, and its mechanism may be related to the down-regulation of the expression of endoplasmic reticulum stress(ERS)-related factors, and the reduction of the apoptosis of hepatocytes caused by ERS and the down-regulation of blood lipid and blood glucose levels.


Subject(s)
Animals , Apoptosis , Bidens , Endoplasmic Reticulum Stress , Endoribonucleases , Glucose , Mice , Non-alcoholic Fatty Liver Disease , Protein-Serine-Threonine Kinases
12.
Braz. j. otorhinolaryngol. (Impr.) ; 85(6): 705-715, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055510

ABSTRACT

Abstract Introduction: Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. Objective: The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. Methods: Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. Results: Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. Conclusion: Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.


Resumo Introdução: A quinase 3 sérica induzida por glicocorticoide, uma serina/treonina quinase que funciona downstream da via de sinalização PI3K, desempenha um papel crítico nos processos neoplásicos. É expressa por vários tumores e contribui para a carcinogênese. Objetivo: Investigar a expressão de quinase 3 sérica induzida por glicocorticoide no carcinoma nasofaríngeo, estudar os efeitos antitumorais do shRNA da quinase 3 sérica induzida por glicocorticoide, que inibem sua expressão em células de carcinoma nasofaríngeo, e discutir as implicações potenciais de nossos achados. Método: A expressão de proteína quinase 3 sérica induzida por glicocorticoide em linhagens de células de carcinoma nasofaríngeo (CNE-1, CNE-2, HNE-1, HONE-1 e SUNE-1) e a linhagem de células humanas imortalizadas do epitélio nasofaríngeo NP69 foram avaliadas por Western blot. A expressão da quinase 3 sérica induzida por glicocorticoide em 42 tecidos de CNF embebidos em parafina foi feita por imuno-histoquímica. Testes com MTT, citometria de fluxo e testes de raspagem foram feitos após as células CNE-2 terem sido transfectadas com o melhor plasmídeo shRNA da quinase 3 sérica induzida por glicocorticoide selecionado por Western blot, com o uso de lipofectamina para estudar seu efeito na proliferação, apoptose e migração celular. Resultados: Foi observada uma sobre-expressão da quinase 3 sérica induzida por glicocorticoide em tecidos e células de carcinoma nasofaríngeo humanas. A expressão de quinase 3 sérica induzida por glicocorticoide diminuiu acentuadamente após as células CNE-2 terem sido transfectadas com o shRNA da quinase 3 sérica induzida por glicocorticoide, conduzindo a forte inibição de proliferação e migração celular. Além disso, a taxa de apoptose aumentou nas células CNE-2 após o knockdown da quinase 3 sérica induzida por glicocorticoide. Conclusão: A expressão de quinase 3 sérica induzida por glicocorticoide foi observada com maior frequência à medida que o epitélio nasofaríngeo progride de tecido normal para carcinoma. Isso sugere que a quinase 3 sérica induzida por glicocorticoide contribui para o processo multietapas da carcinogênese do carcinoma nasofaríngeo. A quinase 3 sérica induzida por glicocorticoide representa um alvo para a terapia do carcinoma nasofaríngeo e há uma base para a investigação adicional dessa modalidade de tratamento adjuvante para o carcinoma nasofaríngeo.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Nasopharyngeal Neoplasms/metabolism , Protein-Serine-Threonine Kinases/metabolism , Immediate-Early Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Immunohistochemistry , Cell Movement/drug effects , Nasopharyngeal Neoplasms/pathology , Nasopharyngitis/metabolism , Nasopharyngitis/pathology , Protein-Serine-Threonine Kinases/pharmacology , Apoptosis , Immediate-Early Proteins/pharmacology , RNA, Small Interfering/metabolism , Cell Proliferation/drug effects , Nasopharyngeal Carcinoma/pathology
13.
Braz. j. otorhinolaryngol. (Impr.) ; 85(2): 144-149, Mar.-Apr. 2019. tab, graf
Article in English | LILACS | ID: biblio-1001554

ABSTRACT

Abstract Introduction: Cell division cycle-7 protein is a serine/threonine kinase that has a basic role in cell cycle regulation and is a potential prognostic or therapeutic target in some human cancers. Objectives: This study investigated the expression of cell division cycle-7 protein in benign and malignant salivary gland tumors and also its correlation with clinicopathologic factors. Methods: Immunohistochemical expression of cell division cycle-7 was evaluated in 46 cases, including 15 adenoid cystic carcinoma, 12 mucoepidermoid carcinoma, 14 pleomorphic adenoma, and 5 normal salivary glands. Cell division cycle-7 expression rate and intensity were compared statistically. Results: The protein was expressed in almost all tumors. The intensity and mean of cell division cycle-7 expression were higher in malignant tumors in comparison with pleomorphic adenomas (p = 0.000). The protein expression was correlated with tumor grades (p = 0.000). Conclusions: The present study demonstrated cell division cycle-7 overexpression in malignant salivary gland tumors in comparison with pleomorphic adenomas, and also a correlation with tumor differentiation. Therefore, this protein might be a potential prognostic and therapeutic target for salivary gland tumors.


Resumo Introdução: A cell division cycle-7 é uma serina/treonina quinase que tem um papel básico na regulação do ciclo celular e é um potencial marcador prognóstico ou terapêutico em alguns tipos de câncer humano. Objetivos: Este estudo investigou a expressão de cell division cycle-7 em tumores de glândulas salivares benignos e malignos e também sua correlação com fatores clínico-patológicos. Método: A expressão imuno-histoquímica de cell division cycle-7 foi avaliada em 46 casos, incluindo 15 carcinomas adenoide císticos, 12 carcinomas mucoepidermoides, 14 adenomas pleomórficos e 5 glândulas salivares normais. A taxa de expressão e a intensidade da proteína cell division cycle-7 foram comparadas estatisticamente. Resultados: A proteína foi expressa em quase todos os tumores. A intensidade e a média da expressão de cell division cycle-7 foram maiores em tumores malignos em comparação com adenoma pleomórfico (p = 0,000). A expressão da proteína foi correlacionada com os graus do tumor (p = 0,000). Conclusões: O presente estudo demonstrou a superexpressão de cell division cycle-7 em tumores malignos de glândulas salivares quando comparada com o adenoma pleomórfico, além de uma correlação com a diferenciação de tumores. Portanto, essa proteína pode ser um potencial marcador prognóstico e terapêutico para tumores de glândulas salivares.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Salivary Gland Neoplasms/pathology , Protein-Serine-Threonine Kinases/analysis , Carcinoma, Mucoepidermoid/pathology , Carcinoma, Adenoid Cystic/pathology , Adenoma, Pleomorphic/pathology , Cell Cycle Proteins/analysis , Prognosis , Reference Values , Immunohistochemistry , Biomarkers, Tumor/analysis , Case-Control Studies , Cell Differentiation , Cross-Sectional Studies , Retrospective Studies
14.
Article in Chinese | WPRIM | ID: wpr-773529

ABSTRACT

OBJECTIVE@#To explore the role of transforming growth factor-β1/integrin-linked kinase/fibroblast-specific protein 1 (TGF- β1/ILK/FSP1) signaling pathway in cyclosporine A (CsA)-induced renal tubular epithelial cell transdifferentiation.@*METHODS@#Rat renal tubular epithelial NRK-52E cells were induced with 1 mg/L CsA, treated with TGF-β1 inhibitor (SB431542, 10 μmol/L), or transfected with the ILK-RNAi lentiviral expression vector (ILKshRNA) or a negative control vector before CsA induction. The expressions of TGF-β1, ILK and FSP-1 mRNAs and proteins in the cells were detected using real-time PCR and Western blotting. The positive cells for α-SMA expression were detected by immunohistochemistry.@*RESULTS@#Compared with the blank control cells, the cells treated with CsA showed significantly increased levels of TGF-β1, ILK and FSP-1 mRNAs and proteins ( < 0.05). The expressions of TGF-β1, ILK and FSP-1 were significantly lower in TGF-β1 inhibitor group than in CsA group ( < 0.05). The levels of ILK and FSP-1 were significantly decreased after shRNA-mediated ILK silencing ( < 0.05). The number of positive cells for -SMA was significantly lower in cells treated with SB431542 and in cells with ILK silencing than in the cells treated with CsA alone ( < 0.05).@*CONCLUSIONS@#The activation of TGF-β1/ILK/FSP-1 signaling pathway is an important mechanism for CsA-induced transdifferentiation in rat renal tubular epithelial cells. ILK participates in CsA-induced epithelialmesenchymal transition of renal tubular epithelial cells.


Subject(s)
Animals , Calcium-Binding Proteins , Cells, Cultured , Cyclosporine , Epithelial Cells , Epithelial-Mesenchymal Transition , Protein-Serine-Threonine Kinases , Rats , Signal Transduction , Transforming Growth Factor beta1
15.
Article in Chinese | WPRIM | ID: wpr-772107

ABSTRACT

OBJECTIVE@#To explore the role of miR-593 in regulating the proliferation of colon cancer cells and the molecular mechanism.@*METHODS@#Bioinformatics analysis identified PLK1 as the possible target gene of miR-593. Luciferase assay was employed to verify the binding between miR-593 and PLK1, and qRT-PCR and Western blotting were used to verify that PLK1 was the direct target gene of miR-593. CCK-8 assay was performed to test the hypothesis that miR-593 inhibited the proliferation of colon cancer cells by targeting PLK1.@*RESULTS@#Luciferase assay identified the specific site of miR-593 binding with PLK1. Western blotting showed a significantly decreased expression of PLK1 in the colon cancer cells transfected with miR-593 mimics and an increased PLK1 expression in the cells transfected with the miR-593 inhibitor as compared with the control cells ( < 0.05). The results of qRT-PCR showed no significant differences in the expression levels of PLK1 among the cells with different treatments ( > 0.05). The cell proliferation assay showed opposite effects of miR-593 and PLK1 on the proliferation of colon cancer cells, and the effect of co-transfection with miR-593 mimic and a PLK1-overexpressing plasmid on the cell proliferation was between those in PLK1 over-expressing group and miR-593 mimic group.@*CONCLUSIONS@#miR-593 inhibits the proliferation of colon cancer cells by down-regulating PLK1 and plays the role as a tumor suppressor in colon cancer.


Subject(s)
Binding Sites , Cell Cycle Proteins , Genetics , Metabolism , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms , Metabolism , Pathology , Down-Regulation , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , In Vitro Techniques , MicroRNAs , Genetics , Metabolism , Protein-Serine-Threonine Kinases , Genetics , Metabolism , Proto-Oncogene Proteins , Genetics , Metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sincalide , Metabolism , Transfection
16.
Article in Chinese | WPRIM | ID: wpr-772059

ABSTRACT

OBJECTIVE@#Citron Rho-interacting serine/threonine kinase (CIT) was identified recently as an oncogene involved in the progression of various malignant tumors, but its role in prostate cancer (PCa) remains unclear. In this study, we aimed to investigate the biological functions of CIT in PCa.@*METHODS@#We analyzed the expression of CIT in PCa tissues and its clinical correlations based on the Cancer Genome Atlas (TCGA) and Memorial Sloan-Kettering Cancer Center (MSKCC) dataset. We then examined the effects of RNA interference-mediated CIT silencing on the proliferation, migration and invasion of PC-3 cells using cell counting kit-8, wound healing assay and Transwell assay. We also investigated the effect of CIT silencing on epithelial-mesenchymal transition (EMT) and Hippo-Yap signaling pathway in the cells using Western blotting.@*RESULTS@#CIT expression was significantly elevated in PCa tissues from TCGA cohort ( < 0.05). MSKCC dataset analysis showed that an elevated expression of CIT was significantly correlated with N stage (=0.001), distant metastasis ( < 0.001), Gleason score (=0.010) and PSA (=0.004). In cultured PC-3 cells, knockdown of CIT significantly inhibited cell proliferation, migration and invasion, reversed the EMT phenotype and decreased the expression and activity of YAP.@*CONCLUSIONS@#CIT might function as an oncogene in PCa by modulating the Hippo-YAP signaling pathway and serve as a candidate therapeutic target for PCa.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Male , Neoplasm Metastasis , Phosphoproteins , Prostatic Neoplasms , Protein-Serine-Threonine Kinases , Serine , Signal Transduction
17.
Article in Chinese | WPRIM | ID: wpr-771948

ABSTRACT

OBJECTIVE@#To assess the association of single nucleotide polymorphisms (SNPs) of STK39 gene with response to hydrochlorothiazide among ethnic Han Chinese patients with essential hypertension.@*METHODS@#In total 118 patients with essential hypertension were recruited. All participants had received six weeks of treatment with hydrochlorothiazide 25 mg daily. Blood pressure (BP) and heart rate (HR) were measurement every 2 weeks. Genotypes of STK39 rs3754777 and rs6749447 were determined using a SNaPshot technique.@*RESULTS@#A significant difference was found in ΔSBP between individuals with rs3754777 CC, CT and TT and those with rs3754777 CC and CT-TT (P0.05). Relative risk analysis showed that STK39 rs3754777 was significantly associated with BP response to hydrochlorothiazide (OR=0.416, 95%CI=0.189-0.918, P<0.05).@*CONCLUSION@#Polymorphisms of STK39 rs3754777 may be associated with BP response to hydrochlorothiazide among ethnic Han Chinese with essential hypertension.


Subject(s)
Asian Continental Ancestry Group , Essential Hypertension , Genotype , Humans , Hydrochlorothiazide , Polymorphism, Single Nucleotide , Protein-Serine-Threonine Kinases , Genetics
18.
Article in Chinese | WPRIM | ID: wpr-771876

ABSTRACT

OBJECTIVE@#To explore the expression level of PLK1 in mantle cell lymphoma(MCL), and the effect of silencing PLK1 gene by RNA interference on the cell proliferation, apoptosis, and cell cycle.@*METHODS@#S-P immunohistochemistry technique was used to detect the expression of PLK1 in tissues of 42 patients with MCL and 30 patients with reactive proliferative lymphodenitis(RPL), their expression levels were compared and analyzed. The Jeko-1 cells were transfected with lentivirus contaiming PLK-1 shRNA, then the mRNA and protein expression of PLK-1 was detected by real-time guantitative PCR and Western blot nespectively, and the silencing efficacy of PLK-1 shRNA was identificd. The cell proliferation was detected by CCK method, the cell apoptosis was detected by Annexin V/PI double staining, the cell cycle was detected by PI single staining, the changes of apoptosis-related proteins BAX, BCL-2 and Caspase 3 were detected by Western blot.@*RESULTS@#The positive expression rate of PLK-1 in tissue of MCL patients was 66.67%(28/42), which was significanfly higher than 20%(6/30) in tissue of RPL patients (P<0.05). The PLK-1 positive expression correlated with B symptom, IPI score, Ann-Arbor stage(P<0.05). After infection of Jeko-1 cells with lentivirus containing PLK-1 shRNA for 72 hours, the mRNA and protein expressions of PLK-1 were significantly down-regulated(P<0.05), the proliferation rate of cells in group of PLK-1 shRNA was significanly lower than that in control and Neg shRNA groups(P<0.05); the apoptosis rate of cells in PLK-1 shRNA group was (27.42±3.44)%, which was significantly higher than that in control group (1.23±0.42)% and Neg shRNA group (2.07±0.58) % (P<0.05). The cell cycle analysis showed that the cell ratio in G/M phase of PLK-1 shRNA group was (27.21±3.59) %, which was higher than that in control group (13.28±2.63)% and Neg shRNA group (14.34±2.37) %. The detection of apoptosis-related proteins showed that the expression of BAX was up-regulated, the expression of BCL-2 was down-regnlated and the expression of caspase 3 was up-regulated.@*CONCLUSION@#The PLK-l overexpression appears in tissue of MCL patients. The silencing PLK-1 gene can inhibit the proliferation of Jeko-1 cells, induce the apopotosis of Jeko-1 cells and arrestes cell cycle in G/M phase.


Subject(s)
Apoptosis , Cell Cycle Proteins , Genetics , Cell Line, Tumor , Cell Proliferation , Humans , Lymphoma, Mantle-Cell , Genetics , Protein-Serine-Threonine Kinases , Genetics , Proto-Oncogene Proteins , Genetics , RNA, Small Interfering
19.
Chinese Journal of Biotechnology ; (12): 1686-1697, 2019.
Article in Chinese | WPRIM | ID: wpr-771762

ABSTRACT

Translationally controlled tumor proteins (TCTP) and SNF1- related protein kinase (SnRK1) are conserved and widely present in eukaryotic cells. TCTP regulates cell division, plant growth and development, and mediates plant resistance against pathogen infection. SnRK1 participates in a range of physiological processes including sugar metabolism and resistance to abiotic and biotic stresses. Previous work in our laboratory demonstrated that wheat TCTP can respond to Puccinia triticina infection and induce host defense responses. In order to further investigate the mechanism of TaTCTP in wheat resistance to Puccinia triticina infection, we used TAP (tandem affinity purification) and mass spectrometry to screen the potential interactants of TaTCTP. A SNF1- related protein kinase (SnRK1) was identified as a potential interacting protein of TaTCTP. The results of yeast two-hybrid assay showed that TCTP could interact with SnRK1 in yeast, and the yeast carrying TCTP and SnRK1 could grow on SD/-Leu/-Trp/-His/-Ade (SD/-LWHA) medium. The fluorescence signal of the interaction between TCTP and SnRK1 was found to be distributed in the cytoplasm in the Bi-fluorescense complementation experiment. Co-IP experiments further showed that TCTP and SnRK1 could interact in plant cells. This study lays an important foundation for further studying the mechanism of TaTCTP in the interaction between wheat and Puccinia triticina, and it play a great influence on further improving the molecular mechanism of wheat resistant to Puccinia triticina.


Subject(s)
Basidiomycota , Humans , Neoplasms , Protein Biosynthesis , Protein-Serine-Threonine Kinases , Triticum
20.
Acta Physiologica Sinica ; (6): 279-286, 2019.
Article in Chinese | WPRIM | ID: wpr-777188

ABSTRACT

The aim of this study was to investigate the role of S100 calcium binding protein A16 (S100A16) in lipid metabolism in hepatocytes and its possible biological mechanism. HepG2 cells (human hepatoma cell line) were cultured with fatty acid to establish fatty acid culture model. The control model was cultured without fatty acid. Each model was divided into three groups and transfected with S100a16 over-expression, shRNA and vector plasmids, respectively. The concentration of triglyceride (TG) in the cells was measured by kit, and the lipid droplets was observed by oil red O staining. Immunoprecipitation and mass spectrometry were used to find the interesting proteins interacting with S100A16, and the interaction was verified by immunoprecipitation. The further mechanism was studied by Western blot and qRT-PCR. The results showed that the intracellular lipid droplet and TG concentrations in the fatty acid culture model were significantly higher than those in the control model. The accumulation of intracellular fat in the S100a16 over-expression group was significantly higher than that in the vector plasmid transfection group. There was an interaction between heat shock protein A5 (HSPA5) and S100A16. Over-expression of S100A16 up-regulated protein expression levels of HSPA5, inositol-requiring enzyme 1α (IRE1α) and pIREα1, which belong to endoplasmic reticulum stress HSPA5/IRE1α-XBP1 pathway. Meanwhile, over-expression of S100A16 up-regulated the mRNA expression levels of adipose synthesis-related gene Srebp1c, Acc and Fas. In the S100a16 shRNA plasmid transfection group, the above-mentioned protein and mRNA levels were lower than those of vector plasmid transfection group. These results suggest that S100A16 may promote lipid synthesis in HepG2 cells through endoplasmic reticulum stress HSPA5/IRE1α-XBP1 pathway.


Subject(s)
Endoplasmic Reticulum Stress , Endoribonucleases , Physiology , Heat-Shock Proteins , Physiology , Hep G2 Cells , Humans , Lipid Metabolism , Protein-Serine-Threonine Kinases , Physiology , S100 Proteins , Physiology , Triglycerides , X-Box Binding Protein 1 , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL