Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Article in English | WPRIM | ID: wpr-922587

ABSTRACT

OBJECTIVES@#White matter hyperintensity (WMH) is an important factor leading to cognitive impairment, and the mechanism has not been clarified. In recent years, studies have found that circular RNA (circRNA) has differential expression in cerebrovascular diseases. This study aims to analyze the expression profile of circRNA in peripheral blood mononuclear cell (PBMC) of patients with WMH with cognitive impairment, to screen the differentially expressed circRNA, and to explore the possible role of circRNA in WMH with cognitive impairment.@*METHODS@#CircRNA microarray was used to detect the circRNA expression profile of PBMC in patients with WMH with cognitive impairment, and in patients with WMH without cognitive impairment as well as in normal controls (3 cases each, male to female ratio of 2꞉1). The differentially expressed circRNA in patients with WMH with cognitive impairment was screened. The screening criteria for differentially expressed circRNA was fold change (FC) ≥2.0 (|log@*RESULTS@#Compared with the control group, there were 5 significantly up-regulated circRNA and 3 down-regulated circRNA in the WMH with cognitive impairment group; 8 circRNA were significantly up-regulated and 2 were down-regulated in the WMH without cognitive impairment group. When compared with the WMH with cognitive impairment group, no co-differentially expressed circRNA was found in WMH without cognitive impairment group and control group. Compared with the control group, the expression of hsa_circ_0092222 was up-regulated and the expressions of hsa_circ_0000662 and hsa_circ_0083773 were down-regulated in the WMH with cognitive impairment group and the WMH without cognitive impairment group, and there was no significant difference between the 2 groups (all @*CONCLUSIONS@#The circRNA expression profile of patients with WMH is changed significantly. The differentially expressed circRNA may be the cause of WMH; Hsa_circ_0092222, hsa_circ_0000662, and hsa_circ_0083773 may regulate the expression of target genes by targeting adsorption of the target miRNA, leading to brain white matter damage through Janus kinase 2 (JAK2)/signal transducers and activators of transcription (STAT3) signal pathway and Wnt signal pathway.There is no significant difference in circRNA expression profile between WMH with or without cognitive impairment. Cognitive impairment in patients with WMH may have other reasons.


Subject(s)
Cognitive Dysfunction/genetics , Female , Humans , Leukocytes, Mononuclear , Male , MicroRNAs , RNA/genetics , RNA, Circular , Software , White Matter
2.
Protein & Cell ; (12): 911-946, 2021.
Article in English | WPRIM | ID: wpr-922477

ABSTRACT

Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.


Subject(s)
Autoimmune Diseases/blood , Biomarkers, Tumor/blood , Cardiovascular Diseases/blood , Humans , Liquid Biopsy , Neoplasms/blood , RNA, Circular/blood , RNA, Neoplasm/blood
3.
Journal of Experimental Hematology ; (6): 1719-1726, 2021.
Article in Chinese | WPRIM | ID: wpr-922324

ABSTRACT

OBJECTIVE@#To investigate the difference expression of circular RNA (circRNA) in acute myeloid leukemia (AML) by using bioinformatics method.@*METHODS@#The microarray chip data of AML was searched and downloaded from the Gene Expression Omnibus (GEO) of the National Center for Bioinformatics (NCBI). The differences between AML samples and control samples were analyzed by R software. The interaction between deregulated circRNA, miRNA and mRNA were predicted by miranda software and miRTarBase software. The circRNA-miRNA-mRNA regulatory network was constructed by using the cytoHubba plugin based on the Cytoscape software.@*RESULTS@#A total of 203 differential expression of circRNAs were finally collected, including down-regulated 161 circRNAs and up-regulated 42 circRNAs. CircRNA/miRNA/mRNA interaction network was constructed through software prediction. hsa_circ_0001080, hsa_circ_0004511, hsa_circ_0054211, hsa_circ_0001944 may be positively regulated the gene expression in AML.@*CONCLUSION@#Abnormal expression of circRNA in AML may become a new target for AML treatment.


Subject(s)
Gene Expression , Humans , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , RNA, Circular
4.
Chinese Journal of Lung Cancer ; (12): 698-704, 2021.
Article in Chinese | WPRIM | ID: wpr-922243

ABSTRACT

Tumor immunotherapy is a new therapy which developed in recent years, it has greatly changed the therapeutic schedules and brought new options for patients. However, not all patients can have obvious therapeutic effects after using immunotherapy. So selecting more suitable patients and raising immunotherapy effect are worthy to discuss. With the research of circular RNAs (circRNAs), circRNAs have been found that they not only play a significant role in the field of tumor markers, tumor progression and prognosis, but also can abnormally express in a variety of tumors and affect tumor immunity. Therefore, the circRNAs expression may not only can be used as a supplementary method for selecting patients, but also can be used to predict the efficacy of tumor immunotherapy. In this article, we summarize current knowledge on circRNAs abnormally expressed in many cancers, especially lung cancer which can affect tumor immunity, and discuss its potential effects in tumor immunotherapy, and we hope to provide more references for the clinical practice of circRNAs.
.


Subject(s)
Biomarkers, Tumor , Humans , Immunotherapy , Lung Neoplasms/therapy , Prognosis , RNA, Circular
5.
Chinese Journal of Lung Cancer ; (12): 770-776, 2021.
Article in Chinese | WPRIM | ID: wpr-922145

ABSTRACT

As the main type of lung cancer, non-small cell lung cancer (NSCLC) is a common cancer which is characterized by low 5-year survival rate and worse prognosis. Nowadays, some studies show that the low survival rate and worse prognosis are due to the resistance to radiotherapy caused by circRNA. Therefore, to find out the relationship between circRNA and radiotherapy resistance of NSCLC was imoprtant. According to research the relevant literatures, the relationship between circRNA and radiotherapy resistance of NSCLC was explored. CircRNA plays an important role in the invasion, metastasis, proliferation and treatment resistance of NSCLC. The radiation resistance of tumor cells induced by circRNA has become a crucial problem in radiotherapy. CircRNA plays an important role in the radiotherapy resistance of NSCLC.
.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Proliferation , Humans , Lung Neoplasms/radiotherapy , MicroRNAs , RNA, Circular
6.
Chinese Medical Journal ; (24): 2573-2582, 2021.
Article in English | WPRIM | ID: wpr-921184

ABSTRACT

BACKGROUND@#Circular RNA (circRNA) is a type of closed circular noncoding RNA (ncRNA), mostly formed by back-splicing or alternative splicing of pre-messenger RNA (mRNA). The aim of this study was to explore the expression profile of circRNA in peripheral blood mononuclear cells (PBMCs) of patients with ankylosing spondylitis (AS) and discover potential molecular markers of AS.@*METHODS@#The circRNA microarray technology was used to detect the expression of circRNAs in the peripheral blood of 6 patients with AS and 6 healthy controls (HC). To screen the differentially expressed circRNAs by fold change (FC) and P value, these differentially expressed circRNAs were analyzed by bioinformatics. In 60 cases of AS and 30 cases of HC, 4 circRNAs were subjected to real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and their correlation with various clinical indicators was analyzed. Finally, the receiver operating characteristic (ROC) curve was used to analyze their potential as AS diagnostic markers.@*RESULTS@#The microarray results showed that there were 1369 significantly differently expressed (P  1.5) circRNAs between the AS and HC groups (675 upregulated and 694 downregulated). The results of bioinformatics analysis suggested that they were mainly involved in "enzyme binding," "adenosine ribonucleotide binding," "MAPK signaling pathway", etc. The RT-qPCR results showed that the expressions of hsa_circRNA_001544 (U = 486.5, P < 0.05) and hsa_circRNA_102532 (U = 645, P < 0.05) were significantly different between the AS group and the HC group. The AS group was further divided into two subgroups: active AS (ASA) and stable AS (ASS). After analysis, it was found that compared with the HC group, hsa_circRNA_001544 was significantly increased in both ASA (U = 214, P < 0.05) and ASS groups (U = 273, P < 0.05), while hsa_circRNA_008961 (U = 250, P < 0.05) and hsa_circRNA_102532 (U = 295, P < 0.05) were only significantly increased in the ASA group. Furthermore, hsa_circRNA_012732 was significantly different between the ASA and ASS groups (U = 194, P < 0.05), and there was no statistical significance among the remaining groups. Correlation analysis results showed that hsa_circRNA_012732 was negatively correlated with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), high-sensitivity C-reactive protein (hsCRP), and globulin (GLOB) and positively correlated with lymphocyte count (LY), mean corpusular volume, and albumin (ALB), and hsa_circRNA_008961 was negatively correlated with platelet (PLT) count. ROC curve analysis showed that hsa_circRNA_001544 (95% CI = 0.610-0.831, P < 0.05) and hsa_circRNA_102532 (95% CI = 0.521-0.762, P < 0.05) were statistically significant, and their area under curve (AUC) values were 0.720 and 0.642, respectively.@*CONCLUSIONS@#There are differentially expressed circRNAs in PBMCs of AS patients, and they may be involved in the occurrence and development of AS. Among these differentially expressed circRNAs, hsa_circRNA_012732 has the potential to become an indicator of disease activity, and hsa_circRNA_001544 has the potential to become a molecular marker for AS diagnosis.


Subject(s)
Humans , Leukocytes, Mononuclear , RNA/genetics , RNA, Circular , ROC Curve , Spondylitis, Ankylosing/genetics
7.
Article in Chinese | WPRIM | ID: wpr-887877

ABSTRACT

Circular RNA(circRNA)is a novel type of endogenous non-coding RNA.Most circRNAs act as microRNA(miRNA)sponges to regulate the expression of functional genes.In addition,some circRNAs can be translated and interact with RNA-binding proteins to perform biological functions.The expression of circRNAs is prevalent in tissues and body fluids,and their abnormal expression is related to tumor progression.circRNAs are stable even under the treatment of RNase R because of their circular conformation.As circRNAs have construct stability,wide variety,specific regulation of tumor progression and high expression in body fluids,it is potential for circRNAs to serve as candidate diagnostic,prognostic and therapeutic targets.However,the knowledge about circRNAs remains poor.In addition to the not completely resolved functions and generation mechanisms of circRNAs,the annotations of circRNAs are also waiting for expanding.Here,we review the generation mechanisms,biological functions,and application of circRNAs in tumor research,aiming to provide integrated information for the future research.


Subject(s)
Biomarkers, Tumor/genetics , MicroRNAs , Prognosis , RNA, Circular
8.
Article in English | WPRIM | ID: wpr-887754

ABSTRACT

OBJECTIVES@#To investigate the effects of circ_0005379 on the proliferation, apoptosis, migration, and invasion of oral squamous cell carcinoma (OSCC) cells and its mechanism.@*METHODS@#Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of circ_0005379 and miR-17-5p in OSCC tissues and SCC15 cell lines. Western blot was used to detect the expression levels of acyl-CoA oxidase 1 (ACOX1). The circ_0005379 overexpression vector was transfected into SCC15 cells. Methyl thiazolyl tetrazolium blue staining, flow cytometry, Transwell, and Western blot were used to detect the effects of circ_0005379 overexpression on the proliferation, apoptosis, migration, and invasion of SCC15 cells and the expression of E-cadherin, β-catenin, and Snail proteins. Dual luciferase reporter assay and RNA immunoprecipitation were used to examine the regulation of circ_0005379, miR-17-5p, miR-17-5p, and ACOX1 in SCC15 cells. A nude mouse xenograft model of SCC15 cells stably overexpressing circ_0005379 was established, and the effect of circ_0005379 overexpression on the growth of xenografts in nude mice was observed.@*RESULTS@#Compared with adjacent cancer tissues, the expression levels of circ_0005379 and ACOX1 proteins in OSCC tissues were decreased (@*CONCLUSIONS@#circ_0005379 may inhibit the proliferation, migration, and invasion of OSCC cells by downregulating the expression of miR-17-5p and upregulating ACOX1, which promote apoptosis and inhibit tumor growth


Subject(s)
Acyl-CoA Oxidase , Animals , Carcinoma, Squamous Cell/genetics , Cell Proliferation , Head and Neck Neoplasms , Humans , Mice , Mice, Nude , MicroRNAs , Mouth Neoplasms/genetics , RNA, Circular , Squamous Cell Carcinoma of Head and Neck
9.
Acta Physiologica Sinica ; (6): 491-500, 2021.
Article in Chinese | WPRIM | ID: wpr-887684

ABSTRACT

Many studies have shown that circular RNAs (circRNAs) play a key regulatory role in the whole biological process of tumors. The purpose of this study was to explore the biological function and molecular mechanism of circ_0001666 in non-small cell lung cancer (NSCLC), so as to provide new targets for the diagnosis and treatment of NSCLC. Gene expression profiles were downloaded from Gene Expression Omnibus (GEO, GSE101586) and the differential genes were obtained by using GEO2R analysis. The quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the expression level of circ_0001666 in NSCLC cells. Cell counting kit-8 (CCK-8) and Annexin V-FITC apoptosis detection kit were respectively used to assess the cell proliferation and apoptosis, where circ_0001666 was knockdown in NSCLC cells. The targeted relationship among mircoRNA 330-5p (miR-330-5p), circ_0001666, and high mobility group A2 protein (HMGA2) was verified by bioinformatics prediction, dual-luciferase reporter gene, RNA immunoprecipitation (RIP) and RNA pull down assay. The results showed that the expression of circ_0001666 in NSCLC cells was significantly up-regulated than that in normal lung epithelial cells. Circ_0001666 knockdown reduced the cell viability and promoted the apoptosis of NSCLC cells, which could be reversed by miR-330-5p inhibitors. MiR-330-5p is the downstream target of circ_0001666 and can be adsorbed by circ_0001666. HMGA2 is a target gene of miR-330-5p, which can be indirectly regulated by circ_0001666. The results suggest that circ_0001666 promotes the proliferation and inhibits apoptosis of NSCLC cells via miR-330-5p/HMGA2 axis.


Subject(s)
Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation/genetics , HMGA2 Protein , Humans , Lung Neoplasms/genetics , MicroRNAs/genetics , RNA, Circular
10.
Article in Chinese | WPRIM | ID: wpr-888473

ABSTRACT

OBJECTIVE@#To determine the association of circular RNA (circRNA) and circRNA-microRNA (miRNA) network regulation with brain injury induced by inflammation in preterm mice.@*METHODS@#Pregnant mice were treated with intraperitoneally injected lipopolysaccharide to establish a preterm mouse model of brain injury induced by inflammation (inflammation preterm group with 3 mice). Preterm mice born to normal pregnant mice by cesarean section were selected as controls (non-inflammation preterm group with 3 mice). The gene microarray technique was used to screen out the circRNAs associated with brain injury in preterm mice. The miRNA target prediction software was used to predict the binding sites between circRNAs and miRNAs and analyze the regulatory mechanism.@*RESULTS@#A total of 365 differentially expressed circRNAs were screened out between the inflammation preterm and non-inflammation preterm groups (fold change > 1.5, @*CONCLUSIONS@#Inflammation induces a significant change in the expression profile of circRNAs in the brain tissue of mice, and the change in the expression of circRNAs plays an important role in brain injury induced by inflammation and subsequent brain development in preterm mice.


Subject(s)
Animals , Brain Injuries , Cesarean Section , Female , Gene Expression Profiling , Inflammation/genetics , Mice , MicroRNAs/genetics , Pregnancy , RNA/genetics , RNA, Circular
11.
Braz. j. med. biol. res ; 54(8): e10940, 2021. graf
Article in English | LILACS | ID: biblio-1285675

ABSTRACT

Recently, an increasing number of studies have reported that dysregulation of circular RNA (circRNA) expression plays critical roles in the progression of several cancers, including colorectal cancer (CRC). However, the detailed molecular mechanisms of circRNAs involvement in CRC remain largely unknown. Here, we confirmed that the level of circEGFR was significantly increased in CRC tissues compared to matched adjacent non-tumor tissues, and a high level of circEGFR was correlated with poor clinicopathological characteristics and poor prognosis in patients with CRC. Moreover, increased circEGFR expression promoted CRC cell proliferation, migration, and invasion in vitro. Mechanistically, circEGFR acted as a ceRNA for miR-106a-5p to relieve the repressive effect of miR-106a-5p on DDX5 mRNA. Moreover, circEGFR enhanced DDX5 expression, thereby upregulating p-AKT levels. Together, these findings showed that circEGFR promoted CRC cell proliferation, migration, and invasion through the miR-106a-5p/DDX5/AKT axis, and may serve as a promising diagnostic marker and therapeutic target for CRC patients.


Subject(s)
Humans , Colorectal Neoplasms/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DEAD-box RNA Helicases , RNA, Circular
12.
Braz. j. med. biol. res ; 54(5): e10093, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153556

ABSTRACT

The aim of this study was to explore the effect of hsa_circ_0002162 on regulating cell proliferation, apoptosis, and invasion, and investigate its potential target microRNA (miRNA) in tongue squamous cell carcinoma (TSCC). Hsa_circ_0002162 expression was detected in human TSCC cell lines and human oral keratinocytes (HOK) cell line. Cell proliferation, apoptosis, invasion, and candidate target miRNA expressions were detected in hsa_circ_0002162 knockdown-treated CAL-27 cells and hsa_circ_0002162 overexpression-treated SCC-9 cells. In the rescue experiment, miR-33a-5p knockdown plasmid was transfected into hsa_circ_0002162 knockdown-treated CAL-27 cells, while miR-33a-5p overexpression plasmid was transfected into hsa_circ_0002162 overexpression-treated SCC-9 cells. Subsequently, cell proliferation, apoptosis, and invasion were detected, and then luciferase reporter assay was performed. Hsa_circ_0002162 expression was increased in human TSCC cell lines SCC-9, CAL-27, HSC-4, and SCC-25 compared with HOK. In CAL-27 cells, hsa_circ_0002162 knockdown inhibited cell proliferation and invasion and promoted apoptosis. In SCC-9 cells, hsa_circ_0002162 overexpression enhanced cell proliferation and invasion and suppressed apoptosis. Furthermore, a negative regulation of hsa_circ_0002162 on miR-33a-5p (but not miR-302b-5p and miR-545-5p) was observed. In the rescue experiment, miR-33a-5p knockdown increased cell proliferation and invasion, and decreased apoptosis in hsa_circ_0002162 knockdown-treated CAL-27 cells, whereas miR-33a-5p overexpression decreased cell proliferation and invasion, but increased apoptosis in hsa_circ_0002162 overexpression-treated SCC-9 cells. The luciferase reporter assay showed the direct binding of hsa_circ_0002162 to miR-33a-5p. In conclusion, hsa_circ_0002162 had an important role in malignant progression of TSCC through targeting miR-33a-5p.


Subject(s)
Humans , Tongue Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Tongue , Cell Line, Tumor , RNA, Circular
13.
Article in English | WPRIM | ID: wpr-880487

ABSTRACT

The recent discovery of circular RNAs (circRNAs) and characterization of their functional roles have opened a new avenue for understanding the biology of genomes. circRNAs have been implicated to play important roles in a variety of biological processes, but their precise functions remain largely elusive. Currently, a few approaches are available for novel circRNA prediction, but almost all these methods are intended for animal genomes. Considering that the major differences between the organization of plant and mammal genomes cannot be neglected, a plant-specific method is needed to enhance the validity of plant circRNA identification. In this study, we present CircPlant, an integrated tool for the exploration of plant circRNAs, potentially acting as competing endogenous RNAs (ceRNAs), and their potential functions. With the incorporation of several unique plant-specific criteria, CircPlant can accurately detect plant circRNAs from high-throughput RNA-seq data. Based on comparison tests on simulated and real RNA-seq datasets from Arabidopsis thaliana and Oryza sativa, we show that CircPlant outperforms all evaluated competing tools in both accuracy and efficiency. CircPlant is freely available at http://bis.zju.edu.cn/circplant.


Subject(s)
Arabidopsis/metabolism , Oryza/metabolism , RNA, Circular/metabolism , RNA, Plant/metabolism , Sequence Analysis, RNA/methods
14.
Article in Chinese | WPRIM | ID: wpr-827519

ABSTRACT

Circular RNA, a non-coding RNA that forms a covalently closed continuous loop, exists widely in eukaryotic cells. The biogenesis and biological function of this type of RNA indicate that it can play a crucial role in diseases such as tumors, neural system diseases, and cardiovascular diseases; moreover, this RNA may have great potential use as a biomarker in these diseases. Oral squamous cell carcinoma (OSCC) is a common malignancy in oral surgery that is difficult to cure, metastasizes easily, and has poor prognosis. In this review, we summarize the loop-forming mechanisms and functions of circular RNA and describe the progress of current research in the development of oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Humans , Mouth Neoplasms , RNA , RNA, Circular
15.
Article in Chinese | WPRIM | ID: wpr-827192

ABSTRACT

OBJECTIVE@#To investigate the expression of Circ_cgga162 in serum of mantle cell lymphoma (MCL) patients and analyze its potential as a prognostic biomarker.@*METHODS@#The expression of Circ_cgga162 in 86 cases of mantle cell lymphoma and 50 cases of lymph node reactive hyperplasia (RH) were detected by real-time quantitative polymerase chain reaction (qRT-PCR). The relationship between the expression of Circ_cgga162 and clinicopathological features was analyzed by univariate analysis. The relationship of Circ_cgga162 expression with progression-free survival time and overall survival time was analyzed by Kaplan-Meier. The relationship between expression of Circ_cgga162 and prognosis of patients was analyzed by univariate and multivariate analysis.@*RESULTS@#The expression level of Circ_cgga162 in MCL patients was significantly higher than that in control (RH) group (P<0.01). The expression of Circ_cgga162 not correlated with age, gender, B symptoms and LDH (all P>0.05), but correlated with the expression of MCL International Prognostic Index (IPI), Ann Arbor stage, bone marrow infiltration and Ki67 (all P<0.05). In addition, Kaplan-Meier analysis showed that the progression-free survival time and overall survival time of the MCL patients with high expression of Circ_cgga162 were significantly shorter than those of the MCL patients with low expression (P<0.01). Univariate analysis showed that Ann Arbor stage, Circ_cgga162 expression, MIPI, bone marrow infiltration and Ki67 were the prognostic factors for MCL patients (all P<0.05). Multivariate Cox regression analysis showed that Ann Arbor stage, Circ_cgga162 expression and MIPI were independent factors affecting the prognosis of MCL patients (all P<0.05).@*CONCLUSION@#Circ_cgga162 is highly expressed in serum of patients MCL, which relates with the prognosis of MCL patients. Circ_cgga162 can be used as a potential prognostic marker and therapeutic target for MCL patients.


Subject(s)
Humans , Kaplan-Meier Estimate , Lymphoma, Mantle-Cell , Multivariate Analysis , Prognosis , RNA, Circular , Genetics
16.
Journal of Experimental Hematology ; (6): 1032-1037, 2020.
Article in Chinese | WPRIM | ID: wpr-827166

ABSTRACT

OBJECTIVE@#To explore the effect of mmu-circRNA_016901 on the regulation of radiation injury of bone marrow stem cells and its mechanism.@*METHODS@#Bone marrow stem cells were exposed to different dose of X-ray, then the expression level of mmu-circRNA_016901 in bone marrow cells treated with different doses of X-ray was detected. The luciferase reporter gene assay was used to confirm that miRNA1249-5p is the target of mmu-circRNA_016901, and RNA Binding Protein Immunoprecipitation was used to confirm that TGF-β3 is the targeted on miRNA1249-5p,the expression of TGF-β3 and cell proliferation were detected after the expression of mmu-circRNA_01690 was regulated.@*RESULTS@#When the irradiation dose<6 Gy, there were significant difference in the expression of mmn-circRNA-016901 after the bone marrow mesenchymal stem cells were treated by different doses of irradiation, which showed a statistically significant (P<0.05). The luciferase reporter gene detection and co-immunoprecipitation experiments confirmed that Mmu-circRNA_016901 could binds to miRNA1249-5p specifically, and overexpression of mmu-circRNA_016901 could regulate miRNA1249-5p negatively, which resulted in a significant increase in TGF-β3 expression and promoting of cell proliferation.@*CONCLUSION@#mmu-circRNA_016901 affects the expression of TGF-β3 through miRNA1249-5p, and thus participates in the regulation of the radiation damage mechanism of bone marrow mesenchymal stem cells.


Subject(s)
Bone Marrow Cells , Mesenchymal Stem Cells , RNA, Circular , Genetics , Radiation Tolerance
17.
Chinese Medical Journal ; (24): 2565-2572, 2020.
Article in English | WPRIM | ID: wpr-877822

ABSTRACT

BACKGROUND@#Recent studies have reported circular RNA (circRNA) expression profiles in various tissue types; however, circRNA expression profile in human epicardial adipose tissue (EAT) remains undefined. This work aimed to compare circRNA expression patterns in EAT between the heart failure (HF) and non-HF groups.@*METHODS@#RNA-sequencing was carried out to compare circRNA expression patterns in EAT specimens from coronary artery disease cases between the HF and non-HF groups. Quantitative real-time polymerase chain reaction was performed for validation. Comparisons of patient characteristics between the two groups were using t test, Mann-Whitney U test, and Chi-squared test.@*RESULTS@#A total of 141 circRNAs substantially different between the HF and non-HF groups (P 2) were detected, including 56 up-regulated and 85 down-regulated. Among them, hsa_circ_0005565 stood out, for it had the highest fold change and was significantly increased in HF patients in quantitative real-time polymerase chain reaction validation. The top highly expressed EAT circRNAs corresponded to genes involved in cell proliferation and inflammatory response, including GSE1, RHOBTB3, HIPK3, UBXN7, PCMTD1, N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B, and SPECC1. The top enriched Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway were positive regulation of metabolic processes and insulin resistance, respectively.@*CONCLUSION@#These data indicate EAT circRNAs may contribute to the pathogenesis of metabolic disorders causing HF.


Subject(s)
Adipose Tissue , Gene Ontology , Heart Failure/genetics , Humans , RNA, Circular , Sequence Analysis, RNA
18.
Biol. Res ; 53: 27, 2020. graf
Article in English | LILACS | ID: biblio-1124212

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is highly expressed in the brain tissue, but its molecular mechanism in cerebral ischemia-reperfusion remains unclear. Here, we explored the role and underlying mechanisms of circRNA antisense non-coding RNA in the INK4 locus (circ_ANRIL) in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell injury. RESULTS: The expression of circ_ANRIL in OGD/R-induced human brain microvascular endothelial cells (HBMECs) was significantly up-regulated, while that of miR-622 was significantly down-regulated. Overexpression of circ_ANRIL significantly inhibited the proliferation of OGD/R-induced HBMECs and aggravated OGD/R-induced cell apoptosis. Moreover, circ_ANRIL overexpression further increased the secretion of interleukin (IL)-1ß, IL-6, tumor necrosis factor-a, and monocyte chemoattractant protein-1 in OGD/R-treated HBMECs. The results of bioinformatics analysis and luciferase reporter assay indicated that circ_ANRIL served as an miR-622 sponge to negatively regulate the expression of miR-622 in OGD/R-treated HBMECs. Additionally, circ_ANRIL silencing exerted anti-apoptotic and anti-inflammatory effects by positively regulating the expression of miR-622. Furthermore, inhibition of OGD/R-induced activation of the nuclear factor (NF)-kB pathway by circ_ANRIL silencing was significantly reversed by treatment with miR-622 inhibitor. CONCLUSIONS: Knockdown of circ_ANRIL improved OGD/R-induced cell damage, apoptosis, and inflammatory responses by inhibiting the NF-κB pathway through sponging miR-622.


Subject(s)
Humans , Reperfusion Injury/metabolism , Hypoxia, Brain/metabolism , MicroRNAs/physiology , MicroRNAs/genetics , RNA, Circular , Oxygen , Brain , Apoptosis , Cyclin-Dependent Kinase Inhibitor p16 , Endothelial Cells , RNA, Long Noncoding , Glucose/metabolism , Inflammation
19.
Biol. Res ; 53: 32, 2020. tab, graf
Article in English | LILACS | ID: biblio-1131880

ABSTRACT

BACKGROUND: Circulating RNA (circRNA) regulates various bioactivities in cells. A better understanding of the exosomal circRNA can provide novel insights into the pathogenesis and treatment of Graves' disease (GD). We aimed to profile the differentially expressed circRNAs (DEcRs) in plasma exosomes of patients with GD and speculate and probe the functions of the DEcR by comprehensive bioinformatics analyses. METHODS: Serum exosomes were isolated from five primary GD patients and five healthy controls via ultracentrifugation. After verification with transmission electron microscopy, exosome samples were subjected to microarray profiling using human circRNA microarrays. Two up-regulated and two down-regulated DEcRs were selected for validation in plasma exosomes from 20 GD and 20 healthy control participants using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The circRNA/microRNA/mRNA interaction network was then assembled and the analysis of the Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was utilized to predict the potential functions of the DEcR associated genes. RESULTS: There were 15 DEcRs revealed in primary GD cases. The intronic circRNA hsa_circRNA_000102 was confirmed as an up-regulated component in plasma exosomes from patients with GD. The circRNA/microRNA/mRNA interaction network unveiled the most potential targeting microRNAs of hsa_circRNA_000102 and its associated genes. The functional analyses predicted involvement of hsa_circRNA_000102 associated genes in pathways of immune system activation, such as viral infection and interferon-beta signaling. CONCLUSIONS: hsa_circRNA_000102 is a differentially up-regulated plasma exosomal circRNA in patients with GD. Our study highlights multiple pathways, particularly virus infection and interferon-beta signaling, for mediating immune activation in Graves' disease.


Subject(s)
Humans , Male , Female , Graves Disease/genetics , Graves Disease/blood , Microarray Analysis , RNA, Circular/blood , RNA, Messenger , MicroRNAs , Exosomes
20.
Biol. Res ; 53: 35, 2020. graf
Article in English | LILACS | ID: biblio-1131881

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a severe central nervous system trauma. The present study aimed to evaluate the effect of HIF-1α on inflammation in spinal cord injury (SCI) to uncover the molecular mechanisms of anti-inflammation. RESULTS: HIF-1α was reduced in SCI model rats and HIF-1α activation reduced TNF-α, IL-1ß, IL-6 and IL-18 levels in SCI model rats. Meanwhile, Circ 0001723 expression was down-regulated and miR-380-3p expression was up-regulated in SCI model rats. In vitro model, down-regulation of Circ 0001723 promoted TNF-α, IL-1ß, IL-6 and IL-18 levels, compared with control negative group. However, over-expression of Circ 0001723 reduced TNF-α, IL-1ß, IL-6 and IL-18 levels in vitro model. Down-regulation of Circ 0001723 suppressed HIF-1α protein expressions and induced NLRP3 and Caspase-1 protein expressions in vitro model by up-regulation of miR-380-3p. Next, inactivation of HIF-1α reduced the pro-inflammation effects of Circ 0001723 in vitro model. Then, si-NLRP3 also inhibited the pro-inflammation effects of Circ 0001723 in vitro model via promotion of autophagy. CONCLUSIONS: We concluded that HIF-1α reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723.


Subject(s)
Animals , Male , Rats , Spinal Cord Injuries/metabolism , MicroRNAs/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Circular/genetics , Inflammation/metabolism , Gene Expression Regulation , Cytokines/blood , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL