Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
Int. j. morphol ; 42(2): 239-248, abr. 2024. ilus
Article in English | LILACS | ID: biblio-1558135

ABSTRACT

SUMMARY: Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in various tumor tissues and cell lines was found to promote tumor cell proliferation, migration, and invasion. However, the role of MALAT1 in gastric cancer (GC) is still unclear. We aimed to investigate the correlation between long-chain non-coding RNAs (lncRNAs), MALAT1, MicroRNAs (miRNA) and vascular endothelial growth factor A (VEGFA) in gastric cancer and to disclose underlying mechanism. The correlation between MALAT1 levels and clinical features was analyzed by bioinformatics data and human samples. The expression of MALAT1 was down regulated in AGS cells to detect the cell proliferation, migration, and invasion characteristics, as well as the effects on signal pathways. Furthermore, we validated the role of MALAT1/miR-330-3p axis in GC by dual luciferase reporter gene assays. Expression of MALAT1 was higher in cancer tissues than in para-cancerous tissues. The high MALAT1 level predicted malignancy and worse prognosis. Down-regulation of MALAT1 expression in AGS cells inhibited cell proliferation, migration, and invasion by targeting VEGFA. By dual luciferase reporter gene assay and miR-330-3p inhibitor treatment, we demonstrate that MALAT1 sponged miR-330-3p in GC, leading to VEGFA upregulation and activation of the mTOR signaling pathway. The MALAT1/miR-330-3p axis regulates VEGFA through the mTOR signaling pathway and promotes the growth and metastasis of gastric cancer.


Se descubrió que la sobreexpresión del transcrito 1 de adenocarcinoma de pulmón asociado a metástasis (MALAT1) en varios tejidos tumorales y líneas celulares promueve la proliferación, migración e invasión de células tumorales. Sin embargo, el papel de MALAT1 en el cáncer gástrico (CG) aún no está claro. Nuestro objetivo fue investigar la correlación entre los ARN no codificantes de cadena larga (lncRNA), MALAT1, los microARN (miARN) y el factor de crecimiento endotelial vascular A (VEGFA) en el cáncer gástrico y revelar el mecanismo subyacente. La correlación entre los niveles de MALAT1 y las características clínicas se analizó mediante datos bioinformáticos y muestras humanas. La expresión de MALAT1 se reguló negativamente en las células AGS para detectar las características de proliferación, migración e invasión celular, así como los efectos sobre las vías de señales. Además, validamos el papel del eje MALAT1/miR- 330-3p en GC mediante ensayos de genes indicadores de luciferasa dual. La expresión de MALAT1 fue mayor en tejidos cancerosos que en tejidos paracancerosos. El alto nivel de MALAT1 predijo malignidad y peor pronóstico. La regulación negativa de la expresión de MALAT1 en células AGS inhibió la proliferación, migración e invasión celular al apuntar a VEGFA. Mediante un ensayo de gen indicador de luciferasa dual y un tratamiento con inhibidor de miR-330-3p, demostramos que MALAT1 esponjaba miR-330-3p en GC, lo que lleva a la regulación positiva de VEGFA y la activación de la vía de señalización mTOR. El eje MALAT1/miR-330-3p regula VEGFA a través de la vía de señalización mTOR y promueve el crecimiento y la metástasis del cáncer gástrico.


Subject(s)
Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor A , TOR Serine-Threonine Kinases , RNA, Long Noncoding , RNA/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic , Cell Movement , Blotting, Western , Apoptosis , Genes, Reporter , Cell Proliferation , Real-Time Polymerase Chain Reaction , Neoplasm Invasiveness
2.
Chin. med. j ; Chin. med. j;(24): 152-161, 2024.
Article in English | WPRIM | ID: wpr-1007681

ABSTRACT

BACKGROUND@#Highly expressed in various human cancers, circular RNA Protein Kinase C Iota (circPRKCI) has been reported to play an important role in cancer development and progression. Herein, we sought to reveal the prognostic and clinical value of circPRKCI expression in diverse human cancers.@*METHODS@#We searched the Pubmed, Web of Science, and the Cochrane Library databases from inception until May 16, 2021. The relationship between circPRKCI expression and cancer patients' survival, including overall survival (OS) and disease-free survival (DFS), was assessed by pooled hazard ratios (HR) with corresponding 95% confidence interval (CI). The correlation between circPRKCI expression and clinical outcomes was evaluated using odds ratios (OR) with corresponding 95% CI. The data were analyzed by STATA software (version 12.0) or Review Manager (RevMan 5.3).@*RESULTS@#A total of 15 studies with 1109 patients were incorporated into our meta-analysis. The results demonstrated that high circPRKCI expression was significantly related to poor OS (HR = 1.96, 95% CI: 1.61, 2.39, P <0.001) when compared with low circPRKCI expression in diverse human cancers. However, elevated circPRKCI expression was not associated with DFS (HR = 1.34, 95% CI: 0.93, 1.95, P = 0.121). Furthermore, the patient with a higher circPRKCI expression was prone to have a larger tumor size, advanced clinical stage, and lymph node metastasis, but it was not significantly correlated with age, gender, and distant metastasis.@*CONCLUSION@#Elevated circPRKCI expression was correlated with worse OS and unfavorable clinical features, suggesting a novel prognostic and predictive role of circPRKCI in diverse human cancers.


Subject(s)
Humans , Prognosis , RNA, Long Noncoding/genetics , Neoplasms/metabolism , Disease-Free Survival , Progression-Free Survival , Lymphatic Metastasis , Biomarkers, Tumor/metabolism
3.
Chin. med. j ; Chin. med. j;(24): 105-114, 2024.
Article in English | WPRIM | ID: wpr-1007746

ABSTRACT

BACKGROUND@#Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer.@*METHODS@#Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38.@*RESULTS@#lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer.@*CONCLUSION@#Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , MAP Kinase Signaling System , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/pathology
4.
Zhongguo fei'ai zazhi (Online) ; Zhongguo fei'ai zazhi (Online);(12): 919-933, 2024.
Article in Chinese | WPRIM | ID: wpr-1010100

ABSTRACT

BACKGROUND@#Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.@*METHODS@#Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.@*RESULTS@#Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).@*CONCLUSIONS@#LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.


Subject(s)
Humans , Lung Neoplasms/pathology , RNA, Long Noncoding/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Up-Regulation , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Cullin Proteins/genetics
5.
Article in English | WPRIM | ID: wpr-1011009

ABSTRACT

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Liver Cirrhosis/genetics , Liver/metabolism , Hepatic Stellate Cells/pathology , MicroRNAs/metabolism , Extracellular Matrix/metabolism , Drugs, Chinese Herbal
6.
J. coloproctol. (Rio J., Impr.) ; 43(3): 166-170, July-sept. 2023. tab, graf, ilus
Article in English | LILACS | ID: biblio-1521148

ABSTRACT

Purpose: Colorectal cancer (CRC) is one of the most fatal tumors worldwide. In Egypt, most CRC cases occur in individuals > 40 years old. TUG1 has been proved to be disrupted in different malignancies and may have a critical role in tumor progression, invasion, and metastasis. However, its role in CRC has not been adequately studied. Materials / Methods: Quantitative real-time polymerase chain reaction (PCR) was used to evaluate the expression levels of long non-coding RNA (LncRNA) taurine upregulated gene 1 (TUG1), in nonmetastatic and metastatic CRC tissues and adjacent noncancerous tissues as control. Results: LncRNA TUG1 expression was significantly upregulated in both nonmetastatic and metastatic CRC tissues, in comparison with the adjacent noncancerous tissue. It was found that TUG1 could have a possible prognostic role in CRC, by comparing the sensitivity and specificity of TUG1 with those of CEA and CA19-9. Conclusion: The results of the current study suggest that the LncRNA TUG1 participates in the malignant behaviors of CRC cells. (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Adenocarcinoma , Reverse Transcriptase Polymerase Chain Reaction , RNA, Long Noncoding , Colorectal Neoplasms/pathology
7.
Neuroscience Bulletin ; (6): 440-452, 2023.
Article in English | WPRIM | ID: wpr-971564

ABSTRACT

Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.


Subject(s)
Humans , RNA, Untranslated/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Circular , Central Nervous System Diseases/genetics
8.
Article in English | WPRIM | ID: wpr-971646

ABSTRACT

OBJECTIVE@#Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis.@*METHODS@#The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting.@*RESULTS@#Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment.@*CONCLUSION@#Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.


Subject(s)
Humans , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , RNA, Long Noncoding/pharmacology , Drugs, Chinese Herbal/pharmacology , MicroRNAs/genetics , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Cell Proliferation , Transforming Growth Factors/pharmacology
9.
Zhonghua zhong liu za zhi ; (12): 56-63, 2023.
Article in Chinese | WPRIM | ID: wpr-969806

ABSTRACT

Objective: To investigate the effect of long non-coding RNA urothelial carcinoma-associated 1 (UCA1) gene on the proliferation, migration, apoptosis and immune escape of endometrial cancer cells and its molecular mechanism. Methods: Endometrial cancer tissues and adjacent normal tissues of patients with endometrioid adenocarcinoma who underwent total or partial hysterectomy in Henan Provincial People's Hospital from 2017 to 2019 were collected. The expressions of UCA1 and miR-204-5p were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and the cell proliferation, migration and apoptosis were detected by cell counting kit 8 (CCK8) method, Transwell method, flow cytometry, and dual-luciferase reporter assay was used to explore the target relationship between UCA1 and miR-204-5p. HEC-1A-sh-NC or HEC-1A-sh-UCA1 cells were co-cultured with peripheral blood mononuclear cells (PBMC) or cytokine-induced killer cells in vitro to explore the role of UCA1 in immune escape. Results: The expression level of UCA1 in endometrial cancer tissue (17.08±0.84) was higher than that in adjacent normal endometrial tissue (3.00±0.37), and the expression level of miR-204-5p (0.98±0.16) was lower than that in adjacent normal endometrial tissue (2.00±0.20, P<0.05). Pearson correlation analysis showed that the expression of miR-204-5p was negatively correlated with the expression of UCA1 (r=-0.330, P=0.030). The expressions of UCA1 and miR-204-5p were associated with the International Federation of Gynecology and Obstetrics stage of endometrial cancer, lymph node metastasis and vascular invasion (P<0.05). The relative ratio of absorbance (0.58±0.11) and the number of cell migration [(199.68±18.44)] in the sh-UCA1 group were lower than those in the sh-NC group (1.24±0.17 and 374.76±24.83), respectively. The apoptosis rate of sh-UCA1 group [(28.64±7.80)%] was higher than that of sh-NC group [(14.27±4.38)%, P<0.05]. After different ratios of effector cells and target cells were cultured, the cell survival rate of HEC-1A-sh-UCA1 group was lower than that of HEC-1A-sh-NC group, and the difference was statistically significant (P<0.05). UCA1 had a binding site for miR-204-5p. The relative ratio of absorbance (1.74±0.08) and the number of cell migration (426.00±18.00) cells in the UCA1+ anti-miR-204-5p group were higher than those in the control group [1.00±0.03 and (284.00±8.00) cells, respectively]. The apoptosis rate of UCA1+ anti-miR-204-5p group [(5.42±0.93)%] was lower than that of control group [(14.82±1.48)%, P<0.05]. HEC-1A-sh-UCA1 cells could induce higher interferon gamma (IFN-γ) expression when co-cultured with PBMC, and the levels of IFN-γ expression in PHA group and PHA+ pre-miR-204-5p group cells were 2.42±0.49 and 1.88±0.26, which were higher than that in the PHA+ pre-NC group (0.85±0.10, P<0.05). When co-cultured with cytokine-induced killer cells (different ratios) in vitro, the HEC-1A-sh-UCA1 group and the HEC-1A-pre-miR-204-5p group had lower survival rates than that in the HEC-1A-pre-miR-204-5p group. In the HEC-1A-pre-NC group, the differences were statistically significant (P<0.05). Conclusion: UCA1/miR-204-5p may play an important role in human endometrial cancer.


Subject(s)
Female , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Leukocytes, Mononuclear , Carcinoma, Transitional Cell , Antagomirs , Cell Line, Tumor , Urinary Bladder Neoplasms , Cell Proliferation , Endometrial Neoplasms/genetics , Apoptosis/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
10.
Zhonghua zhong liu za zhi ; (12): 230-237, 2023.
Article in Chinese | WPRIM | ID: wpr-969829

ABSTRACT

Objective: To explore the effect of lncRNA ADPGK-AS1 on the proliferation and apoptosis of retinoblastoma cells and its possible mechanism. Methods: The tumor tissues of 31 patients with retinoblastoma admitted to Henan Provincial Eye Hospital from February to June 2020 and their corresponding normal tissues adjacent to the cancer were collected. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p in retinoblastoma tissues and normal adjacent tissues were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Human retinal epithelial cell ARPE-19, human retinoblastoma cell Y-79 and WERI-Rb-1 were cultured in vitro. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p were detected by qRT-PCR. Y-79 cells were randomly divided into si-con group, si-lncRNA ADPGK-AS1 group, miR con group, miR-200b-5p group, si-lncRNA ADPGK-AS1+ anti-miR con group, and si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group. The proliferation, cloning and apoptosis of cells in each group were detected by tetramethylazol blue method, plate cloning test and flow cytometry, respectively. The targeting relationship between lncRNA ADPGK-AS1 and miR-200b-5p was detected by double luciferase report test, and the expression level of cleaved-caspase-3 protein was detected by western blot. Results: Compared with the adjacent tissues, the expression of lncRNA ADPGK-AS1 in retinoblastoma tissues was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with ARPE-19 cells, the expression of lncRNA ADPGK-AS1 in Y-79 and WERI-Rb-1 cells was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with the si-con group, the cell viability of the si-lncRNA ADPGK-AS1 group was reduced (1.06±0.09 vs 0.53±0.05, P<0.05), the number of cell clone formation was reduced (114.00±8.03 vs 57.00±4.13, P<0.05), while the apoptosis rate [(7.93±0.68)% vs (25.43±1.94)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). Compared with the miR-con group, the cell viability of the miR-200b-5p group was decreased (1.05±0.08 vs 0.57±0.05, P<0.05), the number of cell clone formation was decreased (118.00±10.02 vs 64.00±5.13, P<0.05), while the apoptosis rate [(7.89±0.71)% vs (23.15±1.62)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). lncRNA ADPGK-AS1 could target the expression of miR-200b-5p. Compared with the si-lncRNA ADPGK-AS1+ anti-miR-con group, cell viability of the si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group was increased (0.53±0.04 vs 1.25±0.10, P<0.05), and the number of cell clones was increased (54.00±4.39 vs 125.00±10.03, P<0.05), while the rate of apoptosis [(25.38±1.53)% vs (9.76±0.71)%] and the protein level of cleaved-caspase-3 were decreased (P<0.05). Conclusion: Interfering with the expression of lncRNA ADPGK-AS1 could inhibit the proliferation and clone formation and induce apoptosis of retinoblastoma cells by targeting the expression of miR-200b-5p.


Subject(s)
Humans , MicroRNAs/metabolism , Retinoblastoma/pathology , Caspase 3/metabolism , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis/genetics , Retinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
11.
J. biomed. eng ; Sheng wu yi xue gong cheng xue za zhi;(6): 87-94, 2023.
Article in Chinese | WPRIM | ID: wpr-970677

ABSTRACT

Extracellular matrix (ECM) has been implicated in tumor progress and chemosensitivity. Ovarian cancer brings a great threat to the health of women with a significant feature of high mortality and poor prognosis. However, the potential significance of matrix stiffness in the pattern of long non-coding RNAs (lncRNAs) expression and ovarian cancer drug sensitivity is still largely unkown. Here, based on RNA-seq data of ovarian cancer cell cultured on substrates with different stiffness, we found that a great amount of lncRNAs were upregulated in stiff group, whereas SNHG8 was significantly downregulated, which was further verified in ovarian cancer cells cultured on polydimethylsiloxane (PDMS) hydrogel. Knockdown of SNHG8 led to an impaired efficiency of homologous repair, and decreased cellular sensitivity to both etoposide and cisplatin. Meanwhile, the results of the GEPIA analysis indicated that the expression of SNHG8 was significantly decreased in ovarian cancer tissues, which was negatively correlated with the overall survival of patients with ovarian cancer. In conclusion, matrix stiffening related lncRNA SNHG8 is closely related to chemosensitivity and prognosis of ovarian cancer, which might be a novel molecular marker for chemotherapy drug instruction and prognosis prediction.


Subject(s)
Female , Humans , Cisplatin/pharmacology , Elasticity/physiology , Etoposide , Extracellular Matrix/physiology , Ovarian Neoplasms/metabolism , RNA, Long Noncoding/metabolism
12.
Article in Chinese | WPRIM | ID: wpr-970890

ABSTRACT

OBJECTIVE@#To assess the association of rs55829688 and rs75315904 polymorphisms of the lncRNA-GAS5 gene with susceptibility to systemic lupus erythematosus (SLE) in Guangxi population.@*METHODS@#Peripheral venous blood samples were collected from the SLE group and control group. Following extraction of genomic DNA, SNPscan and Sanger sequencing were carried out to determine the genotypes for the rs55829688 and rs75315904 loci of the lncRNA-GAS5 gene.@*RESULTS@#No difference was found between the two groups with regard to the genotypic frequencies for rs55829688 and rs75315904 (P > 0.05). However, the frequencies of C allele of rs55829688 between the two groups was significantly different (P < 0.05). In the SLE group, the frequencies of C allele and CT+CC genotype for rs55829688 among SLE patients with nephritis were significantly lower than those of SLE patients without nephritis (P < 0.05). In addition, haplotype analysis showed that the frequency of rs55829688 C/rs75315904 A allele in the SLE group was lower than that of the control group (P < 0.05).@*CONCLUSION@#In Guangxi population, the carrier status of rs55829688 C allele of the lncRNA-GAS5 gene may reduce the risk of SLE and its complicated nephritis, and the rs55829688 C/rs75315904 A haplotype may reduce the risk for SLE.


Subject(s)
Humans , Case-Control Studies , China/epidemiology , Gene Frequency , Genetic Predisposition to Disease , Genotype , Lupus Erythematosus, Systemic/genetics , Nephritis , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics
13.
Article in Chinese | WPRIM | ID: wpr-971107

ABSTRACT

OBJECTIVE@#To investigate the effects of lncRNA HOTAIR on the proliferation, invasion and migration of lymphoma cells through target gene miR-20a-5p and its molecular mechanism.@*METHODS@#After synthesizing HOTAIR siRNA and siRNA NC plasmids, they were transfected into lymphoma Raji cells, respectively. The expression of HOTAIR mRNA was detected by RT-qPCR. The proliferation, invasion and migration of lymphoma Raji cells were detected by CCK-8 assay, Transwell assay and cell scratch healing assay, respectively. The target gene of lncRNA HOTAIR was predicted by miRcode software, and the relationship between HOTAIR and target gene was analyzed by dual luciferase assay. After synthesis of miR-20a-5p inhibitor and inhibitor NC, Raji cells were transiently transfected. The expression of miR-20a-5p was detected by RT-qPCR, and the effects of down-regulation of miR-20a-5p on the proliferation, invasion and migration of Raji cells were analyzed. The overexpression plasmid of lncRNA HOTAIR and miR-20a-5p mimics were transfected into Raji cells simultaneously to analyze the proliferation, invasion and migration ability of Raji cells. After overexpression or down-regulation of miR-20a-5p, the expression of JAK/STAT3 signaling pathway related proteins was analyzed.@*RESULTS@#HOTAIR expression in Raji cells was decreased after transfection of HOTAIR siRNA (P<0.01), and miR-20a-5p expression was also decreased after transfection of miR-20a-5p inhibitor (P<0.01). HOTAIR had a targeting and negative regulation relationship with miR-20a-5p (r=-0.826). Silencing HOTAIR promoted the expression of miR-20a-5p and inhibited the proliferation, invasion and migration of Raji cells. Down-regulation of miR-20a-5p expression promoted the proliferation, invasion and migration of Raji cells. Effect of HOTAIR overexpression on the proliferation, invasion and migration of Raji cells could be reversed by up-regulation of miR-20a-5p. Down-regulation of miR-20a-5p expression activated the intracellular JAK/STAT3 signaling pathway.@*CONCLUSION@#HOTAIR affects the proliferation, invasion and migration of lymphoma cells by targeting miR-20a-5p, and its mechanism may be related to the activation of JAK/STAT3 signaling pathway.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lymphoma , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering
14.
Article in Chinese | WPRIM | ID: wpr-971138

ABSTRACT

Long non-coding RNA (lncRNA) is not "transcriptional noise". It can regulate gene expression at pre-transcriptional, post-transcriptional and epigenetic level and participate in the occurrence and development of diseases. A large number of studies have shown that the abnormal expression of lncRNA plays an important role in the occurrence and development of acute myeloid leukemia (AML) and drug resistance. LncRNA can participate in the occurrence, development and drug resistance of AML by acting on target genes and regulating related signal pathways. Detection of its expression has a certain prognostic value. Therefore, this article briefly discusses the research progress of lncRNA in AML, hoping to provide ideas for clinical diagnosis and targeted therapy.


Subject(s)
Humans , RNA, Long Noncoding/metabolism , Leukemia, Myeloid, Acute/drug therapy , Prognosis
15.
Article in Chinese | WPRIM | ID: wpr-971142

ABSTRACT

Long non-coding RNA (lncRNA) is a hot topic in the field of researching tumor pathogenesis, and the importance in hematologic malignancies has been gradually being elucidated. LncRNA not only regulates hematological tumorigenesis and progression through affecting various biological processes such as cell proliferation, differentiation, pluripotency and apoptosis; moreover, abnormal expression and mutation of lncRNA are closely related to drug resistance and prognosis. Thus lncRNA can be used as novel biomarker and potential therapeutic target for hematological tumors. In this review, we will focus on the latest progress of lncRNA in hematological tumors to provide new ideas for the clinical diagnosis, prognostic evaluation together with research and development of target drugs for hematologic malignancies.


Subject(s)
Humans , RNA, Long Noncoding/metabolism , Hematologic Neoplasms/genetics , Neoplasms , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic
16.
Chin. med. j ; Chin. med. j;(24): 1300-1310, 2023.
Article in English | WPRIM | ID: wpr-980832

ABSTRACT

Accumulating studies have demonstrated that non-coding RNAs (ncRNAs), functioning as important regulators of transcription and translation, are involved in the establishment and maintenance of pregnancy, especially the maternal immune adaptation process. The endometrial stromal cells (ESCs), trophoblast cells, and decidua immune cells that reside at the maternal-fetal interface are thought to play significant roles in normal pregnancy and pregnancy-associated diseases. Here, we reviewed the up-to-date evidence on how microRNA, long non-coding RNA, and circular RNA regulate ESCs, trophoblast cells, and immune cells and discussed the potential applications of these ncRNAs as diagnostic and therapeutic markers in pregnancy complications.


Subject(s)
Pregnancy , Female , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Circular/genetics , Trophoblasts , Pregnancy Complications/genetics
17.
Chin. med. j ; Chin. med. j;(24): 1098-1110, 2023.
Article in English | WPRIM | ID: wpr-980838

ABSTRACT

BACKGROUND@#Ovarian cancer is one of the most widespread malignant diseases of the female reproductive system worldwide. The plurality of ovarian cancer is diagnosed with metastasis in the abdominal cavity. Epithelial-mesenchymal transition (EMT) exerts a vital role in tumor cell metastasis. However, it remains unclear whether long non-coding RNA (lncRNA) are implicated in EMT and influence ovarian cancer cell invasion and metastasis. This study was designed to investigate the impacts of lncRNA AC005224.4 on ovarian cancer.@*METHODS@#LncRNA AC005224.4, miR-140-3p, and snail family transcriptional repressor 2 ( SNAI2 ) expression levels in ovarian cancer and normal ovarian tissues were determined using real-time quantitative polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and Transwell (migration and invasion) assays were conducted to measure SKOV3 and CAOV-3 cell proliferation and metastasis. E-cadherin, N-cadherin, Snail, and Vimentin contents were detected using Western blot. Nude mouse xenograft assay was utilized to validate AC005224.4 effects in vivo . Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-140-3p and AC005224.4 or SNAI2 .@*RESULTS@#AC005224.4 and SNAI2 upregulation and miR-140-3p downregulation were observed in ovarian cancer tissues and cells. Silencing of AC005224.4 observably moderated SKOV3 and CAOV-3 cell proliferation, migration, invasion, and EMT process in vitro and impaired the tumorigenesis in vivo . miR-140-3p was a target of AC005224.4 and its reduced expression level was mediated by AC005224.4. miR-140-3p mimics decreased the proliferation, migration, and invasion of ovarian cancer cells. SNAI2 was identified as a novel target of miR-140-3p and its expression level was promoted by either AC005224.4 overexpression or miR-140-3p knockdown. Overexpression of SNAI2 also facilitated ovarian cancer cell viability and metastasis.@*CONCLUSION@#AC005224.4 was confirmed as an oncogene via sponging miR-140-3p and promoted SNAI2 expression, contributing to better understanding of ovarian cancer pathogenesis and shedding light on exploiting the novel lncRNA-directed therapy against ovarian cancer.


Subject(s)
Animals , Mice , Humans , Female , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Snail Family Transcription Factors/metabolism
18.
Chin. med. j ; Chin. med. j;(24): 757-766, 2023.
Article in English | WPRIM | ID: wpr-980874

ABSTRACT

Long non-coding RNAs (lncRNAs) reportedly function as important modulators of gene regulation and malignant processes in the development of human cancers. The lncRNA JPX is a novel molecular switch for X chromosome inactivation and differentially expressed JPX has exhibited certain clinical correlations in several cancers. Notably, JPX participates in cancer growth, metastasis, and chemoresistance, by acting as a competing endogenous RNA for microRNA, interacting with proteins, and regulating some specific signaling pathways. Moreover, JPX may serve as a potential biomarker and therapeutic target for the diagnosis, prognosis, and treatment of cancer. The present article summarizes our current understanding of the structure, expression, and function of JPX in malignant cancer processes and discusses its molecular mechanisms and potential applications in cancer biology and medicine.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , MicroRNAs/genetics , Gene Expression Regulation , X Chromosome Inactivation
19.
Chin. med. j ; Chin. med. j;(24): 1719-1731, 2023.
Article in English | WPRIM | ID: wpr-980961

ABSTRACT

BACKGROUND@#Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism.@*METHODS@#Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo . The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay.@*RESULTS@#In this study, we found that hypoxia-induced factor (HIF)-1α could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N 6 -methyladenosine (m 6 A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m 6 A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells.@*CONCLUSION@#HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.


Subject(s)
Humans , Cell Line, Tumor , Cell Proliferation/genetics , Endothelial Cells/metabolism , Gene Expression Regulation , Gene Expression Regulation, Neoplastic/genetics , Hypoxia , MicroRNAs/genetics , RNA , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Scavenger Receptors, Class B/metabolism , Stomach Neoplasms/genetics
20.
Chin. med. j ; Chin. med. j;(24): 2538-2550, 2023.
Article in English | WPRIM | ID: wpr-1007615

ABSTRACT

Metastases account for the overwhelming majority of cancer-associated deaths. The dissemination of cancer cells from the primary tumor to distant organs involves a complex process known as the invasion-metastasis cascade. The underlying biological mechanisms of metastasis, however, remain largely elusive. Recently, the discovery and characterization of non-coding RNAs (ncRNAs) have revealed the diversity of their regulatory roles, especially as key contributors throughout the metastatic cascade. Here, we review recent progress in how three major types of ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) are involved in the multistep procedure of metastasis. We further examine interactions among the three ncRNAs as well as current progress in their regulatory mechanisms. We also propose the prevention of metastasis in the early stages of cancer progression and discuss current translational studies using ncRNAs as targets for metastasis diagnosis and treatments. These studies provide insights into developing more effective strategies to target metastatic relapse.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , RNA, Untranslated/genetics , MicroRNAs , RNA, Long Noncoding , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL