Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 671
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 113-126, 2023.
Article in English | WPRIM | ID: wpr-971666

ABSTRACT

Marsdenia tenacissima injection, a standard Marsdenia tenacissima extract (MTE), has been approved as an adjuvant therapeutic agent for various cancers. Our previous study showed that MTE inhibited the proliferation and metastasis of prostate cancer (PCa) cells. However, the underlying mechanisms and active ingredients of MTE against PCa were not completely understood. This study revealed that MTE induced significant decreases in cell viability and clonal growth in PCa cells. In addition, MTE induced the apoptosis of DU145 cells by reducing the mitochondrial membrane potential and increasing the expression of Cleaved Caspase 3/7, Cyt c, and Bax. In vivo, DU145 xenografted NOD-SCID mice treated with MTE showed significantly decreased tumor size. TUNEL staining and Western blot confirmed the pro-apoptotic effects of MTE. Network pharmacology analysis collected 196 ingredients of MTE linked to 655 potential targets, and 709 PCa-associated targets were retrieved, from which 149 overlapped targets were screened out. Pathway enrichment analysis showed that the HIF-1, PI3K-AKT, and ErbB signaling pathways were closely related to tumor apoptosis. Western blot results confirmed that MTE increased the expression of p-AKTSer473 and p-GSK3βSer9, and decreased the expression of p-STAT3Tyr705in vitro and in vivo. A total of 13 compounds in MTE were identified by HPLC-CAD-QTOF-MS/MS and UPLC-QTOF-MS/MS. Molecular docking analysis indicated that six compounds may interact with AKT, GSK3β, and STAT3. In conclusion, MTE induces the endogenous mitochondrial apoptosis of PCa by regulating the AKT/GSK3β/STAT3 signaling axis, resulting in inhibition of PCa growth in vitro and in vivo.


Subject(s)
Mice , Animals , Male , Humans , Mice, Inbred NOD , Mice, SCID , Marsdenia , Proto-Oncogene Proteins c-akt , Glycogen Synthase Kinase 3 beta , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Tandem Mass Spectrometry , Prostatic Neoplasms , Apoptosis , STAT3 Transcription Factor
2.
Journal of Integrative Medicine ; (12): 184-193, 2023.
Article in English | WPRIM | ID: wpr-971653

ABSTRACT

OBJECTIVE@#Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.@*METHODS@#A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.@*RESULTS@#Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.@*CONCLUSION@#Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.


Subject(s)
Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Proliferating Cell Nuclear Antigen/therapeutic use , Mice, Nude , Glycogen Synthase Kinase 3 beta/genetics , beta Catenin/therapeutic use , Liver Neoplasms/drug therapy , Desmin/therapeutic use , Ki-67 Antigen , Cell Line, Tumor , Hypoxia , RNA, Messenger/therapeutic use , Cell Proliferation
3.
Journal of Integrative Medicine ; (12): 62-76, 2023.
Article in English | WPRIM | ID: wpr-971641

ABSTRACT

OBJECTIVE@#The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.@*METHODS@#Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.@*RESULTS@#IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.@*CONCLUSION@#IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.


Subject(s)
Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Colchicine/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism
4.
Frontiers of Medicine ; (4): 119-131, 2023.
Article in English | WPRIM | ID: wpr-971625

ABSTRACT

Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.


Subject(s)
Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Cisplatin/metabolism , Esophageal Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/genetics , Growth Differentiation Factor 15/therapeutic use , Receptor, Transforming Growth Factor-beta Type II/therapeutic use , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
5.
Frontiers of Medicine ; (4): 143-155, 2023.
Article in English | WPRIM | ID: wpr-971621

ABSTRACT

Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.


Subject(s)
Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/metabolism , Glioma/genetics , Genes, Tumor Suppressor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
6.
Journal of Southern Medical University ; (12): 111-116, 2023.
Article in Chinese | WPRIM | ID: wpr-971502

ABSTRACT

OBJECTIVE@#To investigate the effect of licochalcone A (LCA) on the proliferation and cell cycle of human lung squamous carcinoma cells and explore its possible molecular mechanism.@*METHODS@#MTT assay was used to detect the changes in proliferation of H226 cells after treatment with different concentrations of LCA for 48 h, and the IC50 of LCA was calculated. Flow cytometry was used to analyze cell cycle changes in H226 cells treated with 10, 20, and 40 μmol/L LCA, and the expressions of cyclin D1, cyclin-dependent kinase CDK2 and CDK4, and p-PI3K, PI3K, p-Akt, and Akt in the treated cells were detected using Western blotting. The effect of intraperitoneal injection of LCA for 24 days on tumor volume and weight was assessed in a BALB/c-nu mouse model bearing lung squamous carcinoma xenografts.@*RESULTS@#MTT assay showed that LCA significantly decreased the viability of H226 cells with an IC50 of 28.3 μmol/L at 48 h. Flow cytometry suggested that LCA treatment induced obvious cell cycle arrest at the G1 phase. LCA treatment also significantly decreased the expressions of cyclin D1, CDK2, and CDK4, and inhibited the phosphorylation of PI3K and Akt in H226 cells. In the tumor-bearing mice, LCA treatment for 24 days significantly reduced the tumor volume and weight.@*CONCLUSION@#LCA is capable of inhibiting the proliferation and inducing cell cycle arrest in lung squamous carcinoma cells possibility by regulating the PI3K/Akt singling pathway.


Subject(s)
Humans , Animals , Mice , Cyclin D1 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Cell Cycle Checkpoints , Lung Neoplasms , Signal Transduction , Lung
7.
Journal of Southern Medical University ; (12): 52-59, 2023.
Article in Chinese | WPRIM | ID: wpr-971494

ABSTRACT

OBJECTIVE@#To investigate the effect of ANP32A silencing on invasion and migration of colon cancer cells and the influence of the activity of AKT signaling pathway on this effect.@*METHODS@#Colorectal cancer HCT116 and SW480 were transfected with a small interfering RNA targeting ANP32A via a lentiviral vector. At 24, 48 and 72 h after the transfection, the changes in cell proliferation and AKT activity in the cells were detected using MTT assay and Western blotting, respectively. HCT116 and SW480 cells were treated with the AKT agonist SC79 or its inhibitor MK2206 for 24, 48, 72 and 96 h, and the changes in cell migration and invasion ability were analyzed using Transwell chamber assay and cell proliferation was assessed using MTT assay. The effects of SC79 and MK2206 on migration and invasion abilities of HCT116 and SW480 cells with or without ANP32A silencing were examined using wound healing and Transwell chamber assays, and the changes in the expression of metadherin (MTDH), a factor associated with cells invasion and migration, was detected with Western blotting.@*RESULTS@#Lentivirus-mediated ANP32A silencing significantly down-regulated the activity of AKT and inhibited the proliferation of both HCT116 and SW480 cells (P < 0.01). The application of AKT inhibitor MK2206 obviously inhibited the proliferation, invasion and migration of the colorectal cancer cells (P < 0.05), while the AKT agonist SC79 significantly promoted the invasion and migration of the cells (P < 0.01). In HCT116 and SW480 cells with ANP32A silencing, treatment with MK2206 strongly enhanced the inhibitory effects of ANP32A silencing on cell invasion and migration (P < 0.05) and the expression of MTDH, while SC79 partially reversed these inhibitory effects (P < 0.01).@*CONCLUSION@#ANP32A silencing inhibits invasion and migration of colorectal cancer cells possibly by inhibiting the activation of the AKT signaling pathway.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt , Cell Proliferation , Blotting, Western , Cell Movement , Colonic Neoplasms , Membrane Proteins , RNA-Binding Proteins/genetics , Nuclear Proteins
8.
Journal of Zhejiang University. Science. B ; (12): 262-268, 2023.
Article in English | WPRIM | ID: wpr-971485

ABSTRACT

Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011). Type I accounts for approximately 80% of cases, of which the majority are endometrioid carcinomas, and the remaining are mucinous adenocarcinomas (Setiawan et al., 2013). It is generally recognized that long-term stimulation by high estrogen levels with the lack of progesterone antagonism is the most important risk factor; meanwhile, there is no definite conclusion on the specific pathogenesis. The incidence of endometrial cancer has been on the rise during the past two decades (Constantine et al., 2019; Gao et al., 2022; Luo et al., 2022). Moreover, the development of assisted reproductive technology and antiprogestin therapy following breast cancer surgery has elevated the risk of developing type I endometrial cancer to a certain extent (Vassard et al., 2019). Therefore, investigating the influence of estrogen in type I endometrial cancer may provide novel concepts for risk assessment and adjuvant therapy, and at the same time, provide a basis for research on new drugs to treat endometrial cancer.


Subject(s)
Female , Humans , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Endometrial Neoplasms , Estrogens , Breast Neoplasms , DNA Helicases
9.
Journal of Zhejiang University. Science. B ; (12): 232-247, 2023.
Article in English | WPRIM | ID: wpr-971483

ABSTRACT

Drastic surges in intracellular reactive oxygen species (ROS) induce cell apoptosis, while most chemotherapy drugs lead to the accumulation of ROS. Here, we constructed an organic compound, arsenical N-‍(4-(1,3,2-dithiarsinan-2-yl)phenyl)acrylamide (AAZ2), which could prompt the ROS to trigger mitochondrial-dependent apoptosis in gastric cancer (GC). Mechanistically, by targeting pyruvate dehydrogenase kinase 1 (PDK1), AAZ2 caused metabolism alteration and the imbalance of redox homeostasis, followed by the inhibition of phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and leading to the activation of B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax)/caspase-9 (Cas9)/Cas3 cascades. Importantly, our in vivo data demonstrated that AAZ2 could inhibit the growth of GC xenograft. Overall, our data suggested that AAZ2 could contribute to metabolic abnormalities, leading to mitochondrial-dependent apoptosis by targeting PDK1 in GC.


Subject(s)
Humans , Signal Transduction , Stomach Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Cell Line, Tumor
10.
Chinese journal of integrative medicine ; (12): 137-145, 2023.
Article in English | WPRIM | ID: wpr-971340

ABSTRACT

OBJECTIVE@#To investigate the anti-angiogenic activity of Kunxian Capsule (KX) extract and explore the underlying molecular mechanism using zebrafish.@*METHODS@#The KX extract was prepared with 5.0 g in 100 mL of 40% methanol followed by ultrasonication and freeze drying. Freeze dried KX extract of 10.00 mg was used as test stock solution. Triptolide and icariin, the key bioactive compounds of KX were analyzed using ultra-high performance liquid chromatography. The transgenic zebrafish Tg(flk1:GFP) embryos were dechorionated at 20-h post fertilization (hpf) and treated with PTK 787, and 3.5, 7, 14 and 21 µg/mL of KX extract, respectively. After 24-h post exposure (hpe), mortality and malformation (%), intersegmental vessels (ISV) formation, and mRNA expression level of angiogenic pathway genes including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) were determined. Further, the embryos at 72 hpf were treated with KX extract to observe the development of sub-intestinal vein (SIV) after 24 hpe.@*RESULTS@#The chromatographic analysis of test stock solution of KX extract showed that triptolide and icariin was found as 0.089 mg/g and 48.74 mg/g, respectively, which met the requirements of the national drug standards. In zebrafish larvae experiment, KX extract significantly inhibited the ISV (P<0.01) and SIV formation (P<0.05). Besides, the mRNA expression analysis showed that KX extract could significantly suppress the expressions of PI3K and AKT, thereby inhibiting the mRNA levels of ERKs and MAPK. Moreover, the downstream signaling cascade affected the expression of VEGF and its receptors (VEGFR and VEGFR-2). FGF-2, a strong angiogenic factor, was also down-regulated by KX treatment in zebrafish larvae.@*CONCLUSION@#KX extract exhibited anti-angiogenic effects in zebrafish embryos by regulating PI3K/AKT-MAPK-VEGF pathway and showed promising potential for RA treatment.


Subject(s)
Animals , Fibroblast Growth Factor 2 , Human Umbilical Vein Endothelial Cells , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish
11.
Chinese journal of integrative medicine ; (12): 244-252, 2023.
Article in English | WPRIM | ID: wpr-971329

ABSTRACT

OBJECTIVE@#To investigate the mechanism of the effect of Astragalus membranaceus (A. membranaceus) on lung adenocarcinoma at the molecular level to elucidate the specific targets according to the network pharmacology approach.@*METHODS@#The active components of A. membranaceus and their potential targets were collected from the Traditional Chinese Medicine Systems Pharmacology Database. Lung adenocarcinoma-associated genes were acquired based on GeneCards, Online Mendelian Inheritance in Man (OMIM), PharmGKB, and Therapeutic Targets databases. The PI3K/AKT signaling pathway-related genes were obtained using Reactome portal. Networks of "ingredient-target" and "ingredient-target-pathway-disease" were constructed using the Cytoscape3.6.0 software. The relationships among targets were analyzed according protein-protein interaction (PPI) network. Finally, molecular docking was applied to construct the binding conformation between active ingredients and core targets. Cell counting kit 8 (CCK8) and Western blot assays were performed to determine the mechanism of the key ingredient of A. membranaceus.@*RESULTS@#A total of 20 active components and their 329 targets, and 7,501 lung adenocarcinoma-related genes and 130 PI3K/AKT signaling pathway-related genes were obtained. According to Venn diagram and PPI network analysis, 2 mainly active ingredients, including kaempferol and quercetin, and 6 core targets, including TP53, MAPK1, EGF, AKT1, ERBB2, and EGFR, were identified. The two important active ingredients of A. membranaceus, kaempferol and quercetin, exert the therapeutic effect in lung adenocarcinoma partly by acting on the 6 core targets (TP53, MAPK1, EGF, AKT1, ERBB2, and EGFR) of PI3K/AKT signaling pathway. Expressions of potential targets in lung adenocarcinoma and normal samples were analyzed by using UALCAN portal and found that ERBB2 was overexpressed in lung adenocarcinoma tissues and upregulation of it correlated with clinicopathological characteristics. Finally, quercetin repressed viabilities of lung adenocarcinoma cells by targeting ERBB2 on PI3K/AKT signaling confirmed by CCK8 and Western blot.@*CONCLUSION@#Our finding unraveled that an active ingredient of A. membranaceus, quercetin, significantly inhibited the lung adenocarcinoma cells proliferation by repressing ERBB2 level and inactivating the PI3K/AKT signaling pathway.


Subject(s)
Humans , Astragalus propinquus , Kaempferols , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Epidermal Growth Factor , Molecular Docking Simulation , Quercetin , Adenocarcinoma of Lung , Lung Neoplasms , Signal Transduction , ErbB Receptors , Drugs, Chinese Herbal
12.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 324-332, 2023.
Article in Chinese | WPRIM | ID: wpr-986007

ABSTRACT

Objective: To investigate the effect and mechanism of miR-96-5p on apoptosis of PC12 cells induced by maltol aluminum. Methods: In January 2021, PC12 cells at logarithmic growth phase were divided into blank control group and low, medium and high dose group. Cells in each group were treated with 0, 100, 200 and 400 μmol/L maltol aluminum for 24 hours respectively. Cells were collected and cell apoptosis rates were detected by flow cytometry, miR-96-5p and insulin receptor substrate 1 (IRS1) mRNA expressions were detected by qRT-PCR, and the protein expression levels of cysteine protease 3 (Caspase3) 、activated cysteine protease 3 (Cleaved-caspase3) 、IRS1、phosphorylated protein kinase B (p-AKT) and phosphorylated glucose synthesis kinase 3β (p-GSK3β) were detected by western blotting. The target binding relationship between miR-96-5p and IRS1 was detected by double luciferase reporter gene experiment. The miR-96-5p inhibitor cells and negative control cells were constructed after transfecting PC12 cells with miR-96-5p inhibitor for 24 hours. The cells were divided into blank control group, negative control group, aluminum exposure group, aluminum exposure+negative control group, aluminum exposure+miR-96-5p inhibition group, and miR-96-5p inhibition group. After transfecting PC12 cells with miR-96-5p inhibition and IRS1 siRNA for 24 h, the cells were divided into aluminum exposure+miR-96-5p inhibition+negative control group and aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group. The control group was cultured in complete culture medium, and cells in the aluminum exposure group were treated with 200 μmol/L maltol aluminum for 24 hours. Cells in each group were collected and the apoptosis rate, miR-96-5p and IRS1 mRNA expression levels, as well as protein expression levels of Caspase3, Cleaved-caspase3, IRS1, p-AKT, and p-GSK3β were measured. Results: After 24 hours of exposure, compared with blank control group and low-dose group, the apoptosis rates, relative expressions of Caspase3 and Cleaved-caspase3 proteins, and relative expressions of miR-96-5p in the medium and high-dose groups of PC12 cells were significantly increased, while the relative expression levels of IRS1 mRNA, IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05). Targetscan prediction and double luciferase report experiment both proved that IRS1 was a direct target gene of miR-96-5p. In the transfection experiment, compared with the aluminum exposure group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins, the relative expression of miR-96-5p in the aluminum exposure+miR-96-5p inhibition group were significantly decreased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly increased (P<0.05). In the IRS1 low expression experiment, compared with the aluminum exposure+miR-96-5p inhibition+negative control group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins in the aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group were significantly increased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05) . Conclusion: The increased expression of miR-96-5p and the targeted inhibition of IRS1 may be one of the mechanisms of apoptosis of PC12 cells induced by maltol aluminum exposure.


Subject(s)
Animals , Rats , Aluminum/toxicity , Apoptosis , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/metabolism , PC12 Cells , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger
13.
Journal of Southern Medical University ; (12): 1145-1154, 2023.
Article in Chinese | WPRIM | ID: wpr-987031

ABSTRACT

OBJECTIVE@#To investigate the protective effects of total saponins from Panax japonicus (TSPJ) against high-fat dietinduced testicular Sertoli cell junction damage in mice.@*METHODS@#Forty male C57BL/6J mice were randomized into normal diet group, high-fat diet group, and low-dose (25 mg/kg) and high-dose (75 mg/kg) TSPJ treatment groups (n=10). The mice in the normal diet group were fed a normal diet, while the mice in the other groups were fed a high-fat diet. After TSPJ treatment via intragastric administration for 5 months, the testes and epididymis of the mice were collected for measurement of weight, testicular and epididymal indices and sperm parameters. HE staining was used for histological evaluation of the testicular tissues and measurement of seminiferous tubule diameter and seminiferous epithelium height. The expression levels of ZO-1, occludin, claudin11, N-cadherin, E-cadherin and β-catenin in Sertoli cells were detected with Western blot, and the localization and expression levels of ZO-1 and β-catenin in the testicular tissues were detected with immunofluorescence assay. The protein expressions of LC3B, p-AKT and p-mTOR in testicular Sertoli cells were detected using double immunofluorescence assay.@*RESULTS@#Treatment with TSPJ significantly improved high-fat diet-induced testicular dysfunction by reducing body weight (P < 0.001), increasing testicular and epididymal indices (P < 0.05), and improving sperm concentration and sperm viability (P < 0.05). TSPJ ameliorated testicular pathologies and increased seminiferous epithelium height of the mice with high-fat diet feeding (P < 0.05) without affecting the seminiferous tubule diameter. TSPJ significantly increased the expression levels of ZO-1, occludin, N-cadherin, E-cadherin and β-catenin (P < 0.05) but did not affect claudin11 expression in the testicular tissues. Immunofluorescence assay showed that TSPJ significantly increased ZO-1 and β-catenin expression in the testicular tissues (P < 0.001), downregulated LC3B expression and upregulated p-AKT and p-mTOR expressions in testicular Sertoli cells.@*CONCLUSION@#TSPJ alleviates high-fat diet-induced damages of testicular Sertoli cell junctions and spermatogenesis possibly by activating the AKT/mTOR signaling pathway and inhibiting autophagy of testicular Sertoli cells.


Subject(s)
Male , Animals , Mice , Mice, Inbred C57BL , Testis , Sertoli Cells , beta Catenin , Diet, High-Fat , Occludin , Proto-Oncogene Proteins c-akt , Seeds , Cadherins , Intercellular Junctions
14.
Journal of Southern Medical University ; (12): 975-984, 2023.
Article in Chinese | WPRIM | ID: wpr-987011

ABSTRACT

OBJECTIVE@#To investigate the expression of four-jointed box kinase 1 (FJX1) in gastric cancer (GC), its correlation with survival outcomes of the patients, and its role in GC progression.@*METHODS@#The expression level of FJX1 in GC tissues and normal gastric mucosal tissues and its correlation with the survival outcomes of GC patients were analyzed using TCGA and GEO database GC cohort. Immunohistochemistry was used to detect FJX1 expression level in clinical specimens of GC tissue, and its correlations with the patients' clinicopathological parameters and prognosis were analyzed. Bioinformatic analysis was performed to identify the potential pathways of FJX1 in GC. The effects of FJX1 overexpression or FJX1 silencing on GC cell proliferation and expressions of proliferation-related proteins, PI3K, AKT, p-PI3K, and p-AKT were evaluated using CCK-8 assay and Western blotting. The effect of FJX1 overexpression on GC cell tumorigenicity was evaluated in nude mice.@*RESULTS@#GC tissues showed significantly higher expressions of FJX1 mRNA and protein compared with normal gastric mucosa tissues (P < 0.05). The high expression of FJX1 was associated with poor prognosis of GC patients (P < 0.05) and served as an independent risk factor for poor survival outcomes in GC (P < 0.05). FJX1 was expressed mainly in the cytoplasm of GC cells in positive correlation with Ki67 expression (R=0.34, P < 0.05), and was correlated with CA199 levels, depth of tumor infiltration and lymph node metastasis of GC (P < 0.05). In the cell experiment, FJX1 level was shown to regulate the expressions of Ki67 and PCNA and GC cell proliferation (P < 0.05). Gene set enrichment analysis indicated that the PI3K/AKT pathway potentially mediated the effect of FJX1, which regulated the expressions of PI3K and AKT and their phosphorylated proteins. In nude mice, FJX1 overexpression in GC cells significantly promoted the growth of the transplanted tumors (P < 0.05).@*CONCLUSION@#FJX1 is highly expressed in GC tissues and is correlated with poor prognosis of GC patients. FJX1 overexpression promotes GC cell proliferation through the PI3K/AKT signaling pathway, and may serve as a potential prognostic biomarker and therapeutic target for GC.


Subject(s)
Animals , Mice , Humans , Cell Proliferation , Ki-67 Antigen , Mice, Nude , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stomach Neoplasms/pathology , Intercellular Signaling Peptides and Proteins/genetics
15.
Journal of Southern Medical University ; (12): 935-942, 2023.
Article in Chinese | WPRIM | ID: wpr-987006

ABSTRACT

OBJECTIVE@#To investigate the effect of pachymic acid (PA) against TNBS-induced Crohn's disease (CD)-like colitis in mice and explore the possible mechanism.@*METHODS@#Twenty-four C57BL/6J mice were randomized equally into control group, TNBS-induced colitis model group and PA treatment group. PA treatment was administered via intraperitoneal injection at the daily dose of 5 mg/kg for 7 days, and the mice in the control and model groups were treated with saline. After the treatments, the mice were euthanized for examination of the disease activity index (DAI) of colitis, body weight changes, colon length, intestinal inflammation, intestinal barrier function and apoptosis of intestinal epithelial cells, and the expressions of TNF-α, IL-6 and IL-1β in the colonic mucosa were detected using ELISA. The possible treatment targets of PA in CD were predicted by network pharmacology. String platform and Cytoscape 3.7.2 software were used to construct the protein-protein interaction (PPI) network. David database was used to analyze the GO function and KEGG pathway; The phosphorylation of PI3K/AKT in the colonic mucosal was detected with Western blotting.@*RESULTS@#PA significantly alleviated colitis in TNBS-treated mice as shown by improvements in the DAI, body weight loss, colon length, and histological inflammation score and lowered levels of TNF-α, IL-6 and IL-1β. PA treatment also significantly improved FITC-dextran permeability, serum I-FABP level and colonic transepithelial electrical resistance, and inhibited apoptosis of the intestinal epithelial cells in TNBS-treated mice. A total of 248 intersection targets were identified between PA and CD, and the core targets included EGFR, HRAS, SRC, MMP9, STAT3, AKT1, CASP3, ALB, HSP90AA1 and HIF1A. GO and KEGG analysis showed that PA negatively regulated apoptosis in close relation with PI3K/AKT signaling. Molecular docking showed that PA had a strong binding ability with AKT1, ALB, EGFR, HSP90AA1, SRC and STAT3. In TNBS-treated mice, PA significantly decreased p-PI3K and p-AKT expressions in the colonic mucosa.@*CONCLUSION@#PA ameliorates TNBS-induced intestinal barrier injury in mice by antagonizing apoptosis of intestinal epithelial cells possibly by inhibiting PI3K/AKT signaling.


Subject(s)
Animals , Mice , Mice, Inbred C57BL , Crohn Disease , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Interleukin-6 , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Colitis/chemically induced , Inflammation , Apoptosis , ErbB Receptors
16.
Journal of Southern Medical University ; (12): 764-771, 2023.
Article in Chinese | WPRIM | ID: wpr-986987

ABSTRACT

OBJECTIVE@#To investigate the growth-inhibitory and pro-apoptotic effects of piroctone olamine (PO) on glioma cells and explore the underlying mechanism.@*METHODS@#Human glioma cell lines U251 and U373 were treated with PO and the changes in cell proliferation were detected using CCK-8 assay and EdU assay. Clone formation assay and flow cytometry were used to examine the changes in clone formation ability and apoptosis of the treated cells. Mitochondrial membrane potential of the cells and morphological changes of the mitochondria were detected using JC-1 staining and a fluorescence probe, respectively. The expressions of mitochondrial fission protein DRP1 and the fusion protein OPA1 were determined with Western blotting. Transcriptome sequencing and differential gene enrichment analysis was performed, and the expression levels of PI3K, AKT and p-AKT in the treated cells were verified using Western blotting.@*RESULTS@#CCK-8 assay showed that PO significantly inhibited the proliferation of U251 and U373 cells in a time- and dose-dependent manner (P < 0.001). EdU test showed that the proliferative activity of PO-treated cells was significantly decreased, and the number of cell colonies also decreased significantly (P < 0.01). PO treatment significantly increased apoptotic rates (P < 0.01), decreased mitochondrial membrane potential and caused obvious changes in mitochondrial morphology of the cells. Pathway enrichment analysis showed that the down-regulated genes were significantly enriched in the PI3K/AKT pathway, which was verified by Western blotting showing significantly down-regulated expression levels of PI3K, AKT and p-AKT in PO-treated cells (P < 0.05).@*CONCLUSION@#PO interferes with mitochondrial fusion and fission function through the PI3K/AKT pathway, thereby inhibiting the proliferation and increasing apoptosis of glioma cells.


Subject(s)
Humans , Glioma , Mitochondrial Dynamics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
17.
Journal of Southern Medical University ; (12): 733-740, 2023.
Article in Chinese | WPRIM | ID: wpr-986983

ABSTRACT

OBJECTIVE@#To investigate the effects of expression levels of S100 calcium-binding protein A10 (S100A10) in lung adenocarcinoma (LUAD) on patient prognosis and the regulatory role of S100A10 in lung cancer cell proliferation and metastasis.@*METHODS@#Immunohistochemistry was used to detect the expression levels of S100A10 in LUAD and adjacent tissues, and the relationship between S100A10 expression and clinicopathological parameters and prognosis of the patients was statistically analyzed. The lung adenocarcinoma expression dataset in TCGA database was analyzed using gene enrichment analysis (GSEA) to predict the possible regulatory pathways of S100A10 in the development of lung adenocarcinoma. Lactate production and glucose consumption of lung cancer cells with S100A10 knockdown or overexpression were analyzed to assess the level of glycolysis. Western blotting, CCK-8 assay, EdU-594 assay, and Transwell assays were performed to determine the expression level of S100A10 protein, proliferation and invasion ability of lung cancer cells. A549 cells with S100A10 knockdown and H1299 cells with S100A10 overexpression were injected subcutaneously in nude mice, and tumor growth was observed.@*RESULTS@#The expression level of S100A10 was significantly upregulated in LUAD tissues as compared with the adjacent tissues, and an elevated S100A10 expression level was associated with lymph node metastasis, advanced tumor stage and distant organ metastasis (P < 0.05), but not with tumor differentiation or the patients' age or gender (P > 0.05). Survival analysis showed that elevated S100A10 expressions in the tumor tissue was associated with a poor outcome of the patients (P < 0.001). In the lung cancer cells, S100A10 overexpression significantly promoted cell proliferation and invasion in vitro (P < 0.001). GSEA showed that the gene sets of glucose metabolism, glycolysis and mTOR signaling pathway were significantly enriched in high expressions of S100A10. In the tumor-bearing nude mice, S100A10 overexpression significantly promoted tumor growth, while S100A10 knockdown obviously suppressed tumor cell proliferation (P < 0.001).@*CONCLUSION@#S100A10 overexpression promotes glycolysis by activating the Akt-mTOR signaling pathway to promote proliferation and invasion of lung adenocarcinoma cells.


Subject(s)
Animals , Mice , Humans , Adenocarcinoma of Lung/pathology , Cell Proliferation , Lung Neoplasms/pathology , Mice, Nude , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , S100 Proteins/genetics
18.
Journal of Southern Medical University ; (12): 568-576, 2023.
Article in Chinese | WPRIM | ID: wpr-986963

ABSTRACT

OBJECTIVE@#To investigate the effect of Akt2 inhibitor on macrophage polarization in the periapical tissue in a rat model of periapical inflammation.@*METHODS@#Rat models of periapical inflammation were established in 28 normal SD rats by opening the pulp cavity of the mandibular first molars, followed by injection of normal saline and Akt2 inhibitor into the left and right medullary cavities, respectively. Four rats without any treatment served as the healthy control group. At 7, 14, 21 and 28 days after modeling, 7 rat models and 1 control rat were randomly selected for observation of inflammatory infiltration in the periapical tissues by X-ray and HE staining. Immunohistochemistry was used to detect the expression and localization of Akt2, macrophages and the inflammatory mediators. RT-PCR was performed to detect the mRNA expressions of Akt2, CD86, CD163, inflammatory mediators, miR-155-5p and C/EBPβ to analyze the changes in macrophage polarization.@*RESULTS@#X-ray and HE staining showed that periapical inflammation was the most obvious at 21 days after modeling in the rats. Immunohistochemistry and RT-PCR showed that compared with those in the control rats, the expressions of Akt2, CD86, CD163, miR-155-5p, C/EBPβ, and IL-10 increased significantly in the rat models at 21 days (P < 0.05). Compared with saline treatment, treatment with the Akt2 inhibitor significantly decreased the expression levels of Akt2, CD86, miR-155-5p and IL-6 and the ratio of CD86+M1/CD163+M2 macrophages (P < 0.05) and increased the expression levels of CD163, C/EBPβ and IL-10 in the rat models (P < 0.05).@*CONCLUSION@#Inhibition of Akt2 can delay the progression of periapical inflammation in rats and promote M2 macrophage polarization in the periapical inflammatory microenvironment possibly by reducing miR-155-5p expression and activating the expression of C/EBPβ in the Akt signaling pathway.


Subject(s)
Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , Interleukin-10 , Rats, Sprague-Dawley , Macrophages/metabolism , Inflammation/metabolism
19.
Journal of Southern Medical University ; (12): 527-536, 2023.
Article in Chinese | WPRIM | ID: wpr-986958

ABSTRACT

OBJECTIVE@#To investigate the role of myosin heavy chain 9 (MYH9) in regulation of cell proliferation, apoptosis, and cisplatin sensitivity of non-small cell lung cancer (NSCLC).@*METHODS@#Six NSCLC cell lines (A549, H1299, H1975, SPCA1, H322, and H460) and a normal bronchial epithelial cell line (16HBE) were examined for MYH9 expression using Western blotting. Immunohistochemical staining was used to detect MYH9 expression in a tissue microarray containing 49 NSCLC and 43 adjacent tissue specimens. MYH9 knockout cell models were established in H1299 and H1975 cells using CRISPR/Cas9 technology, and the changes in cell proliferation cell were assessed using cell counting kit-8 (CCK8) and clone formation assays; Western blotting and flow cytometry were used to detect apoptosis of the cell models, and cisplatin sensitivity of the cells was evaluated using IC50 assay. The growth of tumor xenografts derived from NSCLC with or without MYH9 knockout was observed in nude mice.@*RESULTS@#MYH9 expression was significantly upregulated in NSCLC (P < 0.001), and the patients with high MYH9 expression had a significantly shorter survival time (P=0.023). In cultured NSCLC cells, MYH9 knockout obviously inhibited cell proliferation (P < 0.001), promoted cell apoptosis (P < 0.05), and increased their chemosensitivity of cisplatin. In the tumor-bearing mouse models, the NSCLC cells with MYH9 knockout showed a significantly lower growth rate (P < 0.05). Western blotting showed that MYH9 knockout inactivated the AKT/c- Myc axis (P < 0.05) to inhibit the expression of BCL2- like protein 1 (P < 0.05), promoted the expression of BH3- interacting domain death agonist and the apoptosis regulator BAX (P < 0.05), and activated apoptosis-related proteins caspase-3 and caspase-9 (P < 0.05).@*CONCLUSION@#High expression of MYH9 contributes to NSCLC progression by inhibiting cell apoptosis via activating the AKT/c-Myc axis.


Subject(s)
Animals , Humans , Mice , Apoptosis , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cytoskeletal Proteins/metabolism , Lung Neoplasms/metabolism , Mice, Nude , Myosin Heavy Chains/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
20.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 681-689, 2023.
Article in Chinese | WPRIM | ID: wpr-986945

ABSTRACT

Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.


Subject(s)
Animals , Male , Mice , Apoptosis , bcl-2-Associated X Protein , Diabetes Mellitus, Type 2 , Evans Blue , Glucose , Hearing Loss , Mice, Inbred C57BL , Pericytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL