Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
Article in Chinese | WPRIM | ID: wpr-880059

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanism in stable cell strains expressing Mini-hF9 gene with nonsense mutation.@*METHODS@#Mini-hF9 gene and its nonsense mutants were transfected into HeLa cells independently, and stable cell strains were obtained after G418 resistance screening and monoclonal transformation. The altered splicing and protein expression of mRNA in Mini-hF9 gene in stable cell strains were detected by using RT-PCR and Western blot.@*RESULTS@#The wild type and nonsense mutated human coagulation factor IX stable cell strains were constructed successfully, which were named HeLa-F9-WT, HeLa-F9-M1 and HeLa-F9-M2. Only normal splicing Norm was detected in the wild-type cell strain HeLa-F9-WT; Norm and Alt-S1 splicing were detected in HeLa-F9-M1; while Norm, Alt-S1 and Alt-S2 splicing were detected in HeLa-F9-M2.@*CONCLUSION@#The nonsense associated altered splicing (NAS) pathway, which generated alternately spliced transcripts, might be triggered in coagulation factor IX gene with nonsense mutation.


Subject(s)
Codon, Nonsense , Factor IX/metabolism , HeLa Cells , Humans , Mutation , RNA Splicing , RNA, Messenger/metabolism
3.
J. appl. oral sci ; 28: e20190699, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1134770

ABSTRACT

Abstract Purpose To evaluate the kinetics of apical periodontitis development in vivo , induced either by contamination of the root canals by microorganisms from the oral cavity or by inoculation of bacterial lipopolysaccharide (LPS) and the regulation of major enzymes and receptors involved in the arachidonic acid metabolism. Methodology Apical periodontitis was induced in C57BL6 mice (n=96), by root canal exposure to oral cavity (n=48 teeth) or inoculation of LPS (10 µL of a suspension of 0.1 µg/µL) from E. coli into the root canals (n= 48 teeth). Healthy teeth were used as control (n=48 teeth). After 7, 14, 21 and 28 days the animals were euthanized and tissues removed for histopathological and qRT-PCR analyses. Histological analysis data were analyzed using two-way ANOVA followed by Sidak's test, and qRT-PCR data using two-way ANOVA followed by Tukey's test (α=0.05). Results Contamination by microorganisms led to the development of apical periodontitis, characterized by the recruitment of inflammatory cells and bone tissue resorption, whereas inoculation of LPS induced inflammatory cells recruitment without bone resorption. Both stimuli induced mRNA expression for cyclooxygenase-2 and 5-lipoxygenase enzymes. Expression of prostaglandin E 2 and leukotriene B 4 cell surface receptors were more stimulated by LPS. Regarding nuclear peroxisome proliferator-activated receptors (PPAR), oral contamination induced the synthesis of mRNA for PPARδ, differently from inoculation of LPS, that induced PPARα and PPARγ expression. Conclusions Contamination of the root canals by microorganisms from oral cavity induced the development of apical periodontitis differently than by inoculation with LPS, characterized by less bone loss than the first model. Regardless of the model used, it was found a local increase in the synthesis of mRNA for the enzymes 5-lipoxygenase and cyclooxygenase-2 of the arachidonic acid metabolism, as well as in the surface and nuclear receptors for the lipid mediators prostaglandin E2 and leukotriene B4.


Subject(s)
Animals , Male , Periapical Periodontitis/microbiology , Dinoprostone/metabolism , Lipopolysaccharides/metabolism , Leukotriene B4/metabolism , Dental Pulp Cavity/microbiology , Periapical Periodontitis/metabolism , Periapical Periodontitis/pathology , Time Factors , Bone Resorption/metabolism , Bone Resorption/microbiology , Arachidonate 5-Lipoxygenase/analysis , Arachidonate 5-Lipoxygenase/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism , Dinoprostone/analysis , Random Allocation , Gene Expression , Leukotriene B4/analysis , Reverse Transcriptase Polymerase Chain Reaction , Dental Pulp Cavity/metabolism , Dental Pulp Cavity/pathology , Cyclooxygenase 2/analysis , Cyclooxygenase 2/metabolism , Mice, Inbred C57BL
4.
Braz. j. med. biol. res ; 53(4): e9290, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089356

ABSTRACT

This study was designed to investigate the expression of RBM8A protein in patients with gastric cancer (GC) and to explore its correlation with clinical pathological features as well as prognosis. One hundred pairs of gastric carcinoma tissues and adjacent tissues from patients undergoing gastrectomy for GC were included in this study. The protein expression level of RBM8A was determined by immunohistochemistry using tissue microarrays. We also detected the mRNA expression level of RBM8A in 16 pairs of gastric carcinoma tissues and adjacent tissues. Meanwhile, we predicted the potential correlation between RBM8A and tumor stages as well as survival condition in patents with GC based on The Cancer Genome Atlas (TCGA) database. The correlation of RBM8A with the clinical pathological features and prognosis of the 100 patients with GC was also elucidated. The expression level of RBM8A was significantly higher in gastric carcinoma tissues compared to the adjacent tissues. The protein level of RBM8A was correlated with tumor size (P=0.031), depth of invasion (P<0.001), lymph node metastasis (P<0.001), TNM stage (<0.001), and distant metastasis (P=0.001). Patients with increased RBM8A expression (P<0.0018, 95%CI=0.322−0.871), higher TNM stage (P<0.001, 95%CI=4.990−11.283), and lymph node metastasis (P<0.001, 95%CI=2.873−4.002) had a lower overall survival. Taken together, our study demonstrated that RBM8A may act as a proto-oncogene, which could be a promising biomarker and therapeutic target in the diagnosis and treatment of GC.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Stomach Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , RNA, Messenger/metabolism , Immunohistochemistry , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Survival Analysis , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/genetics , Gastric Mucosa/pathology , Lymphatic Metastasis/pathology , Neoplasm Metastasis , Neoplasm Staging
5.
Arq. bras. cardiol ; 113(6): 1121-1127, Dec. 2019. tab
Article in English | LILACS | ID: biblio-1055071

ABSTRACT

Abstract Background: Oxidative stress and inflammation are present in coronary artery disease (CAD) and are linked to the activation of the transcription nuclear factor kappa B (NF-κB). To attenuate these complications, transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) can be activated to inhibit NF-κB. However, the available data on expression of NF-κB, Nrf2 and PPARβ/δ in CAD patients are limited. Objective: To evaluate the expression of the transcription factors NF-κB and Nrf2 and PPAR��/�� in CAD patients. Methods: Thirty-five patients (17 men, mean age 62.4 ? 7.55 years) with CAD and twelve patients (5 men, mean age 63.50 ? 11.46 years) without CAD were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and processed for mRNA expression of Nrf2, NF-κB, NADPH: quinone oxidoreductase 1 (NQO1) and PPARβ/δ mRNAs using quantitative real-time polymerase chain reaction (qPCR). p < 0.05 was considered statistically significant. Results: There was no difference in the mRNA expressions of Nrf2 (1.35 ? 0.57), NF-κB (1.08 ? 0.50) or in the antioxidant enzyme NQO1 (1.05 ? 0.88) in the CAD group compared to the group without CAD (1.16 ? 0.76, 0.95 ? 0.33, 0.81 ? 0.55, respectively). However, PPARβ/δ was highest expressed in the CAD group (1.17 ? 0.86 vs. 0.56 ? 0.34, p = 0.008). Conclusion: The main finding of this study was the PPARβ/δ being more expressed in the PBMC of patients with CAD compared to the control group, whereas no differences were observed in Nrf2 or NF-κB mRNA expressions.


Resumo Fundamentos: O estresse oxidativo e a inflamação estão presentes na doença arterial coronariana (DAC) e estão ligados à ativação do fator de transcrição nuclear kappa B (NF-κB). Para atenuar essas complicações, fatores de transcrição como o fator nuclear eritroide 2-relacionado ao fator 2 (Nrf2) e o receptor ativado por proliferador de peroxissoma β/δ (PPARβ/δ) podem ser ativados para inibir o NF-κB. No entanto, os dados disponíveis sobre a expressão de NF-κB, Nrf2 e PPARβ/δ em pacientes com DAC são limitados. Objetivo: Avaliar a expressão dos fatores transcricionais NF-κB e Nrf2 e o PPARβ/δ em pacientes com DAC. Métodos: Trinta e cinco pacientes (17 homens, idade média de 62,4 ± 7,55 anos) com DAC e doze pacientes (5 homens, com idade média de 63,50 ± 11,46 anos) sem DAC foram incluídos. Células mononucleares do sangue periférico (PBMCs) foram isoladas e processadas para a expressão de mRNA do Nrf2, NF-κB, NADPH: quinona oxidoredutase 1 (NQO1) e mRNAs do PPARβ/δ por meio de reação em cadeia da polimerase quantitativa em tempo real (qPCR). Valores de p < 0,05 foram considerados como estatisticamente significativos. Resultados: Não houve diferença nas expressões de mRNA do Nrf2 (1,35 ± 0,57), NF-κB (1,08 ± 0,50) ou na enzima antioxidante NQO1 (1,05 ± 0,88) no grupo DAC em comparação com o grupo sem DAC (1,16 ± 0,76, 0,95 ± 0,33, 0,81 ± 0,55, respectivamente). Entretanto, o PPARβ/δ apresentou maior expressão no grupo com DAC (1,17 ± 0,86 vs. 0,56 ± 0,34, p = 0,008). Conclusão: O principal achado do presente estudo foi o PPARβ/δ apresentar maior expressão nas PBMCs de pacientes com DAC comparados ao grupo controle, ao passo que não foram observadas diferenças nas expressões de mRNA do Nrf2 ou NF-κB.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Coronary Artery Disease/metabolism , RNA, Messenger/metabolism , NF-kappa B/metabolism , PPAR-beta/metabolism , PPAR delta/metabolism , NF-E2-Related Factor 2/metabolism , Biomarkers/metabolism , Body Mass Index , Gene Expression Regulation , Polymerase Chain Reaction , Oxidative Stress , Inflammation/metabolism
6.
Arq. bras. oftalmol ; 82(5): 407-411, Sept.-Oct. 2019. tab, graf
Article in English | LILACS | ID: biblio-1019435

ABSTRACT

ABSTRACT Purpose: To determine the expression profiles of the transcription factor specificity protein 1 and collagen I in primary pterygial and normal conjunctival tissues, and to explore the role of specificity protein 1 and collagen I in pterygial development. Methods: The pterygial tissues of 20 patients who underwent resection of primary pterygial tissue in our hospital from June 2016 to December 2017 and the conjunctival tissues of 10 patients with enucleation due to trauma were collected. Reverse transcription quantitative-po lymerase chain reaction and western blot analyses were used to detect the relative expression levels of specificity protein 1 and type I collagen at the mRNA and protein levels. Results: The content of specificity protein 1 and collagen I mRNA and protein was significantly greater in primary pterygial tissue than it was in conjunctival tissue (p<0.05). There was a positive correlation between the mRNA and protein levels of specificity protein 1 and collagen I in primary pterygial tissues (protein: r=1, p<0.05; mRNA: r=1, p<0.05). Conclusion: Specificity protein 1 and collagen I are expressed in normal conjunctival and pterygial tissues, but expression is significantly greater in the latter. Specificity protein 1 and collagen I may be involved in the regulation of the development of primary pterygium.


RESUMO Objetivo: Determinar os perfis de expressão do fator de transcrição da proteína de especificidade 1 e do colágeno I em tecidos pterigiais primários e conjuntivais normais, e explorar o papel da proteína de especificidade 1 e colágeno I no desenvolvimento pterigial. Métodos: Foram coletados os tecidos pterigiais de 20 pacientes submetidos à ressecção de tecido de pterígio primário em nosso hospital no período de junho de 2016 a dezembro de 2017 e os tecidos conjuntivais de 10 pacientes com enucleação por trauma. A reação em cadeia da polimerase quantitativa de transcriptase reversa e a análise de Western blot foram utilizadas para detectar os níveis de expressão relativa da proteína de especificidade 1 e colágeno tipo I nos níveis de mRNA e proteína. Resultados: O conteúdo de especificidade da proteína 1 e do mRNA e proteína do colágeno I foi significativamente maior no tecido de pterígio primário do que no tecido conjuntival (p<0,05). Houve correlação positiva entre os níveis de mRNAs e proteína de especificidade 1 e colágeno I nos tecidos primários do pterígio (proteínas: r=1, p<0,05; mRNA: r=1, p<0,05). Conclusão: A proteína de especificidade 1 e do colágeno I é expressa nos tecidos conjuntivais e pterigiais normais, mas a expressão é significativamente maior no segundo. A especificidade da proteína 1 e do colágeno I pode ser envolvida na regulação do desenvolvimento do pterígio primário.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Pterygium/metabolism , RNA, Messenger/metabolism , Conjunctiva/abnormalities , Collagen Type I/metabolism , Pterygium/genetics , RNA, Messenger/genetics , Cells, Cultured , Blotting, Western , Conjunctiva/metabolism , Collagen Type I/genetics
7.
Biol. Res ; 52: 11, 2019. graf
Article in English | LILACS | ID: biblio-1011413

ABSTRACT

BACKGROUND: The present study aimed to investigate the underlying role of interferon-regulatory factor 2 (IRF2)-inositol polyphosphate-4-phosphatase, type-II (INPP4B) axis in the regulation of autophagy in acute myeloid leukemia (AML) cells. METHODS: Quantitative real time PCR (QRT-PCR) and western blot were performed to determine the expression levels of IRF2, INPP4B and autophagy-related markers in AML cell lines. Autophagy was assessed by elevated Beclin-1 expression, the conversion of light chain 3 (LC3)-I to LC3-II, downregulated p62 expression and green fluorescent protein (GFP)-LC3 puncta formation. The colony formation and apoptosis assays were performed to determine the effects of IRF2 and INPP4B on the growth of AML cells. RESULTS: IRF2 and INPP4B were highly expressed in AML cell lines, and were positively correlated with autophagy-related proteins. Overexpression of IRF2 or INPP4B stimulated autophagy of AML cells, whereas inhibition of IRF2 or INPP4B resulted in the attenuation of autophagy. More importantly, IRF2 or INPP4B overexpression reversed autophagy inhibitor, 3-methyladenine (3-MA)-induced proliferation-inhibitory and pro-apoptotic effects, while IRF2 or INPP4B silencing overturned the proliferation-promoting and anti-apoptotic effects of autophagy activator rapamycin. CONCLUSION: IRF2-INPP4B signaling axis attenuated apoptosis through induction of autophagy in AML cells.


Subject(s)
Humans , Autophagy , Leukemia, Myeloid, Acute/metabolism , Apoptosis , Phosphoric Monoester Hydrolases/metabolism , Interferon Regulatory Factor-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Leukemia, Myeloid, Acute/pathology , Signal Transduction , Blotting, Western , Fluorescent Antibody Technique , Cell Line, Tumor , Cell Proliferation , Real-Time Polymerase Chain Reaction
8.
Braz. j. med. biol. res ; 52(8): e8341, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011606

ABSTRACT

MicroRNAs (miRNAs), as post-transcriptional regulators, have been reported to be involved in the initiation and progression of various types of cancer, including gastric cancer (GC). The present study aimed to investigate the role of miR-383-5p in gastric carcinogenesis. Cell viability was analyzed using CCK-8 kit. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to evaluate cell apoptosis. The expression levels of miR-383-5p and histone deacetylase 9 (HDAC9) mRNA in GC tissues and cell lines were analyzed using RT-qPCR. The protein expression of HDAC9 was detected by western blotting. We found that HDAC9 was up-regulated and miR-383-5p was down-regulated in GC tissues and cell lines. High HDAC9 expression or low miR-383-5p expression was closely related to poor prognosis and metastasis in GC patients. HDAC9 knockout or miR-383-5p mimics led to growth inhibition and increased apoptosis in AGS and SGC-7901 cells. More importantly, we validated that miR-383-5p as a post-transcriptional regulator inhibited HDAC9 expression and was inversely correlated with HDAC9 expression in GC tissues. miR-383-5p had the opposite effects to HDAC9 in gastric carcinogenesis. miR-383-5p played an important role in gastric carcinogenesis, and it is one of the important mechanisms to regulate oncogenic HDAC9 in GC, which might be helpful in the development of novel therapeutic strategies for the treatment of GC.


Subject(s)
Humans , Male , Female , Middle Aged , Repressor Proteins/metabolism , Stomach Neoplasms/pathology , Carcinoma/pathology , MicroRNAs/metabolism , Histone Deacetylases/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , RNA, Messenger/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Apoptosis , Disease Progression , Cell Proliferation/genetics , Carcinogenesis/genetics , Neoplasm Staging
9.
Braz. j. med. biol. res ; 52(6): e8589, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011585

ABSTRACT

The transport of myo-inositol is the main mechanism for the maintenance of its high intracellular levels. We aimed to measure the mRNA and protein levels of myo-inositol cotransporters in the sciatic nerve (SN) and dorsal root ganglia (DRG) during experimental diabetes. Streptozotocin-induced (STZ; 4, 8, and 12 weeks; 65 mg/kg; ip) diabetic rats (DB) and age-matched euglycemic (E) rats were used for the analysis of mRNA and protein levels of sodium myo-inositol cotransporters 1, 2 (SMIT1, SMIT2) or H+/myo-inositol cotransporter (HMIT). There was a significant reduction in the mRNA levels for SMIT1 in the SN and DRG (by 36.9 and 31.0%) in the 4-week DB (DB4) group compared to the E group. SMIT2 was not expressed in SN. The mRNA level for SMIT2 was up-regulated only in the DRG in the DB4 group. On the other hand, the protein level of SMIT1 decreased by 42.5, 41.3, and 44.8% in the SN after 4, 8, and 12 weeks of diabetes, respectively. In addition, there was a decrease of 64.3 and 58.0% of HMIT in membrane and cytosolic fractions, respectively, in the SN of the DB4 group. In the DRG, there was an increase of 230 and 86.3% for SMIT1 and HMIT, respectively, in the DB12 group. The levels of the main inositol transporters, SMIT1 and HMIT, were greatly reduced in the SN but not in the DRG. SMIT-1 was selectively reduced in the sciatic nerve during experimental STZ-induced diabetes.


Subject(s)
Animals , Male , Rats , Sciatic Nerve/metabolism , Biological Transport, Active/physiology , RNA, Messenger/metabolism , Diabetes Mellitus, Experimental/metabolism , Ganglia, Spinal/metabolism , Inositol/metabolism , Up-Regulation , Blotting, Western , Streptozocin , Reverse Transcriptase Polymerase Chain Reaction
10.
Braz. j. med. biol. res ; 52(10): e8343, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039245

ABSTRACT

The objective was to study the effect of mechanical intestinal obstruction in rats on the phenotype of interstitial cells of Cajal (ICC). Healthy Wistar rats were randomly divided into sham-operation group (C), one day obstruction group (M1), two days obstruction group (M2), and three days obstruction group (M3), with 10 rats in each group. The expression of SCF mRNA and c-Kit protein in intestinal tissue was investigated by RT-PCR and immunohistochemistry. Compared with the sham-operation group, the relative expression of SCF mRNA and the expression of c-Kit protein in intestinal tissue were significantly decreased in both obstruction groups. Levels decreased gradually with the prolongation of obstruction time, and significantly decreased on the 3rd day after obstruction (P<0.05). Immunohistochemical staining of the small intestine showed that the number of ICC in the sham-operation group was the highest, and they were gradually decreased with the extension of obstruction time in the M1 to M3 groups. There was a significant difference between groups (P<0.05). Intestinal obstruction caused a decrease in the concentrations of SCF mRNA and c-Kit protein in ICC. With the prolongation of intestinal obstruction, the number of ICCs gradually decreased.


Subject(s)
Animals , Male , Rats , RNA, Messenger/metabolism , Stem Cell Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Interstitial Cells of Cajal/metabolism , Intestinal Obstruction/metabolism , Phenotype , Immunohistochemistry , Rats, Wistar , Disease Models, Animal , Interstitial Cells of Cajal/pathology , Intestinal Obstruction/pathology
11.
Braz. j. med. biol. res ; 52(1): e7816, 2019. tab, graf
Article in English | LILACS | ID: biblio-974271

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) has been reported in gastric cancer to be a prognostic factor. However, miR-497-targeted FGFR1 has not been explored in the carcinogenesis of gastric cancer. The present study intended to revalidate the prognostic significance of FGFR1 in patients with gastric cancer, and the mechanism of miR-497-regulated FGFR1 was investigated in gastric cancer cell proliferation and apoptosis. The messenger RNA (mRNA) and protein levels were assayed by RT-qPCR and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell proliferation was analyzed by CCK-8 assay. Annexin V-FITC/PI staining was used to evaluate the apoptosis in AGS and SGC-7901 cells. FGFR1 was frequently up-regulated in gastric cancer tissues and associated with poor overall survival in patients with gastric cancer. Interestingly, FGFR1 loss-of-function resulted in a significant growth inhibition and apoptosis in AGS and SGC-7901 cells. In addition, we found that miR-497 was inhibited in gastric cancer tissues and cell lines, while overexpression of miR-497 could suppress proliferation and induce apoptosis in AGS and SGC-7901 cells. Importantly, bioinformatics analysis and experimental data suggested that FGFR1 was a direct target of miR-497, which could inhibit FGFR1 expression when transfected with miR-497 mimics. Furthermore, we found that overexpression of FGFR1 reversed the growth inhibition and apoptosis of miR-497 mimics in AGS and SGC-7901 cells. These findings suggested that overexpression of miR-497 inhibited proliferation and induced apoptosis in gastric cancer through the suppression of FGFR1.


Subject(s)
Humans , Stomach Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Prognosis , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Immunohistochemistry , Signal Transduction , Blotting, Western , Apoptosis , Disease Progression , Cell Line, Tumor , Cell Proliferation , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Real-Time Polymerase Chain Reaction
12.
Arch. endocrinol. metab. (Online) ; 62(2): 205-211, Mar.-Apr. 2018. tab, graf
Article in English | LILACS | ID: biblio-887654

ABSTRACT

ABSTRACT Objective The transcriptional repressor DREAM is involved in thyroid-specific gene expression, thyroid enlargement and nodular development, but its clinical utility is still uncertain. In this study we aimed to investigate whether DREAM mRNA levels differ in different thyroid tumors and how this possible difference would allow the use of DREAM gene expression as molecular marker for diagnostic and/or prognosis purpose. Materials and methods We quantified DREAM gene mRNA levels and investigated its mutational status, relating its expression and genetic changes to diagnostic and prognostic features of 200 thyroid tumors, being 101 malignant [99 papillary thyroid carcinomas (PTC) and 2 anaplastic thyroid carcinomas] and 99 benign thyroid lesions [49 goiter and 50 follicular adenomas (FA)]. Results Levels of mRNA of DREAM gene were higher in benign (0.7909 ± 0.6274 AU) than in malignant (0.3373 ± 0.6274 AU) thyroid lesions (p < 0.0001). DREAM gene expression was able to identify malignancy with 66.7% sensitivity, 85.4% specificity, 84.2% positive predictive value (PPV), 68.7% negative predictive value (NPV), and 75.3% accuracy. DREAM mRNA levels were also useful distinguishing the follicular lesions FA and FVPTC with 70.2% sensitivity, 73.5% specificity, 78.5% PPV, 64.1% NPV, and 71.6% accuracy. However, DREAM gene expression was neither associated with clinical features of tumor aggressiveness, nor with recurrence or survival. Six different genetic changes in non-coding regions of DREAM gene were also found, not related to DREAM gene expression or tumor features. Conclusion We suggest that DREAM gene expression may help diagnose thyroid nodules, identifying malignancy and characterizing follicular-patterned thyroid lesions; however, it is not useful as a prognostic marker.


Subject(s)
Humans , Male , Female , Middle Aged , Repressor Proteins/genetics , RNA, Messenger/genetics , Thyroid Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Kv Channel-Interacting Proteins/genetics , Regulatory Elements, Transcriptional/genetics , Prognosis , Repressor Proteins/metabolism , RNA, Messenger/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Sensitivity and Specificity , Kv Channel-Interacting Proteins/metabolism , Real-Time Polymerase Chain Reaction , Neoplasm Staging
13.
An. bras. dermatol ; 93(1): 63-66, Jan.-Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-887148

ABSTRACT

Abstract: Background: Psoriasis is a chronic inflammatory disorder, characterized by increased keratinocyte proliferation due to abnormal differentiation of basal keratinocytes. The etiology of the disease is unclear, and according to the survey results, it is hypothesized that a combination of genetic and environmental factors prompts an abnormal immune response in patients with psoriasis. CD4+ Th cells play a multifaceted role in both immune defense and pathogenesis of certain diseases such as psoriasis. Nonetheless, the exact contribution of different subpopulations of Th cells in psoriasis is still not clear. Objective: The aim of present study was to determine the mRNA expression level of RORC as potential inducer of Th17 cell differentiation and expression pattern of Th17-signature cytokines (IL-17A and IL-22). Methods: Twenty patients with psoriasis and twenty-one healthy subjects were included in the study. Peripheral blood mononuclear cells (PBMCs) were separated and expression of three genes were determined by quantitative real-time reverse transcriptase PCR (qRT-PCR). Plasma levels of IL-17 and IL-22 were also evaluated by ELISA. Results: RORC, IL-17A and IL-22 gene expression was significantly higher in patients with psoriasis compared with healthy controls (P<0.05). In addition, a marked increase in plasma IL-17A and IL-22 levels was observed in patient group compared to controls (P<0.001). Study limitations: small number of patients. Conclusion: These data suggest that Th17 response may contribute to the pathogenesis of psoriasis.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Young Adult , Psoriasis/metabolism , Keratinocytes/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/physiology , Th17 Cells/metabolism , Psoriasis/etiology , Severity of Illness Index , RNA, Messenger/metabolism , Case-Control Studies , Gene Expression , Keratinocytes/cytology , Cell Differentiation , Interleukins/blood , Interleukin-17/blood , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells/immunology
14.
Braz. j. med. biol. res ; 51(4): e6980, 2018. graf
Article in English | LILACS | ID: biblio-889067

ABSTRACT

Hormones regulate hepatic gene expressions to maintain metabolic homeostasis. Ectonucleotide pyrophosphatase/phosphodiesterase 1 has been thought to interfere with insulin signaling. To determine its potential role in the regulation of metabolism, we analyzed its gene (Enpp1) expression in the liver of rats experiencing fasting and refeeding cycles, and in primary rat hepatocytes and human hepatoma HepG2 cells treated with insulin and dexamethasone using northern blot and real-time PCR techniques. Hepatic Enpp1 expression was induced by fasting and reduced by refeeding in the rat liver. In primary rat hepatocytes and HepG2 hepatoma cells, insulin reduced Enpp1 mRNA abundance, whereas dexamethasone induced it. Dexamethasone disrupted the insulin-reduced Enpp1 expression in primary hepatocytes. This is in contrast to the responses of the expression of the cytosolic form of phosphoenolpyruvate carboxykinase gene to the same hormones, where insulin reduced it significantly in the process. In addition, the dexamethasone-induced Enpp1 gene expression was attenuated in the presence of 8-Br-cAMP. In conclusion, we demonstrated for the first time that hepatic Enpp1 is regulated in the cycle of fasting and refeeding, a process that might be attributed to insulin-reduced Enpp1 expression. This insulin-reduced Enpp1 expression might play a role in the development of complications in diabetic patients.


Subject(s)
Humans , Animals , Male , Rats , Pyrophosphatases/genetics , RNA, Messenger/drug effects , Dexamethasone/pharmacology , Phosphoric Diester Hydrolases/genetics , Glucocorticoids/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Liver/enzymology , Pyrophosphatases/biosynthesis , Pyrophosphatases/drug effects , Insulin Resistance , RNA, Messenger/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Enzyme Induction/drug effects , Fasting/metabolism , Rats, Sprague-Dawley , Phosphoric Diester Hydrolases/biosynthesis , Phosphoric Diester Hydrolases/drug effects , Hep G2 Cells , Real-Time Polymerase Chain Reaction
15.
Braz. j. med. biol. res ; 51(6): e7238, 2018. tab, graf
Article in English | LILACS | ID: biblio-889106

ABSTRACT

Ulomoides dermestoides is a beetle traditionally consumed to treat diabetes. In this study, we performed a composition analysis of U. dermestoides to obtain the principal fractions, which were used to assess the effect on glycemia, liver and pancreatic architecture, and PPARγ and GLUT4 expression. Normal mice and alloxan-induced diabetic mice were administered fractions of chitin, protein or fat, and the acute hypoglycemic effect was evaluated. A subacute study involving daily administration of these fractions to diabetic mice was also performed over 30 days, after which the liver and pancreas were processed by conventional histological techniques and stained with hematoxylin and eosin to evaluate morphological changes. The most active fraction, the fat fraction, was analyzed by gas chromatography-mass spectrometry (GC-MS), and PPARγ and GLUT4 mRNA expressions were determined in 3T3-L1 adipocytes. The protein and fat fractions exhibited hypoglycemic effects in the acute as well as in the 30-day study. Only the fat fraction led to elevated insulin levels and reduced glycemia, as well as lower intake of water and food. In the liver, we observed recovery of close hepatic cords in the central lobule vein following treatment with the fat fraction, while in the pancreas there was an increased density and percentage of islets and number of cells per islet, suggesting cellular regeneration. The GC-MS analysis of fat revealed three fatty acids as the major components. Finally, increased expression of PPARγ and GLUT4 was observed in 3T3-L1 adipocytes, indicating an antidiabetic effect.


Subject(s)
Animals , Male , Pancreas/drug effects , Tissue Extracts/therapeutic use , Coleoptera/chemistry , Fat Body/chemistry , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Pancreas/metabolism , Pancreas/pathology , Tissue Extracts/isolation & purification , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Gene Expression Regulation , PPAR gamma/drug effects , PPAR gamma/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/drug therapy , Glucose Transporter Type 4/drug effects , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/isolation & purification , Liver/metabolism , Liver/pathology , Gas Chromatography-Mass Spectrometry
16.
Braz. j. med. biol. res ; 51(4): e6685, 2018. tab, graf
Article in English | LILACS | ID: biblio-889056

ABSTRACT

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC.


Subject(s)
Humans , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Stomach Neoplasms/genetics , China/epidemiology , Gene Expression Profiling , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphatic Metastasis/genetics , Prognosis , RNA, Messenger/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/secondary
17.
Biol. Res ; 51: 10, 2018. tab, graf
Article in English | LILACS | ID: biblio-950896

ABSTRACT

PROPOSE: We aimed to explore the potential molecular mechanism and independent prognostic genes for colon cancer (CC). METHODS: Microarray datasets GSE17536 and GSE39582 were downloaded from Gene Expression Omnibus. Meanwhile, the whole CC-related dataset were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNA (DEMs) were identified between cancer tissue samples and para-carcinoma tissue samples in TCGA dataset, followed by the KEGG pathway and GO function analyses. Furthermore, the clinical prognostic analysis including overall survival (OS) and disease-free survival (DFS) were performed in all three datasets. RESULTS: A total of 633 up- and 321 down-regulated mRNAs were revealed in TCGA dataset. The up-regulated mRNAs were mainly assembled in functions including extracellular matrix and pathways including Wnt signaling. The down-regulated mRNAs were mainly assembled in functions like Digestion and pathways like Drug metabolism. Furthermore, up-regulation of UL16-binding protein 2 (ULBP2) was associated with OS in CC patients. A total of 12 DEMs including Surfactant Associated 2 (SFTA2) were potential DFS prognostic genes in CC patients. Meanwhile, the GRP and Transmembrane Protein 37 (TMEM37) were two outstanding independent DFS prognostic genes in CC. CONCLUSIONS: ULBP2 might be a potential novel OS prognostic biomarker in CC, while GRP and TMEM37 could be served as the independent DFS prognostic genes in CC. Furthermore, functions including extracellular matrix and digestion, as well as pathways including Wnt signaling and drug metabolism might play important roles in the process of CC.


Subject(s)
Humans , Animals , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Genetic Markers , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Up-Regulation/genetics , Risk Factors , Colonic Neoplasms/metabolism , Disease-Free Survival , Gastrin-Releasing Peptide/genetics , Gastrin-Releasing Peptide/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein A/metabolism , Microarray Analysis , Murinae , Kaplan-Meier Estimate , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism
18.
Braz. j. med. biol. res ; 51(10): e7564, 2018. graf
Article in English | LILACS | ID: biblio-951711

ABSTRACT

Attention and emotion have a positive impact on memory formation, which is related to the activation of the noradrenergic system in the brain. The hippocampus and amygdala are fundamental structures in memory acquisition, which is modulated by noradrenaline through the noradrenergic receptors. Pharmacological studies suggest that memory acquisition depends on the action of both the β3 (β3-AR) and β2 (β2-AR) receptor subtypes. However, the use of animal models with specific knockout for the β3-AR receptor only (β3-ARKO) allows researchers to more accurately assess its role in memory formation processes. In the present study, we evaluated short- and long-term memory acquisition capacity in β3-ARKO mice and wild-type mice at approximately 60 days of age. The animals were submitted to the open field test, the elevated plus maze, object recognition, and social preference. The results showed that the absence of the β3-AR receptor caused no impairment in locomotion and did not cause anxious behavior, but it caused significant impairment of short- and long-term memory compared to wild-type animals. We also evaluated the expression of genes involved in memory consolidation. The mRNA levels for GLUT3, a glucose transporter expressed in the central nervous system, were significantly reduced in the amygdala, but not in the hippocampus of the β3-ARKO animals. Our results showed that β3-AR was involved in the process of acquisition of declarative memory, and its action may be due to the facilitation of glucose absorption in the amygdala.


Subject(s)
Animals , Male , Rabbits , Avoidance Learning/physiology , Signal Transduction/physiology , Maze Learning/physiology , Receptors, Adrenergic, beta-3/physiology , Memory Consolidation/physiology , RNA, Messenger/metabolism , Gene Expression Regulation , Receptors, Adrenergic, beta-3/metabolism
19.
Braz. j. microbiol ; 48(3): 566-569, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889146

ABSTRACT

Abstract The aim of this study was to assess the in vitro and in vivo effects of short-interfering RNAs (siRNAs) against rabies virus phosphoprotein (P) mRNA in a post-infection treatment for rabies as an extension of a previous report (Braz J Microbiol. 2013 Nov 15;44(3):879-82). To this end, rabies virus strain RABV-4005 (related to the Desmodus rotundus vampire bat) were used to inoculate BHK-21 cells and mice, and the transfection with each of the siRNAs was made with Lipofectamine-2000™. In vitro results showed that siRNA 360 was able to inhibit the replication of strain RABV-4005 with a 1 log decrease in virus titter and 5.16-fold reduction in P mRNA, 24 h post-inoculation when compared to non-treated cells. In vivo, siRNA 360 was able to induce partial protection, but with no significant difference when compared to non-treated mice. These results indicate that, despite the need for improvement for in vivo applications, P mRNA might be a target for an RNAi-based treatment for rabies.


Subject(s)
Animals , Phosphoproteins/genetics , Rabies/veterinary , Rabies virus/genetics , Viral Proteins/genetics , Chiroptera/virology , RNA, Small Interfering/genetics , RNA Interference , Phosphoproteins/metabolism , Rabies/virology , Rabies virus/physiology , Viral Proteins/metabolism , Virus Replication , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
20.
Arq. bras. cardiol ; 109(1): 63-70, July 2017. tab, graf
Article in English | LILACS | ID: biblio-887895

ABSTRACT

Abstract Background: The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives: The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods: Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results: LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion: GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium.


Resumo Fundamento: A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Objetivos: Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Métodos: Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de 60 dias de idade foram medidos por meio de um método indireto de manguito de cauda usando um eletro esfigmomanômetro. Os corações (d60) foram coletados para avaliação da expressão de RNAm da conexina 43 (Cx43) e análise morfológica e morfométrica. Resultados: A prole BP não mostrou diferença no peso corporal, embora tenha nascido mais leve do que a prole PN. Os níveis de PA foram significativamente mais altos no grupo BP. Observou-se um aumento significativo na área ocupada pelas fibras colágenas, diminuição do número de cardiomiócitos em 104 µm2 e aumento da área de cardiomiócitos associada ao aumento da expressão de Cx43. Conclusão: A RPG altera os níveis miocárdicos de RNAm de Cx43 em ratos adultos jovens, sugerindo que este mecanismo visa compensar o processo fibrótico pelo acúmulo de fibras de colágeno no interstício cardíaco.


Subject(s)
Humans , Animals , Male , Female , Pregnancy , Rats , Prenatal Exposure Delayed Effects/metabolism , RNA, Messenger/metabolism , Connexin 43/metabolism , Diet, Protein-Restricted , Myocardium/metabolism , RNA, Messenger/analysis , Rats, Wistar , Connexin 43/analysis
SELECTION OF CITATIONS
SEARCH DETAIL