Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 31-46, 2024.
Article in English | WPRIM | ID: wpr-1011009

ABSTRACT

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Liver Cirrhosis/genetics , Liver/metabolism , Hepatic Stellate Cells/pathology , MicroRNAs/metabolism , Extracellular Matrix/metabolism , Drugs, Chinese Herbal
2.
Chinese Medical Journal ; (24): 105-114, 2024.
Article in English | WPRIM | ID: wpr-1007746

ABSTRACT

BACKGROUND@#Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer.@*METHODS@#Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38.@*RESULTS@#lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer.@*CONCLUSION@#Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , MAP Kinase Signaling System , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/pathology
3.
Chinese Medical Journal ; (24): 152-161, 2024.
Article in English | WPRIM | ID: wpr-1007681

ABSTRACT

BACKGROUND@#Highly expressed in various human cancers, circular RNA Protein Kinase C Iota (circPRKCI) has been reported to play an important role in cancer development and progression. Herein, we sought to reveal the prognostic and clinical value of circPRKCI expression in diverse human cancers.@*METHODS@#We searched the Pubmed, Web of Science, and the Cochrane Library databases from inception until May 16, 2021. The relationship between circPRKCI expression and cancer patients' survival, including overall survival (OS) and disease-free survival (DFS), was assessed by pooled hazard ratios (HR) with corresponding 95% confidence interval (CI). The correlation between circPRKCI expression and clinical outcomes was evaluated using odds ratios (OR) with corresponding 95% CI. The data were analyzed by STATA software (version 12.0) or Review Manager (RevMan 5.3).@*RESULTS@#A total of 15 studies with 1109 patients were incorporated into our meta-analysis. The results demonstrated that high circPRKCI expression was significantly related to poor OS (HR = 1.96, 95% CI: 1.61, 2.39, P <0.001) when compared with low circPRKCI expression in diverse human cancers. However, elevated circPRKCI expression was not associated with DFS (HR = 1.34, 95% CI: 0.93, 1.95, P = 0.121). Furthermore, the patient with a higher circPRKCI expression was prone to have a larger tumor size, advanced clinical stage, and lymph node metastasis, but it was not significantly correlated with age, gender, and distant metastasis.@*CONCLUSION@#Elevated circPRKCI expression was correlated with worse OS and unfavorable clinical features, suggesting a novel prognostic and predictive role of circPRKCI in diverse human cancers.


Subject(s)
Humans , Prognosis , RNA, Long Noncoding/genetics , Neoplasms/metabolism , Disease-Free Survival , Progression-Free Survival , Lymphatic Metastasis , Biomarkers, Tumor/metabolism
4.
Chinese Journal of Lung Cancer ; (12): 919-933, 2024.
Article in Chinese | WPRIM | ID: wpr-1010100

ABSTRACT

BACKGROUND@#Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.@*METHODS@#Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.@*RESULTS@#Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).@*CONCLUSIONS@#LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.


Subject(s)
Humans , Lung Neoplasms/pathology , RNA, Long Noncoding/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Up-Regulation , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Cullin Proteins/genetics
5.
J. coloproctol. (Rio J., Impr.) ; 43(3): 166-170, July-sept. 2023. tab, graf, ilus
Article in English | LILACS | ID: biblio-1521148

ABSTRACT

Purpose: Colorectal cancer (CRC) is one of the most fatal tumors worldwide. In Egypt, most CRC cases occur in individuals > 40 years old. TUG1 has been proved to be disrupted in different malignancies and may have a critical role in tumor progression, invasion, and metastasis. However, its role in CRC has not been adequately studied. Materials / Methods: Quantitative real-time polymerase chain reaction (PCR) was used to evaluate the expression levels of long non-coding RNA (LncRNA) taurine upregulated gene 1 (TUG1), in nonmetastatic and metastatic CRC tissues and adjacent noncancerous tissues as control. Results: LncRNA TUG1 expression was significantly upregulated in both nonmetastatic and metastatic CRC tissues, in comparison with the adjacent noncancerous tissue. It was found that TUG1 could have a possible prognostic role in CRC, by comparing the sensitivity and specificity of TUG1 with those of CEA and CA19-9. Conclusion: The results of the current study suggest that the LncRNA TUG1 participates in the malignant behaviors of CRC cells. (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Adenocarcinoma , Reverse Transcriptase Polymerase Chain Reaction , RNA, Long Noncoding , Colorectal Neoplasms/pathology
6.
Biol. Res ; 56: 1-1, 2023. ilus, tab
Article in English | LILACS | ID: biblio-1420299

ABSTRACT

Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.


Subject(s)
Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Cycle/genetics , Cell Division , Cell Cycle Checkpoints
7.
Biol. Res ; 56: 31-31, 2023. ilus, tab
Article in English | LILACS | ID: biblio-1513743

ABSTRACT

BACKGROUND: The main features of polycystic ovary syndrome (PCOS) are abnormal follicular development and ovulatory dysfunction, which are caused by excessive apoptosis of ovarian granulosa cells. Acupuncture has been shown to improve follicular development abnormalities in patients with PCOS, but its mechanism is unknown. This study hypothesized that the mechanism of acupuncture on follicular development abnormalities in PCOS patients is the inhibition of granulosa cell apoptosis through LncMEG3-mediated regulation of miR-21-3p. METHODS: A PCOS-like rat model was established using subcutaneous injection of dehydroepiandrosterone (DHEA). Acupuncture was performed on rats for 15 d (CV-4, RN-3, CV-6, SP-6 and EX-CA 1). Ovarian morphology was observed by HE staining, and sex hormone and AMH levels were detected by ELISA. Primary granulosa cells were isolated from each group of rats to assess the association of acupuncture treatment, LncMEG3, miR-21-3p, and granulosa cell apoptosis in rats with PCOS. RESULTS: LncMEG3 and miR-21-3p were highly expressed in the ovarian granulosa cells of rats with PCOS, and LncMEG3-mediated regulation of miR-21-3p was involved in the development of PCOS in rats. Silencing of MEG3 attenuated sex hormone dysregulation and ovarian histopathological changes in PCOS rats and promoted follicle cell development and maturation. In addition, silencing MEG3 increased the viability and number of granulosa cells. In addition, silencing MEG3 further inhibited early and late apoptosis of ovarian granulosa cells in PCOS rats. Acupuncture improved polycystic ovarian morphology and sex hormone levels in PCOS rats. Acupuncture intervention increased the viability and number of granulosa cells. Acupuncture intervention inhibited early and late apoptosis of ovarian granulosa cells in PCOS rats by targeting miR-21-3p via LncMEG3. CONCLUSION: These results suggest that acupuncture can downregulate LncMEG3, thereby targeting and regulating miR-21-3p to suppress early and late granulosa cell apoptosis and normalize their proliferation. These factors ultimately compensate for abnormal follicular development. These findings shed light on the clinical potential of acupuncture as a safe treatment for follicular developmental abnormalities in PCOS. Highlights LncMEG3-mediated inhibition of miR-21-3p regulates ovarian granulosa cell apoptosis. LncMEG3 and miR-21-3p are involved in the occurrence and development of PCOS-related abnormal follicular development. CuONPs induce co-occurrence of autophagy activation and autophagic flux blockade. Acupuncture can improve the sex hormone levels and follicular development in the context of PCOS. The underlying mechanism of acupuncture in the treatment of PCOS abnormal follicular development was revealed.


Subject(s)
Humans , Animals , Female , Rats , Polycystic Ovary Syndrome/therapy , Acupuncture Therapy , MicroRNAs , RNA, Long Noncoding , Apoptosis , Granulosa Cells
8.
Afr. J. Gastroenterol. Hepatol ; 6(1): 1-18, 2023. figures, tables
Article in English | AIM | ID: biblio-1512671

ABSTRACT

Aims: the current research aimed to investigate LncRNA-MIAT in patients with nonHodgkin lymphoma (NHL) and to assess its correlation with clinicopathological features and treatment protocols of NHLs among Egyptian patients with Occult hepatitis C virus (HCV) infection (OCI). Patients & Methods: This study was conducted on 20 patients with NHL and 30 healthy subjects as the control group. All subjects were screened for HCV-RNA in both plasma and PBMCs. RT-PCR determined lncRNA-MIAT. Results: lncRNA-MIAT relative expression level was upregulated in NHL groups (2.73±0.86) compared to controls (1.06±0.07), P ˂0.001*. Among NHL, patients with OCI (3.2±0.63) had significantly higher levels of lncRNA-MIAT compared to HCV (2.6±1.08) and non-HCV (2.4±0.4), P ˂0.001*. Additionally, the relative expression levels of lncRNA-MIAT were significantly positively correlated with laboratory and clinicopathological features of NHL. Interestingly, concerning the treatment of DLBCLNHL, there were significantly higher levels of lncRNA-MIAT in no treatment subgroup (n=10, 3.31±0.95) compared to successfully treated subgroups [CHOP (n=7, 1.58±0.34) and R-CHOP (n=3, 11.16±0.21), P ˂0.001* Conclusions: lncRNA-MIAT level was upregulated in NHL patients, particularly patients with OCI. Thus, circulatory lncRNA-MIAT may serve as a promising non-invasive diagnostic marker for NHL associated with OCI


Subject(s)
Humans , Male , Female , Lymphoma, Non-Hodgkin , RNA, Long Noncoding , Myocardial Infarction
9.
Frontiers of Medicine ; (4): 924-938, 2023.
Article in English | WPRIM | ID: wpr-1010807

ABSTRACT

Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.


Subject(s)
Humans , Female , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , RNA, Competitive Endogenous , Cell Line, Tumor , Ovarian Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Adaptor Proteins, Signal Transducing/metabolism
10.
International Journal of Oral Science ; (4): 33-33, 2023.
Article in English | WPRIM | ID: wpr-1010688

ABSTRACT

Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.


Subject(s)
Mice , Animals , Cementogenesis , Wnt Signaling Pathway , beta Catenin/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , RNA, Long Noncoding/genetics , Parathyroid Hormone , Receptors, G-Protein-Coupled/metabolism
11.
Journal of Zhejiang University. Science. B ; (12): 1123-1140, 2023.
Article in English | WPRIM | ID: wpr-1010587

ABSTRACT

Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.


Subject(s)
Humans , Female , Triple Negative Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
12.
Biomedical and Environmental Sciences ; (12): 1136-1151, 2023.
Article in English | WPRIM | ID: wpr-1007893

ABSTRACT

OBJECTIVE@#Exosomal long noncoding RNAs (lncRNAs) are the key to diagnosing and treating various diseases. This study aimed to investigate the diagnostic value of plasma exosomal lncRNAs in white matter hyperintensities (WMH).@*METHODS@#We used high-throughput sequencing to determine the differential expression (DE) profiles of lncRNAs in plasma exosomes from WMH patients and controls. The sequencing results were verified in a validation cohort using qRT-PCR. The diagnostic potential of candidate exosomal lncRNAs was proven by binary logistic analysis and receiver operating characteristic (ROC) curves. The diagnostic value of DE exo-lncRNAs was determined by the area under the curve (AUC). The WMH group was then divided into subgroups according to the Fazekas scale and white matter lesion site, and the correlation of DE exo-lncRNAs in the subgroup was evaluated.@*RESULTS@#In our results, four DE exo-lncRNAs were identified, and ROC curve analysis revealed that exo-lnc_011797 and exo-lnc_004326 exhibited diagnostic efficacy for WMH. Furthermore, WMH subgroup analysis showed exo-lnc_011797 expression was significantly increased in Fazekas 3 patients and was significantly elevated in patients with paraventricular matter hyperintensities.@*CONCLUSION@#Plasma exosomal lncRNAs have potential diagnostic value in WMH. Moreover, exo-lnc_011797 is considered to be a predictor of the severity and location of WMH.


Subject(s)
Humans , RNA, Long Noncoding/genetics , White Matter , Area Under Curve , Exosomes/genetics , High-Throughput Nucleotide Sequencing
13.
Biomedical and Environmental Sciences ; (12): 743-755, 2023.
Article in English | WPRIM | ID: wpr-1007847

ABSTRACT

This review aims to sum up how Non-coding RNAs (ncRNAs) regulate the development of periodontitis and provides a new perspective for understanding the pathogenesis of periodontitis. We explored the ncRNA's dual role in the development of periodontitis by summarizing evidence from previous in vivo and in vitro studies as well as clinical samples. In our review, the downregulation of 18 miRNAs, 22 lncRNAs and 10 circRNAs demonstrates protective roles in periodontitis. In contrast, the expression of other 11 miRNAs, 7 lncRNAs and 6 circRNAs are upregulated in periodontitis, which promote the progression of periodontitis. These dysregulated ncRNAs exert their protective or destructive roles by mainly influencing cell proliferation, differentiation and apoptosis via cross-talking with various molecules or signaling pathways. Our findings suggested which and how ncRNAs promote or delay the progression of periodontitis, which may greatly contribute to diagnose and therapy development of periodontitis based on ncRNAs in the future.


Subject(s)
Humans , RNA, Long Noncoding/genetics , RNA, Circular , MicroRNAs , Periodontitis/genetics , Apoptosis
14.
Chinese Medical Journal ; (24): 2538-2550, 2023.
Article in English | WPRIM | ID: wpr-1007615

ABSTRACT

Metastases account for the overwhelming majority of cancer-associated deaths. The dissemination of cancer cells from the primary tumor to distant organs involves a complex process known as the invasion-metastasis cascade. The underlying biological mechanisms of metastasis, however, remain largely elusive. Recently, the discovery and characterization of non-coding RNAs (ncRNAs) have revealed the diversity of their regulatory roles, especially as key contributors throughout the metastatic cascade. Here, we review recent progress in how three major types of ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) are involved in the multistep procedure of metastasis. We further examine interactions among the three ncRNAs as well as current progress in their regulatory mechanisms. We also propose the prevention of metastasis in the early stages of cancer progression and discuss current translational studies using ncRNAs as targets for metastasis diagnosis and treatments. These studies provide insights into developing more effective strategies to target metastatic relapse.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , RNA, Untranslated/genetics , MicroRNAs , RNA, Long Noncoding , RNA, Circular/genetics
15.
Chinese Medical Journal ; (24): 2351-2361, 2023.
Article in English | WPRIM | ID: wpr-1007550

ABSTRACT

BACKGROUND@#Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.@*METHODS@#CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.@*RESULTS@#RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.@*CONCLUSION@#CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.


Subject(s)
Humans , HeLa Cells , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Vimentin/metabolism , MicroRNAs/metabolism , Colonic Neoplasms/genetics , RNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics
16.
Journal of Experimental Hematology ; (6): 1608-1616, 2023.
Article in Chinese | WPRIM | ID: wpr-1010012

ABSTRACT

OBJECTIVE@#To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.@*METHODS@#The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.@*RESULTS@#The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.@*CONCLUSION@#LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.


Subject(s)
Humans , Apoptosis , bcl-2-Associated X Protein/metabolism , Caspase 3 , Cell Line, Tumor , Cell Proliferation , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics
17.
Journal of Experimental Hematology ; (6): 1085-1092, 2023.
Article in Chinese | WPRIM | ID: wpr-1009965

ABSTRACT

OBJECTIVE@#To explore the biological function of LINC00174 in multiple myeloma (MM).@*METHODS@#Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expressions of LINC00174 and miR-150 in peripheral blood of MM patients and MM cell lines. EdU staining and flow cytometry were used to detect the effects of LINC00174 and miR-150 on the proliferation and apoptosis of MM cells. Western blot was used to detect the expressions of proliferation marker nuclear-related antigen Ki67, apoptosis-related protein cleaved caspase-3 and transcription factor forkhead box protein P1 (FOXP1). Bioinformatics and dual-luciferase reporter assay were used to verify the targeting relationship between LINC00174 and miR-150 and the targeting relationship between miR-150 and FOXP1.@*RESULTS@#The level of LINC00174 was significantly increased in peripheral blood of MM patients and MM cell lines (P <0.05). Compared with NC-siRNA group, the expression of LINC00174 was significantly reduced in LINC00174-siRNA group, the proliferation of U266 cells was reduced, the apoptosis rate was significantly increased, the level of Ki67 protein was reduced, and the level of cleaved caspase-3 protein was increased (all P <0.05). LINC00174 targeted regulation of the expression of miR-150. Compared with LINC00174-siRNA+NC inhibitor group, the expression of miR-150 in U266 cells in LINC00174-siRNA+miR-150 inhibitor group was significantly reduced, the cell proliferation was enhanced, the apoptosis rate was reduced, the level of Ki67 protein was increased, and the level of cleaved caspase-3 was decreased (all P <0.05). FOXP1 is the target gene of miR-150. Compared with NC mimic group, the expression of FOXP1 protein in miR-150 mimic group was significantly reduced, the cell proliferation was reduced, the apoptosis rate was significantly increased, Ki67 protein level was decreased, and the level of cleaved caspase-3 was increased. Compared with miR-150 mimic + vector group, the expression of FOXP1 protein in miR-150 mimic + pcDNA-FOXP1 group was significantly increased, the cell proliferation was enhanced, the apoptosis rate was reduced, the level of Ki67 protein was increased, and the level of cleaved caspase-3 was decreased (all P <0.05).@*CONCLUSION@#LINC00174 promotes the proliferation of MM cells and inhibits cell apoptosis by regulating the miR-150/ FOXP1 axis.


Subject(s)
Humans , Apoptosis , Caspase 3 , Cell Line, Tumor , Cell Proliferation , Forkhead Transcription Factors , Ki-67 Antigen , MicroRNAs/genetics , Multiple Myeloma/pathology , Repressor Proteins , RNA, Small Interfering , RNA, Long Noncoding/genetics
18.
Journal of Experimental Hematology ; (6): 1032-1037, 2023.
Article in Chinese | WPRIM | ID: wpr-1009960

ABSTRACT

OBJECTIVE@#To investigate the effects of long non-coding RNA (lncRNA) GATA3 antisense RNA 1 (GATA3-AS1) targeting miR-515-5p on the proliferation and apoptosis of childhood acute lymphoblastic leukemia (ALL) cells.@*METHODS@#RT-qPCR was used to determine the expression of GATA3-AS1 and miR-515-5p in the plasma of controls and ALL children. Human ALL cells Jurkat were divided into si-GATA3-AS1, si-NC, miR-NC, miR-515-5p, si-GATA3-AS1+anti-miR-NC and si-GATA3-AS1+anti-miR-515-5p groups. CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the cell apoptosis. The targeting relationship between GATA3-AS1 and miR-515-5p was determined by dual-luciferase reporter assay.@*RESULTS@#The expression level of GATA3-AS1 in the plasma of ALL children was significantly higher than that of controls (P <0.001), while the expression level of miR-515-5p was significantly lower than that of controls (P <0.001). Compared with the si-NC group, the cell inhibition rate, apoptosis rate, and miR-515-5p expression level in si-GATA3-AS1 group were significantly increased (P <0.001). Compared with the miR-NC group, the cell inhibition rate and apoptosis rate in miR-515-5p group were significantly increased (P <0.001). GATA3-AS1 could directly and specifically bind to miR-515-5p. Compared with the si-GATA3-AS1+anti-miR-NC group, the cell inhibition rate and apoptosis rate in si-GATA3-AS1+anti-miR-515-5p group were significantly decreased (P <0.001).@*CONCLUSION@#Down-regulation of GATA3-AS1 can inhibit proliferation and induce apoptosis of childhood ALL cells by targeting up-regulation of miR-515-5p expression.


Subject(s)
Child , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Line, Tumor , Cell Proliferation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Apoptosis , Gene Expression Regulation, Neoplastic , GATA3 Transcription Factor/metabolism
19.
Journal of Zhejiang University. Medical sciences ; (6): 451-459, 2023.
Article in English | WPRIM | ID: wpr-1009907

ABSTRACT

Long non-coding RNAs (lncRNAs) are strongly related to the occurrence and development of digestive tract cancer in human. Firstly, lncRNAs target and regulate the expression of downstream cancer genes to affect the growth, metastasis, apoptosis, metabolism and immune escape of cancer cells. Secondly, lncRNAs are considered to be important regulating factors for lipid metabolism in cancer, which is related to signaling pathways of adipogenesis and involved in the occurrence and development of digestive tract cancer. Finally, lncRNAs have application value in the diagnosis and treatment of digestive tract cancer. For example, lncRNAMALAT1 has been reported as a target for diagnosis and treatment of hepatocellular carcinoma. This article reviews current progress on the regulatory role of lncRNAs in digestive tract cancer, to provide references for the research and clinical application in the prevention and treatment of digestive tract cancer.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Gastrointestinal Neoplasms/genetics , Apoptosis , Liver Neoplasms
20.
Journal of Zhejiang University. Medical sciences ; (6): 397-405, 2023.
Article in English | WPRIM | ID: wpr-1009902

ABSTRACT

Long non-coding RNAs (lncRNAs) which are usually thought to have no protein coding ability, are widely involved in cell proliferation, signal transduction and other biological activities. However, recent studies have suggested that short open reading frames (sORFs) of some lncRNAs can encode small functional peptides (micropeptides). These micropeptides appear to play important roles in calcium homeostasis, embryonic development and tumorigenesis, suggesting their potential as therapeutic targets and diagnostic biomarkers. Currently, bioinformatic tools as well as experimental methods such as ribosome mapping and in vitro translation are applied to predict the coding potential of lncRNAs. Furthermore, mass spectrometry, specific antibodies and epitope tags are used for validating the expression of micropeptides. Here, we review the physiological and pathological functions of recently identified micropeptides as well as research strategies for predicting the coding potential of lncRNAs to facilitate the further research of lncRNA encoded micropeptides.


Subject(s)
Female , Pregnancy , Humans , RNA, Long Noncoding/genetics , Research Design , Antibodies , Carcinogenesis , Micropeptides
SELECTION OF CITATIONS
SEARCH DETAIL