Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Article in Chinese | WPRIM | ID: wpr-941037

ABSTRACT

OBJECTIVE@#To observe the effect of mibefradil on skeletal muscle mass, function and structure in obese mice.@*METHODS@#Fifteen 6-week-old C57BL/6 mice were randomized equally into normal diet group (control group), high-fat diet (HFD) group and high-fat diet +mibefradil intervention group (HFD +Mibe group). The grip strength of the mice was measured using an electronic grip strength meter, and the muscle content of the hindlimb was analyzed by X-ray absorptiometry (DXA). Triglyceride (TG) and total cholesterol (TC) levels of the mice were measured with GPO-PAP method. The cross-sectional area of the muscle fibers was observed with HE staining. The changes in the level of autophagy in the muscles were detected by Western blotting and immunofluorescence assay, and the activation of the Akt/mTOR signaling pathway was detected with Western blotting.@*RESULTS@#Compared with those in the control group, the mice in HFD group had a significantly greater body weight, lower relative grip strength, smaller average cross sectional area of the muscle fibers, and a lower hindlimb muscle ratio (P < 0.05). Immunofluorescence assay revealed a homogenous distribution of LC3 emitting light red fluorescence in the cytoplasm in the muscle cells in HFD group and HFD+Mibe group, while bright spots of red fluorescence were detected in HFD group. In HFD group, the muscular tissues of the mice showed an increased expression level of LC3 II protein with lowered expressions of p62 protein and phosphorylated AKT and mTOR (P < 0.05). Mibefradil treatment significantly reduced body weight of the mice, lowered the expression level of p62 protein, and increased forelimb grip strength, hindlimb muscle ratio, cross-sectional area of the muscle fibers, and the expression levels of LC3 II protein and phosphorylated AKT and mTOR (P < 0.05).@*CONCLUSION@#Mibefradil treatment can moderate high-fat diet-induced weight gain and improve muscle mass and function in obese mice possibly by activating AKT/mTOR signal pathway to improve lipid metabolism and inhibit obesityinduced autophagy.


Subject(s)
Animals , Body Weight , Diet, High-Fat , Mibefradil/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Article in Chinese | WPRIM | ID: wpr-941019

ABSTRACT

OBJECTIVE@#To explore the effect of atorvastatin (AVT) on biological behaviors and the miR-146a/PI3K/Akt signaling pathway in human glioma cells.@*METHODS@#Human glioma U251 cells were treated with 8.0 μmol/L AVT or transfected with a miR-146a inhibitor or a negative control fragment (miR-146a NC) prior to AVT treatment. RT-PCR was used to detect miR-146a expression in the cells, and the changes in cell proliferation rate, apoptosis, cell invasion and migration were detected using MTT assay, flow cytometry, and Transwell assay. Western blotting was performed to detect the changes in cellular expressions of proteins in the PI3K/Akt signaling pathway.@*RESULTS@#AVT treatment for 48 h resulted in significantly increased miR-146a expression and cell apoptosis (P < 0.01) and obviously lowered the cell proliferation rate, invasion index, migration index, and expressions of p-PI3K and p-Akt protein in U251 cells (P < 0.01). Compared with AVT treatment alone, transfection with miR-146a inhibitor prior to AVT treatment significantly reduced miR-146a expression and cell apoptosis (P < 0.01), increased the cell proliferation rate, promoted cell invasion and migration, and enhanced the expressions of p-PI3K and p-Akt proteins in the cells (P < 0.01); these effects were not observed following transfection with miR-146a NC group (P>0.05).@*CONCLUSION@#AVT can inhibit the proliferation, invasion and migration and promote apoptosis of human glioma cells possibly by up-regulating miR-146a expression and inhibiting the PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Atorvastatin/pharmacology , Cell Line, Tumor , Cell Proliferation , Glioma/pathology , Humans , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
3.
Article in Chinese | WPRIM | ID: wpr-939691

ABSTRACT

AbstractObjective: To investigate the effect of γδ T cells on the proliferation, apoptosis and autophagy of multiple myeloma cells.@*METHODS@#Peripheral blood mononuclear cells (PBMNC) were isolated from healthy volunteers, and stimulated with zoledronic acid (Zol) in combination with rhIL-2. Flow cytometry analysis was used to detected the purity of γδ T cells. γδ T cells were collected and co-cultured with RPMI-8226 or U-266 cells at different effector target ratios. The proliferation of RPMI-8226 or U-266 cell lines were detected by CCK-8. Cell cycle and cell apoptosis were detected by flow cytometry and Western blot.The expressions of autophagy-related proteins were detected by Western blot.@*RESULTS@#γδ T cells can be expanded in vitro. γδ T cells could inhibit the proliferation of RPMI-8226 or U-266 cells, induced cell cycle arrest and promoted apoptosis in an effector target-dependent manner. In addition, γδ T cells could induce autophagy of myeloma cells, inhibited the expression of autophagy-related PI3K, P-AKT and P-mTOR, while increased the expression of AMPK and Beclin-1.@*CONCLUSION@#γδ T cells can inhibit the proliferation of RPMI-8226 and U-266 myeloma cells, induce cell cycle arrest, promote apoptosis, and enhance autophagy in vitro. The mechanism may be related to inhibition of PI3K/AKT/mTOR signaling pathway and/or activation of AMPK/Beclin-1 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/pharmacology , Apoptosis , Autophagy , Beclin-1/pharmacology , Cell Proliferation , Humans , Leukocytes, Mononuclear/metabolism , Multiple Myeloma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes , TOR Serine-Threonine Kinases/metabolism
4.
Chinese Journal of Oncology ; (12): 673-692, 2022.
Article in Chinese | WPRIM | ID: wpr-939499

ABSTRACT

Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway (PAM pathway) plays an important role in the development of breast cancer and are closely associated with the resistance to endocrine therapy in advanced breast cancer. Therefore, anti-cancer treatment targeting key molecules in this signaling pathway has become research hot-spot in recent years. Randomized clinical trials have demonstrated that PI3K/AKT/mTOR inhibitors bring significant clinical benefit to patients with advanced breast cancer, especially to those with hormone receptor (HR)-positive, human epidermal growth factor receptor (HER) 2-negative advanced breast cancer. Alpelisib, a PI3K inhibitor, and everolimus, an mTOR inhibitor, have been approved by Food and Drug Administration. Based on their high efficacy and relatively good safety profile, expanded indication of everolimus in breast cancer have been approved by National Medical Products Administration. Alpelisib is expected to be approved in China in the near future. The members of the consensus expert panel reached this consensus to comprehensively define the role of PI3K/AKT/mTOR signaling pathway in breast cancer, efficacy and clinical applications of PI3K/AKT/mTOR inhibitors, management of adverse reactions, and PIK3CA mutation detection, in order to promote the understanding of PI3K/AKT/mTOR inhibitors for Chinese oncologists, improve clinical decision-making, and prolong the survival of target patient population.


Subject(s)
Breast Neoplasms/metabolism , Consensus , Everolimus/therapeutic use , Female , Humans , MTOR Inhibitors , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism
5.
Article in Chinese | WPRIM | ID: wpr-928147

ABSTRACT

The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3β signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3β in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3β in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3β signaling pathway.


Subject(s)
Aluminum Chloride/adverse effects , Alzheimer Disease/drug therapy , Animals , Galactose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Mice , Mice, Inbred BALB C , Plant Extracts , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism , tau Proteins
6.
Article in Chinese | WPRIM | ID: wpr-927897

ABSTRACT

Objective: To investigate the effects of long-chain noncoding RNA Linc00673 overexpression on proliferation and apoptosis of gastric cancer cells and its mechanisms. Methods: The recombinant lentivirus expressing plasmid pLVX-Linc00673 and the control empty plasmid pLVX-NC were packaged and amplified in 293T cells, and the recombinant lentivirus was transfected into gastric cancer cell line MGC-803 to establish a cell line stably overexpressing Linc00673. The expression of Linc00673 gene was detected by real-time fluorescence quantitative PCR. The growth and proliferation of cells were observed by MTT assay and clone formation assay. Cell cycle and apoptosis were detected by flow cytometry. The expressions of cell cycle related regulatory genes were detected by qPCR. The expressions of key molecules in the PI3K/Akt signaling pathway and tumor proliferation related proteins were detected by Western blot. Results: The expressions of Linc00673 in gastric cancer cell line MGC-803, BGC-823 and AGS were significantly higher than that in normal gastric mucosa cell line GES-1 (P<0.05). MGC-803 cell line with stable overexpression of LINC00673 was established, and the expression level of LincC00673 was 200 times higher than that of the control empty carrier group. Overexpression of Linc00673 promoted proliferation of MGC-803 cells (P<0.05) and clone formation (P<0.05), inhibited cell apoptosis and affected the G1→S phase progression of cell cycle (P<0.01). Overexpression of Linc00673 could affect the expressions of cell cycle regulatory gene CCNG2, P19 and CDK1 in MGC-803. Western blot showed that Linc00673 overexpression not only promoted the expressions of the key molecule pAkt in PI3K / Akt signaling pathway and its downstream target NF-κ B and Bcl-2 protein, but also up regulated the expressions of tumor related factors β-catenin and EZH2 proteins. Conclusion: Overexpression of Linc00673 may promote proliferation and inhibit apoptosis of MGC-803 cells through PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology
7.
Article in Chinese | WPRIM | ID: wpr-927892

ABSTRACT

Objective: To investigate the effects of Zhongfeng capsule on the autophagy-related proteins expression in rats with cerebral ischemia/reperfusion injury (CI/ RI), and to explore its neural protection mechanisms of the decoction. Methods: Rat middle cerebral artery ischemia/reperfusion injury model (ischemia for 2 h, reperfusion for 24 h) was prepared by the improved line plug method. Sixty male SD rats were randomly divided into sham operation group, model group, butylphthalide group(0.054 g/kg), Zhongfeng capsule high-dose groups (1.08 g/kg), Zhongfeng capsule middle-dose groups (0.54 g/kg), Zhongfeng capsule low-dose groups (0.27 g/kg), with 10 rats in each group. Rats were treated with Zhongfeng capsule by gavage once a day for 10 days. The rats were sacrificed and the brain tissue was obtained after the experiment in each group. Score neurological deficit was evaluated after 24 h of the last intervention in rat of each group. The pathological changes of brain tissue were observed by HE staining. The serum levels of estradiol (E2) and follicle stimulating hormone (FSH) were determined by ELISA. The expressions of key genes and proteins of PI3K/Akt/Beclin1 signaling pathway in brain tissue were detected by qRT-PCR and Western blot respectively. Results: Compared with the sham operation group, the body weight and protein expressions of p-PI3k and p-Akt in brain tissue of rats were decreased significantly in the model group, while the brain index, neurological deficit score, gene and protein expressions of Beclin1 and LC3 were increased markedly in the model group(P<0.05 or P<0.01). In the model group, nerve cells of brain tissue were loosely packed, interstitial edema, triangular in shape, nuclear pyknosis and dark-blue staining were observed. Compared with the model group, the body weight of rats was increased obviously, the neurological deficit score was decreased significantly and the pathological injury of brain tissue was alleviated evidently in high-dose of Zhongfeng capsule group (P<0.05). The brain index, the gene and protein expressions of Beclin1 and LC3 were decreased apparently in Zhongfeng capsule treatment groups(P<0.05 or P<0.01), while the expressions of p-PI3k and p-Akt in brain tissue were increased evidently in Zhongfeng capsule treatment groups(P<0.05 or P<0.01). Conclusion: Zhongfeng capsule can inhibit autophagy and improve brain neurons lesion of CIRI rats, the mechanism may be related to regulate the expression of Beclin1 and LC3 in PI3K/Akt/Beclin1 signaling pathway.


Subject(s)
Animals , Autophagy-Related Proteins/pharmacology , Beclin-1/metabolism , Body Weight , Brain , Brain Ischemia/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy
8.
Article in English | WPRIM | ID: wpr-927665

ABSTRACT

Objective@#Neonatal exposure to propofol has been reported to cause neurotoxicity and neurocognitive decline in adulthood; however, the underlying mechanism has not been established.@*Methods@#SD rats were exposed to propofol on postnatal day 7 (PND-7). Double-immunofluorescence staining was used to assess neurogenesis in the hippocampal dentate gyrus (DG). The expression of p-Akt and p27 were measured by western blotting. The Morris water maze, novel object recognition test, and object location test were used to evaluate neurocognitive function 2-month-old rats.@*Results@#Phosphorylation of Akt was inhibited, while p27 expression was enhanced after neonatal exposure to propofol. Propofol also inhibited proliferation of neural stem cells (NSCs) and decreased differentiation to neurons and astroglia. Moreover, the neurocognitive function in 2-month-old rats was weakened. Of significance, intra-hippocampal injection of the Akt activator, SC79, attenuated the inhibition of p-AKT and increase of p27 expression. SC79 also rescued the propofol-induced inhibition of NSC proliferation and differentiation. The propofol-induced neurocognition deficit was also partially reversed by SC79.@*Conclusion@#Taken together, these results suggest that neurogenesis is hindered by neonatal propofol exposure. Specifically, neonatal propofol exposure was shown to suppress the proliferation and differentiation of NSCs by inhibiting Akt/p27 signaling pathway.


Subject(s)
Animals , Cell Proliferation , Hippocampus/metabolism , Neural Stem Cells , Propofol/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
9.
Article in Chinese | WPRIM | ID: wpr-936368

ABSTRACT

OBJECTIVE@#To explore the therapeutic mechanism of tanshinone IIA in the treatment of pulmonary arterial hypertension (PAH) in rats.@*METHODS@#A total of 100 male SD rats were randomized into 5 groups (n=20), and except for those in the control group with saline injection, all the rats were injected with monocrotaline (MCT) on the back of the neck to establish models of pulmonary hypertension. Two weeks after the injection, the rat models received intraperitoneal injections of tanshinone IIA (10 mg/kg), phosphatidylinositol 3 kinase (PI3K) inhibitor (1 mg/kg), both tanshinone IIA and PI3K inhibitor, or saline (model group) on a daily basis. After 2 weeks of treatment, HE staining and α-SMA immunofluorescence staining were used to evaluate the morphology of the pulmonary vessels of the rats. The phosphorylation levels of PI3K, protein kinase B (PKB/Akt) and endothelial nitric oxide synthase (eNOS) in the lung tissue were determined with Western blotting; the levels of eNOS and NO were measured using enzyme-linked immunosorbent assay (ELISA).@*RESULTS@#The results of HE staining and α-SMA immunofluorescence staining showed that tanshinone IIA effectively inhibited MCT-induced pulmonary artery intimamedia thickening and muscularization of the pulmonary arterioles (P < 0.01). The results of Western blotting showed that treatment with tanshinone IIA significantly increased the phosphorylation levels of PI3K, Akt and eNOS proteins in the lung tissue of PAH rats; ELISA results showed that the levels of eNOS and NO were significantly decreased in the rat models after tanshinone IIA treatment (P < 0.01).@*CONCLUSION@#Treatment with tanshinone IIA can improve MCT-induced pulmonary hypertension in rats through the PI3K/Akt-eNOS signaling pathway.


Subject(s)
Abietanes , Animals , Hypertension, Pulmonary/drug therapy , Male , Monocrotaline/toxicity , Nitric Oxide Synthase Type III/therapeutic use , Phosphatidylinositol 3-Kinase/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery , Rats , Rats, Sprague-Dawley , Signal Transduction
10.
Article in Chinese | WPRIM | ID: wpr-936361

ABSTRACT

OBJECTIVE@#To investigate the role of proline 4-hydroxylase Ⅱ (P4HA2) in the occurrence and progression of liver cancer.@*METHODS@#GEPIA and Human Protein Atlas database were used to predict the expression of P4HA2 in hepatocellular carcinoma (HCC), and K-M plotter online database was used to analyze the relationship between P4HA2 expression and the prognosis of HCC. We also examined the expressions of P4HA2 in HCC cells and normal hepatocytes using qRT-PCR and Western blotting. With lentivirus-mediated RNA interference, P4HA2 expression was knocked down in hepatoma SNU-449 and Hep-3B cells, and the changes in cell proliferation, migration and invasion were assessed using cell counting kit-8 (CCK-8) assay, colony formation test, scratch test and Transwell assay. The changes in the expressions of epithelial-mesenchymal transition (EMT) and PI3K/Akt/mTOR signal pathway-related proteins were detected using Western blotting.@*RESULTS@#Online database analysis showed that the expression of P4HA2 was significantly higher in HCC tissues than in normal liver tissues (P < 0.05). The expression levels of P4HA2 mRNA and protein were also significantly higher in HCC cell lines than in normal hepatocytes (P < 0.01). Lentivirus-mediated RNA interference of P4HA2 significantly lowered the expression levels of P4HA2 mRNA and protein in the hepatoma cells (P < 0.05) and caused obvious inhibition of cell proliferation, migration and invasion. P4HA2 knockdown significantly increased the expression of E-cadherin protein, lowered the expressions of N-cadherin and Snail, and obviously decreased the expressions of phosphorylated PI3K, AKT and mTOR (P < 0.05).@*CONCLUSION@#P4HA2 enhances the proliferation, migration, invasion, and EMT of hepatoma cells by activating the PI3K/Akt/mTOR signaling pathway to promote the occurrence and progression of liver cancer.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Liver Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Prolyl Hydroxylases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
11.
Article in Chinese | WPRIM | ID: wpr-936328

ABSTRACT

OBJECTIVE@#To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.@*METHODS@#Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.@*RESULTS@#CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.@*CONCLUSION@#CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.


Subject(s)
Animals , Gene Deletion , Histones/genetics , Insulin , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance/genetics , Membrane Cofactor Protein/genetics , Mice , Mice, Knockout , Muscles/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , Tyrosine/genetics , Up-Regulation
12.
Article in Chinese | WPRIM | ID: wpr-936312

ABSTRACT

OBJECTIVE@#To investigate the changes in autophagy of mesenchymal stem cells (MSCs) from patients with ankylosing spondylitis and explore the mechanism for decreased autophagy in ASMSCs.@*METHODS@#MSCs collected from 14 patients with AS (ASMSCs) and from 15 healthy donors (HDMSCs) were cultured in the absence or presence of 25 ng/mL TNF-α for 6 h. Autophagy of the cells was determined by immunofluorescence staining of GFP-LC3B, and the results were confirmed by detecting the protein expressions of autophagy markers LC3 II/LC3 I and P62. The mRNA expressions of the related genes were detected using qRT-PCR, and the protein expressions of the autophagy markers and signaling pathway-related molecules were determined with Western blotting. TG100713 was used to block the PI3K/AKT/mTOR signal pathway, and its effect on autophagy of ASMSCs was evaluated.@*RESULTS@#ASMSCs showed significantly weaker GFP-LC3B puncta staining and lower protein expression levels of LC3 II/LC3 I but higher levels of P62 protein (P < 0.05), indicating a decreased autophagy capacity as compared with HDMSCs. TNF-α-induced ASMSCs showed significantly higher protein expressions of p-PI3K/ PI3K, p-AKT/AKT and p-mTOR/mTOR than HDMSCs (P < 0.05), suggesting hyperactivation of the PI3K/AKT/mTOR signaling pathway in ASMSCs. Blocking PI3K/AKT/mTOR signaling with TG100713 eliminated the difference in TNF-α-induced autophagy between HDMSCs and ASMSCs.@*CONCLUSION@#In patients with AS, hyperactivation of the PI3K/AKT/mTOR signaling pathway results in decreased autophagy of the MSCs and potentially contributes to chronic inflammation.


Subject(s)
Autophagy , Humans , Mesenchymal Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Spondylitis, Ankylosing , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Article in Chinese | WPRIM | ID: wpr-936285

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effect of 27-P-coumayl-ursolic acid (27-P-CAUA), the active ingredient in triterpenoids from the leaves of Ilex latifolia Thunb, against breast cancer cells and explore the underlying mechanism.@*METHODS@#CCK-8 assay was used to assess the changes in viability of breast cancer HCC-1806 cells after 27-P-CAUA treatment for 24, 48, or 72 h. The inhibitory effect of 27-P-CAUA on proliferation of the cells was determined by clonogenic assay. JC-1 was used to detect the changes in mitochondrial membrane potential and flow cytometry was performed for analyzing cell apoptosis following 27-P-CAUA treatment. Immunofluorescence assay was used to observe the expression of cl-caspase-3 and P62 in the treated cells. Western blotting was performed to observe the effect of 27-P-CAUA and chloroquine pretreatment on the expressions of LC3I/II, P62 and HER2 signaling pathway proteins in the cells.@*RESULTS@#The results of CCK-8 and clonogenic assays showed that 27-P-CAUA treatment significantly inhibited the proliferation of HCC-1806 cells (P < 0.01) with IC50 values of 81.473, 48.392 and 18.467 μmol/L at 24, 48, and 72 h, respectively. 27-P-CAUA treatment also caused obvious changes in mitochondrial membrane potential (P < 0.01) and induced cell apoptosis in HCC-1806 cells with a 3.34% increase of the early apoptosis rate. Immunofluorescence assay revealed a significant increase of cl-caspase3 expression in 27-P-CAUA-treated HCC-1806 cells, and treatment with 40 μmol/L 27-P-CAUA resulted in significant cell apoptosis (P < 0.01). 27-P-CAUA obviously reduced the expression of LC3II, caused P62 degradation and induced autophagy in HCC-1806 cells. Chloroquine pretreatment obviously blocked the autophagy-inducing effect of 27-P-CAUA. 27-P-CAUA treatment also inhibited the phosphorylation of HER2 and AKT proteins and progressively lowered the expressions of HER2 and phosphorylated AKT protein in HCC-1806 cells (P < 0.01).@*CONCLUSION@#27-P-CAUA can inhibit the proliferation and induce mitochondrial autophagy and apoptosis of HCC-1806 cells by inhibiting the HER2/PI3K/AKT signaling pathway.


Subject(s)
Apoptosis , Autophagy , Breast Neoplasms , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Humans , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
14.
Article in English | WPRIM | ID: wpr-929266

ABSTRACT

Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Apoptosis , Catechols , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Humans , Liver Neoplasms/genetics , Multidrug Resistance-Associated Proteins , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
Article in English | WPRIM | ID: wpr-929261

ABSTRACT

Catechins have been proven to exert antitumor effects in different kinds of cancers. However, the underlying mechanisms have not been completely clarified yet. This study aimed to assess the effects and mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) on human melanoma skin A375 cells. Results showed that EGCG and ECG inhibited the proliferation of A375 cells and ECG showed better inhibitory effect. Flow cytometry analysis had shown that EGCG and ECG induced apoptosis and led to cell cycle arrest. EGCG and ECG decreased Bcl-2 expression and upregulated Caspase-3 protein level, indicating the development of apoptosis. Furthermore, EGCG and ECG could decreased mitochondrial membrane potential of A375 cells. In addition, the expression of Beclin-1, LC3 and Sirt3 were downregulated at protein levels, which known to be associated with autophagy. After autophagy was increased by rapamycin, the apoptotic trend was not change, indicating that apoptosis and autophagy are independent. Mechanistically, EGCG and ECG treatments decreased phosphorylated-AMPK (p-AMPK) and increased the ratios of p-PI3K, p-AKT and p-mTOR in melanoma cells. Conclusively, EGCG and ECG induced apoptosis via mitochondrial signaling pathway, downregulated autophagy through modulating the AMPK/mTOR and PI3K/AKT/mTOR signaling pathway. It indicated that EGCG and ECG may be utilized in human melanoma treatment.


Subject(s)
AMP-Activated Protein Kinases/genetics , Apoptosis , Autophagy , Catechin/analogs & derivatives , Electrocardiography , Humans , Melanoma/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Article in English | WPRIM | ID: wpr-929149

ABSTRACT

Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.


Subject(s)
Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp/metabolism , Lysophospholipids , Osteogenesis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Stem Cells
17.
Article in English | WPRIM | ID: wpr-929019

ABSTRACT

OBJECTIVES@#Genetic mutation is one of the important causes for tumor genesis and development, but genetic mutation in nasopharyngeal carcinoma (NPC) has rarely been reported. This study explored the role of phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR), and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway in the efficacy and prognosis in patients with NPC.@*METHODS@#A total of 31 patients with advanced NPC, who came from the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University/Hunan Provincial Cancer Hospital, were enrolled. All of the exons of 288 genes, introns of 38 genes and promoters or fusion breakpoint regions from the nasopharyngeal biopsy tissues before treatment were detected by the gene sequencing platform Illumina NextSeq CN500. The coding regions of 728 genes were carried out a high-depth sequencing of target region capture, and the 4 variant types of tumor genes (including point mutations, insertion deletions of small fragments, copy number variations, and currently known fusion genes) were detected. All of 31 patients received platinum-based induction chemotherapy combined with concurrent chemoradiotherapy and were followed up for a long time.@*RESULTS@#The 3-year regional failure-free survival (RFFS) and disease-free survival (DFS) in patients with PI3K-Akt pathway mutation were significantly lower than those in unmutated patients (χ2=6.647, P<0.05). The 3-year RFFS and DFS in patients with mTOR pathway mutations were significantly lower than those in unmutated patients, and there was significant difference (χ2=5.570, P<0.05). The rate of complete response (CR) in patients with unmutated AMPK pathway was significantly higher than that in patients with mutation at 3 months after treatment (P<0.05), and the 3-year RFFS and DFS in patients with AMPK pathway mutation were significantly lower than those in unmutated patients (χ2=4.553, P<0.05). PI3K-Akt/mTOR/AMPK signaling pathway mutations and pre-treatment EB virus DNA copy numbers were independent prognostic factors for 3-year RFFS and DFS in patients with NPC (both P<0.05).@*CONCLUSIONS@#The NPC patients with PI3K-Akt/mTOR/AMPK signaling pathway mutation have poor prognosis, and the detection of PI3K-Akt, mTOR, AMPK driver genes and signaling pathways by next-generation sequencing is expected to provide new idea for basic research and targeted therapy of NPC.


Subject(s)
AMP-Activated Protein Kinases/metabolism , DNA Copy Number Variations , Humans , Mutation , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/metabolism
18.
Article in English | WPRIM | ID: wpr-929018

ABSTRACT

OBJECTIVES@#Liver cancer is the sixth most common malignant tumor in the world. Hepatocellular carcinoma (HCC) accounts for 85%-90% of all patients with liver cancer. It possesses the characteristics of insidious onset, rapid progression, early recurrence, easy drug resistance, and poor prognosis. NIMA related kinase 2 (NEK2) is a cell cycle regulating kinases, which regulates cell cycle in mitosis. Cellular senescence is a complex heterogeneous process, and is a stable form of cell cycle arrest that limits the proliferative potential of cells. This study aims to investigate the relationship between the expression level of NEK2 and the senescence in hepatoma cells, and to explore the effect of NEK2 expression on hepatoma cell senescence and the underlying molecular mechanism.@*METHODS@#A total of 581 senescence-relevant genes were obtained from the GenAge website. The gene expression data of tumor tissues of 370 HCC patients were downloaded from the Cancer Genome Atlas database. The co-expression of NEK2 and aging-related genes was analyzed by R-package. KEGG was used to analyze the significant gene enrichment pathway of differentially expressed genes in NEK2 overexpression HEK293. The stable transfected cell lines with overexpression and knockdown of NEK2 were constructed in hepatoma cell line SMMC-7721 and HepG2, and senescence-associated β-galactosidase (SA-β-gal) staining was used to detect senescence, the cell proliferation was detected by CCK-8 method and clone formation experiment, the cell cycle was analyzed by flow cytometry, and the expression of proteins related to p53/p21, p16/Rb, and phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signal transduction pathway was detected by Western blotting.@*RESULTS@#There were 320 senescence related genes co-expressed with NEK2. KEGG analysis showed that the senescence signaling pathway was significantly enriched in HEK293 cells with overexpression of NEK2.Compared with SMMC-7721 or HepG2 without knockdown of NEK2, the senescent cells of SMMC-7721 and HepG2 with knockdown of NEK2 were increased, cell proliferation and clone formation were decreased significantly, the percentage of cells in G0/G1 phase was increased, the expression levels of phospho-Akt (p-Akt) and phospho-Rb (p-Rb) protein were decreased significantly, and the expression level of p16 protein was increased significantly (all P<0.05). Compared with SMMC-7721 or HepG2 transfected with blank plasmid, the senescent cells of SMMC-7721 and HepG2 overexpressing NEK2 were decreased, the cell proliferation and clone formation were increased significantly, the percentage of cells in G0/G1 phase were decreased, the expression levels of p-Akt and p-Rb protein were increased significantly, and the expression level of p16 protein was decreased significantly (all P<0.05).@*CONCLUSIONS@#NEK2 may mediate the anti-aging effect of hepatoma cells through p16/Rb and PTEN/Akt signal transduction pathways, which provides a new theoretical basis for NEK2 to promote the progress of liver cancer and a new idea for the targeting treatment for liver cancer.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Cellular Senescence/genetics , HEK293 Cells , Humans , Liver Neoplasms/pathology , NIMA-Related Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism
19.
Article in English | WPRIM | ID: wpr-929000

ABSTRACT

OBJECTIVES@#Acute kidney injury (AKI) can be caused by ischemia/reperfusion (I/R), nephrotoxin, and sepsis, with poor prognosis and high mortality. Leptin is a protein molecule that regulates the body's energy metabolism and reproductive activities via binding to its specific receptor. Leptin can inhibit cardiomyocyte apoptosis caused by I/R, but its effect on I/R kidney injury and the underlying mechanisms are still unclear. This study aims to investigate the effect and mechanisms of leptin on renal function, renal histopathology, apoptosis, and autophagy during acute I/R kidney injury.@*METHODS@#Healthy adult male mice were randomly divided into 4 groups: a sham+wild-type mice (ob/+) group, a sham+leptin gene-deficient mice (ob/ob) group, an I/R+ob/+ group, and an I/R+ob/ob group (n=8 per group). For sham operation, a longitudinal incision was made on the back of the mice to expose and separate the bilateral kidneys and renal arteries, and no subsequent treatment was performed. I/R treatment was ischemia for 30 min and reperfusion for 48 h. The levels of BUN and SCr were detected to evaluate renal function; HE staining was used to observe the pathological changes of renal tissue; TUNEL staining was used to observe cell apoptosis, and apoptosis-positive cells were counted; Western blotting was used to detect levels of apoptosis-related proteins (caspase 3, caspase 9), autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), LC3 I, LC3 II], mTOR-dependent signaling pathway proteins [phosphate and tension homology (PTEN), adenosine monophosphate-activated protein kinase (AMPK), protein kinase B (AKT), extracellular regulated protein kinase (ERK), phosphorylated PTEN (p-PTEN), phosphorylated AMPK (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated ERK (p-ERK)].@*RESULTS@#There was no significant difference in the levels of BUN and SCr between the sham+ob/+ group and the sham+ob/ob group (both P>0.05). The levels of BUN and SCr in the I/R+ob/+ group were significantly higher than those in the sham+ob/+ group (both P<0.05). Compared with the mice in the sham+ob/ob group or the I/R+ob/+ group, the levels of BUN and SCr in the I/R+ob/ob group were significantly increased (all P<0.05). There was no obvious damage to the renal tubules in the sham+ob/+ group and the sham+ob/ob group. Compared with sham+ob/+ group and sham+ob/ob group, both the I/R+ob/+ group and the I/R+ob/ob group had cell damage such as brush border shedding, vacuolar degeneration, and cast formation. Compared with the I/R+ob/+ group, the renal tubules of the mice in the I/R+ob/ob group were more severely damaged. The pathological score of renal tubular injury showed that the renal tubular injury was the most serious in the I/R+ob/ob group (P<0.05). Compared with the sham+ob/+ group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, the ratio of LC3 II to LC3 I was significantly increased, and the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/+ group (all P<0.05). Compared with the sham+ob/ob group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, and the ratio of LC3 II to LC3 I was significantly increased, while the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/ob group (all P<0.05). Compared with the I/R+ob/+ group, the levels of p-mTOR, p-PTEN, p-AMPK, p-AKT were more significantly down-regulated, while the levels of caspase 3, caspase 9, PTEN, and LC3 II were more significantly up-regulated, and the ratio of LC3 II to LC3 I was more significantly increase in the I/R+ob/ob group (all P<0.05).@*CONCLUSIONS@#Renal function and tubular damage, and elevated levels of apoptosis and autophagy are observed in mice kidneys after acute I/R. Leptin might relieve I/R induced AKI by inhibiting apoptosis and autophagy that through a complex network of interactions between mTOR-dependent signaling pathways.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis , Apoptosis Regulatory Proteins/pharmacology , Autophagy , Caspase 3/metabolism , Caspase 9/metabolism , Female , Humans , Ischemia , Kidney/pathology , Leptin/pharmacology , Male , Mammals/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion/adverse effects , Reperfusion Injury/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
Article in English | WPRIM | ID: wpr-928958

ABSTRACT

OBJECTIVE@#To explore the influences of andrographolide (Andro) on bladder cancer cell lines and a tumor xenograft mouse model bearing 5637 cells.@*METHODS@#For in vitro experiments, T24 cells were stimulated with Andro (0-40 µmol/L) and 5637 cells were stimulated with Andro (0 to 80 µmol/L). Cell growth, migration, and infiltration were assessed using cell counting kit-8, colony formation, wound healing, and transwell assays. Apoptosis rate was examined using flow cytometry. In in vivo study, the antitumor effect of Andro (10 mg/kg) was evaluated by 5637 tumor-bearing mice, and levels of nuclear factor κ B (NF- κ B) and phosphoinositide 3-kinase/AKT related-proteins were determined by immunoblotting.@*RESULTS@#Andro suppressed growth, migration, and infiltraion of bladder cancer cells (P⩽0.05 or P⩽0.01). Additionally, Andro induced intrinsic mitochondria-dependent apoptosis in bladder cancer cell lines. Furthermore, Andro inhibited bladder cancer growth in mice (P⩽0.01). The expression of p65, p-AKT were suppressed by Andro treatment in vitro and in vivo (P⩽0.05 or P⩽0.01).@*CONCLUSIONS@#Andrographolide inhibits proliferation and promotes apoptosis in bladder cancer cells by interfering with NF- κ B and PI3K/AKT signaling in vitro and in vivo.


Subject(s)
Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Diterpenes/therapeutic use , Humans , Mice , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Urinary Bladder Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL