Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 59: e22304, 2023. tab, graf
Article in English | LILACS | ID: biblio-1447564

ABSTRACT

Abstract Vascular endothelial growth factor (VEGF) is an essential angiogenic factor in breast cancer development and metastasis. Small interfering RNAs (siRNAs) can specifically silence genes via the RNA interference pathway, therefore were investigated as cancer therapeutics. In this study, we investigated the effects of siRNAs longer than 30 base pairs (bp) loaded into chitosan nanoparticles in triple-negative breast cancer cells, compared with conventional siRNAs. 35 bp long synthetic siRNAs inhibited VEGF gene expression by 51.2% and increased apoptosis level by 1.75-fold in MDA-MB-231 cell lines. Furthermore, blank and siRNA-loaded chitosan nanoparticles induced expression of IFN-γ in breast cancer cells. These results suggest that long synthetic siRNAs can be as effective as conventional siRNAs, when introduced into cells with chitosan nanoparticles


Subject(s)
RNA, Small Interfering/pharmacology , Vascular Endothelial Growth Factor A/analysis , Chitosan/adverse effects , Nanoparticles/classification , Triple Negative Breast Neoplasms/pathology , Neoplasm Metastasis/diagnosis
2.
Journal of Experimental Hematology ; (6): 38-44, 2023.
Article in Chinese | WPRIM | ID: wpr-971099

ABSTRACT

OBJECTIVE@#To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.@*METHODS@#HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.@*RESULTS@#CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.@*CONCLUSION@#Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.


Subject(s)
Humans , Atorvastatin/pharmacology , PTEN Phosphohydrolase/pharmacology , Sincalide/metabolism , Drug Resistance, Neoplasm/genetics , TOR Serine-Threonine Kinases/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Doxorubicin/pharmacology , Apoptosis , RNA, Small Interfering/pharmacology , Glycolysis , Glucose/therapeutic use , Cell Proliferation
3.
Journal of Zhejiang University. Medical sciences ; (6): 306-317, 2023.
Article in English | WPRIM | ID: wpr-982048

ABSTRACT

OBJECTIVES@#To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.@*METHODS@#siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.@*RESULTS@#Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).@*CONCLUSIONS@#The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.


Subject(s)
Animals , Female , Mice , Antioxidants/metabolism , Cholesterol/metabolism , Ethanol/pharmacology , Glutathione/pharmacology , Inflammation , Lipids/pharmacology , Liver , Malondialdehyde/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen Species/metabolism , RNA, Small Interfering/pharmacology , Superoxide Dismutase , Triglycerides/metabolism , Cytochrome P-450 CYP2E1/metabolism
4.
Journal of Zhejiang University. Medical sciences ; (6): 185-194, 2023.
Article in English | WPRIM | ID: wpr-982034

ABSTRACT

OBJECTIVES@#To investigate the effects and molecular mechanisms of asiatic acid on β-cell function in type 2 diabetes mellitus (T2DM).@*METHODS@#The T2DM model was established by high fat diet and streptozotocin injection in ICR mice, and the effects of asiatic acid on glucose regulation were investigated in model mice. The islets were isolated from palmitic acid-treated diabetic mice. ELISA was used to detect the glucose-stimulated insulin secretion, tumor necrosis factor (TNF)-α and interleukin (IL)-6. ATP assay was applied to measure ATP production, and Western blotting was used to detect protein expression of mature β cell marker urocortin (Ucn) 3 and mitofusin (Mfn) 2. The regulatory effects of asiatic acid on glucose-stimulated insulin secretion (GSIS) and Ucn3 expression were also investigated after siRNA interference with Mfn2 or treatment with TNF-α.@*RESULTS@#Asiatic acid with the dose of 25 mg·kg-1·d-1 had the best glycemic control in T2DM mice and improved the homeostasis model assessment β index. Asiatic acid increased the expression of Mfn2 and Ucn3 protein and improved the GSIS function of diabetic β cells in vitro and in vivo (both P<0.05). Moreover, it improved the ATP production of islets of T2DM mice in vitro (P<0.05). Interfering Mfn2 with siRNA blocked the up-regulation of Ucn3 and GSIS induced by asiatic acid. Asiatic acid inhibited islet TNF-α content and increased Mfn2 and Ucn3 protein expression inhibited by TNF-α.@*CONCLUSIONS@#Asiatic acid improves β cell insulin secretion function in T2DM mice by maintaining the β cell maturity, which may be related to the TNF-α/Mfn2 pathway.


Subject(s)
Mice , Animals , Insulin Secretion , Diabetes Mellitus, Type 2/drug therapy , Islets of Langerhans/metabolism , Tumor Necrosis Factor-alpha/metabolism , Insulin/therapeutic use , Diabetes Mellitus, Experimental , Mice, Inbred ICR , Glucose/therapeutic use , Interleukin-6/metabolism , RNA, Small Interfering/pharmacology , Adenosine Triphosphate , GTP Phosphohydrolases/therapeutic use
5.
International Journal of Oral Science ; (4): 34-34, 2022.
Article in English | WPRIM | ID: wpr-939853

ABSTRACT

Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.


Subject(s)
Humans , Cartilage, Articular/pathology , Chondrocytes/metabolism , Down-Regulation , Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Osteoarthritis/pathology , RNA, Small Interfering/pharmacology
6.
Journal of Experimental Hematology ; (6): 476-480, 2022.
Article in Chinese | WPRIM | ID: wpr-928739

ABSTRACT

OBJECTIVE@#To investigate the effect of two different approaches ERRα strategy on the apoptosis in multiple myeloma cell line MM.1S.@*METHODS@#For the one strategy, shRNA was mediated by lentivirus. Stable cell clones were established by transfecting the lentivirus into MM.1S cells and screened by puromycin. For the other strategy, XCT790, a specific reverse agonist of ERRα, was used to treat MM.1S cells. The apoptosis of the cells was analyzed by flow cytometry after ERRα was down-regulated. Western blot assay was used to detect the apoptosis of related proteins.@*RESULTS@#The knocked down ERRα was achieved, lentivirus with shERRα were successfully infected into MM.1S and ERRα was reduced significantly. Knockdown of ERRα could induce MM.1S cell apoptosis dramatically. Meanwhile, the expression of cleaved PARP (a kind of apoptosis related markers) was significantly increased following depletion of ERRα in MM.1S cells. XCT790 could significantly down-regulate the expression of ERRα protein in MM.1S cells, which was consistent with the effect caused by shRNA.@*CONCLUSION@#Interference the expression of ERRα by shRNA or XCT790 can induce apparent apoptosis in MM.1S cells, which indicating that ERRα is crucial for the survival of myeloma cells.


Subject(s)
Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Lentivirus , Multiple Myeloma , RNA, Small Interfering/pharmacology , Receptors, Estrogen
7.
Yonsei Medical Journal ; : 9-18, 2017.
Article in English | WPRIM | ID: wpr-222311

ABSTRACT

PURPOSE: Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) trigger RET inhibitor resistance in LC-2/ad cells with CCDC6-RET fusion genes. MATERIALS AND METHODS: The effects of EGF and HGF on the susceptibility of a CCDC6-RET lung cancer cell line to RET inhibitors (sunitinib, E7080, vandetanib, and sorafenib) were examined. RESULTS: CCDC6-RET lung cancer cells were highly sensitive to RET inhibitors. EGF activated epidermal growth factor receptor (EGFR) and triggered resistance to sunitinib, E7080, vandetanib, and sorafenib by transducing bypass survival signaling through ERK and AKT. Reversible EGFR-TKI (gefitinib) resensitized cancer cells to RET inhibitors, even in the presence of EGF. Endothelial cells, which are known to produce EGF, decreased the sensitivity of CCDC6-RET lung cancer cells to RET inhibitors, an effect that was inhibited by EGFR small interfering RNA (siRNA), anti-EGFR antibody (cetuximab), and EGFR-TKI (Iressa). HGF had relatively little effect on the sensitivity to RET inhibitors. CONCLUSION: EGF could trigger resistance to RET inhibition in CCDC6-RET lung cancer cells, and endothelial cells may confer resistance to RET inhibitors by EGF. E7080 and other RET inhibitors may provide therapeutic benefits in the treatment of RET-positive lung cancer patients.


Subject(s)
Humans , Adenocarcinoma/drug therapy , Cell Line, Tumor , Cetuximab/pharmacology , Drug Resistance, Neoplasm/drug effects , Epidermal Growth Factor/metabolism , Gene Rearrangement , Hepatocyte Growth Factor/pharmacology , Indoles/pharmacology , Lung Neoplasms/drug therapy , MAP Kinase Signaling System , Mutation , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Pyrroles/pharmacology , Quinazolines/pharmacology , RNA, Small Interfering/pharmacology , ErbB Receptors/genetics , Signal Transduction/drug effects , fms-Like Tyrosine Kinase 3/metabolism
8.
Biol. Res ; 49: 1-8, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950853

ABSTRACT

BACKGROUND: Zinc finger RNA binding protein (ZFR) is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA) targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.


Subject(s)
Animals , Cattle , Humans , Pancreatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , RNA, Small Interfering/pharmacology , Gene Knockdown Techniques/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Tetrazolium Salts , Cell Survival , Cells, Cultured , Blotting, Western , RNA-Binding Proteins/genetics , Lentivirus/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Molecular Targeted Therapy , Real-Time Polymerase Chain Reaction , Flow Cytometry/methods , Formazans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
9.
Rev. méd. Chile ; 143(2): 223-236, feb. 2015. ilus, tab
Article in Spanish | LILACS | ID: lil-742574

ABSTRACT

Prostate cancer represents the second cancer-related cause of death in North American and Chilean men. The main treatment for incurable stages of disease is surgical or pharmacological castration. However, with time and despite the addition of anti-androgens, the disease progresses to a clinical state that has been commonly referred to as “hormone refractory”. In recent years, the concept of hormone refractoriness has been challenged and replaced by “castration resistance”, acknowledging that further and optimal hormonal manipulation can be attained, beyond achieving testosterone levels at castration range. The purpose of this review is to summarize the recent therapeutic breakthroughs in the management of metastatic castrate resistant prostate cancer (mCRPC), with greater emphasis in the newer hormonal therapy agents such as Abiraterone and Enzalutamide. Future combination and sequential treatment strategies are contextualized in the current era of personalized cancer medicine and genomic characterization of prostate cancer.


Subject(s)
Animals , Rats , Angiotensin II/physiology , Fibronectins/biosynthesis , Mesangial Cells/metabolism , Plasminogen Activator Inhibitor 1/biosynthesis , Poly(ADP-ribose) Polymerases/physiology , Cells, Cultured , Fibronectins/genetics , Gene Expression Regulation, Enzymologic , Glomerular Mesangium/cytology , Glomerular Mesangium/metabolism , Glomerular Mesangium/pathology , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Mesangial Cells/enzymology , Mesangial Cells/pathology , Plasminogen Activator Inhibitor 1/genetics , Poly(ADP-ribose) Polymerases/biosynthesis , Poly(ADP-ribose) Polymerases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
10.
Rev. méd. Chile ; 143(2): 237-243, feb. 2015. ilus
Article in Spanish | LILACS | ID: lil-742575

ABSTRACT

Currently, there is no discussion on the need to improve and strengthen the institutional health care modality of FONASA (MAI), the health care system used by the public services net and by most of the population, despite the widely known and long lasting problems such as waiting lists, hospital debt with suppliers, lack of specialists and increasing services purchase transference to the private sector, etc. In a dichotomous sectorial context, such as the one of health’s social security in Chile (the state on one side and the market on the other), points of view are polarized and stances tend to seek refuge within themselves. As a consequence, to protect the public solution is commonly associated with protecting the “status quo”, creating an environment that is reluctant to change. The author proposes a solution based on three basic core ideas, which, if proven effective, can strengthen each other if combined properly. These are: network financing management, governance of health care services in MAI and investments and human resources in networked self-managed institutions. The proposal of these core ideas was done introducing a reality testing that minimizes the politic complexity of their implementation.


Subject(s)
Animals , Humans , Rats , AMP-Activated Protein Kinases/metabolism , Antioxidants/therapeutic use , Autophagy/drug effects , Signal Transduction/drug effects , Sirtuin 1/metabolism , Stilbenes/therapeutic use , Cell Line, Transformed , Dose-Response Relationship, Drug , Doxycycline/pharmacology , Gene Expression Regulation/drug effects , Insecticides/toxicity , Microscopy, Immunoelectron/methods , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mutation/genetics , Poly(ADP-ribose) Polymerases/metabolism , RNA, Small Interfering/pharmacology , Rotenone/toxicity , Time Factors , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
11.
Biol. Res ; 48: 1-15, 2015. ilus, graf, tab
Article in English | LILACS | ID: biblio-950812

ABSTRACT

BACKGROUND: The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. RESULTS: Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. CONCLUSIONS: The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.


Subject(s)
Humans , Cell Movement/physiology , RNA, Small Interfering/pharmacology , rho-Associated Kinases/physiology , Esophageal Neoplasms , MicroRNAs/physiology , Cell Line, Tumor , rho-Associated Kinases/antagonists & inhibitors
12.
Braz. j. med. biol. res ; 47(12): 1096-1101, 12/2014. graf
Article in English | LILACS | ID: lil-727664

ABSTRACT

p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML.


Subject(s)
Humans , Apoptosis/drug effects , Benzamides/pharmacology , Cell Proliferation/drug effects , /metabolism , Fusion Proteins, bcr-abl/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Piperazines/pharmacology , Pyrimidines/pharmacology , RNA, Small Interfering/pharmacology , Antineoplastic Agents/pharmacology , Benzamides/metabolism , Cyclin D1/drug effects , Cyclin D1/metabolism , /drug effects , /metabolism , /genetics , Drug Combinations , Drug Resistance, Neoplasm , Down-Regulation/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Gene Expression/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Piperazines/metabolism , Protein Kinase Inhibitors/pharmacology , /drug effects , /metabolism , Pyrimidines/metabolism , /drug effects
13.
Braz. j. med. biol. res ; 47(12): 1044-1049, 12/2014. graf
Article in English | LILACS | ID: lil-727666

ABSTRACT

Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role of PPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects of PPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1D also inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA against PPM1D might be a promising therapeutic strategy for the treatment of BC.


Subject(s)
Animals , Humans , Male , Phosphoprotein Phosphatases/physiology , RNA Interference/physiology , RNA, Small Interfering/pharmacology , Urinary Bladder Neoplasms/pathology , Cell Line, Tumor , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Down-Regulation , Flow Cytometry , Gene Knockdown Techniques , Genetic Vectors , Lentivirus/genetics , Mice, Inbred BALB C , Mice, Nude , Phosphoprotein Phosphatases/genetics , Real-Time Polymerase Chain Reaction , Stress, Physiological/genetics , Tumor Stem Cell Assay , Urinary Bladder Neoplasms/therapy
14.
Indian J Exp Biol ; 2014 Oct; 52(10): 943-951
Article in English | IMSEAR | ID: sea-153783

ABSTRACT

The anti proliferative potential of siRNA26, targeted to Aurora kinase B, in prostate cancer cells is known from a previous study from our laboratory. Here we first show that siRNA26 cleaves at the same position of the target mRNA in the prostate cancer and hepatocellular carcinoma cell lines, PC3 and HepG2 respectively. Aurorakinase B specific siRNA, but not a control siRNA, inhibited PC3 and HepG2 cell proliferation and cell migration. These effects correlated to RNA silencing of Aurorakinase B in both the cell lines. Intra-tumoral administration of HiPerfect complexed siRNA26 inhibited the growth of HepG2 xenografts in SCID mice. In an orthotopic setting, intravenous administration of HiPerfect encapsulated siRNA26 appeared to reduce the severity of multifocal lesions.


Subject(s)
Animals , Antineoplastic Agents/pharmacology , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/therapy , Male , Mice , Mice, SCID , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , RNA Interference , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Transfection , Xenograft Model Antitumor Assays
15.
Biomédica (Bogotá) ; 34(3): 387-402, July-Sept. 2014. ilus
Article in Spanish | LILACS | ID: lil-726799

ABSTRACT

Introducción. El factor de transcripción asociado a la microftalmia ( Microphtalmia-Associated Transcription Factor , MITF) regula la expresión de genes específicos, pero no se conoce su expresión y su función a nivel cardiaco. Objetivos. Identificar la expresión del MITF en corazón y en cardiomiocitos aislados de cobayo, describir los cambios morfológicos asociados con su disminución y evaluar los niveles relativos de su expresión en cardiomiocitos aislados en condiciones de preacondicionamiento isquémico. Materiales y métodos. El análisis de la expresión relativa de la isoforma específica de tejido cardiaco ( heart-type MITF, MITF-H), se determinó mediante reacción en cadena de la polimerasa (PCR) en tiempo real semicuantitativa, secuenciación y Western blot . La disminución del ARNm del MITF se indujo con un ARN pequeño de interferencia ( short hairpin RNA interference , shRNAi) específico. El tamaño, el diámetro y el número de fibras musculares se evaluaron por observación directa con microscopía de luz. Resultados. Se amplificó un fragmento de 281 pb de ADNc; el análisis de la secuencia confirmó la identidad del exón 1 y la isoforma H del MITF. La interferencia del ARNm del MITF se asoció con un mayor índice cardiaco (peso corazón/peso corporal: 5,46 x 10 -3 Vs. 4,6 x 10 -3 ) y un incremento del diámetro de las fibras cardiacas (50,2±16 µm Vs. 38,7±14,7 µm; p<0,05, n=150). En los cardiomiocitos aislados en condiciones de preacondicionamiento isquémico, se observó una expresión relativa del MITF-H mayor que en los miocitos en normoxia y expuestos a lesión por isquemia simulada (80 y 100 veces más, n=5, p<0,05, n=3). Conclusión. Los resultados sugieren que el MITF-H podría estar involucrado en la hipertrofia, la respuesta al estrés por isquemia y la supervivencia de cardiomiocitos de cobayo.


Introduction: The microphthalmia -associated transcription factor ( MITF ) regulates the expression of specific genes and its cardiac expression and function is not known. Objectives: To identify the expression of MITF in hearts and isolated cardiomyocytes from Guinea pigs, to describe morphological changes associated with mRNA interference of MITF and to evaluate their relative changes in expression in isolated cardiomyocytes under ischemic preconditioning. Materials and methods: The cardiac specific isoform, MITF-H, and relative expression level analysis, was determined by semi-quantitative real time PCR, sequencing and Western blotting. Reduction of mRNA-MITF-H was induced by transduction of specific-MITF-shRNAi interference. The cardiac morphological changes, diameter and number of cardiac fibers were evaluated by direct observation and light microscopy. Results: A cDNA fragment of 281 bp was amplified from heart and isolated ventricular cardiac myocytes. Sequence analysis confirmed the identity of the isoform MITF-H, exon 1. The MITF silencing was associated with an increase in cardiac index (heart weight/body weight vs . 5.46 x 10 -3 vs 4.6 x 10 -3 ) and higher diameter of cardiac fibers (50.2±16 µ m vs 38,7±14,7 µ m p<0.05, n=150). In isolated cardiac myocytes under ischemic preconditioning we observed a higher relative expression compared with that measured in myocytes exposed to normoxia and simulated ischemia (eighty and one hundred times, p <0.05, n = 5). Conclusion. The results suggest that MITF-H isoform may be involved in Guinea pig cardiac hypertrophy, response to stress by ischemia and cardiomyocytes survival.


Subject(s)
Animals , Female , Guinea Pigs , Cardiomyopathy, Hypertrophic/metabolism , Microphthalmia-Associated Transcription Factor/physiology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Amino Acid Sequence , Base Sequence , Cell Survival , Cells, Cultured , Cardiomyopathy, Hypertrophic/genetics , DNA, Complementary/genetics , Gene Expression Regulation , Ischemic Preconditioning, Myocardial , Molecular Sequence Data , Microphthalmia-Associated Transcription Factor/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/biosynthesis , Microphthalmia-Associated Transcription Factor/genetics , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Myocytes, Cardiac/pathology , Oxygen/pharmacology , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology , RNA Interference , RNA, Small Interfering/pharmacology , Sequence Alignment , Sequence Homology
16.
Braz. j. med. biol. res ; 47(7): 548-553, 07/2014. graf
Article in English | LILACS | ID: lil-712965

ABSTRACT

Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.


Subject(s)
Animals , Humans , Apoptosis/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Inhibitor of Apoptosis Proteins/drug effects , Lung Neoplasms/secondary , Neuroblastoma/pathology , RNA, Small Interfering/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Immunohistochemistry , In Situ Nick-End Labeling , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mice, Nude , Neoplasm Invasiveness , Neuroblastoma/secondary , Reverse Transcriptase Polymerase Chain Reaction , RNA, Neoplasm/drug effects , RNA, Neoplasm/metabolism , Xenograft Model Antitumor Assays
17.
Braz. j. med. biol. res ; 44(7): 642-646, July 2011. ilus, tab
Article in English | LILACS | ID: lil-595708

ABSTRACT

To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6 percent, P < 0.05) and at 72 h (34.5 vs 93.5 percent, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.


Subject(s)
Humans , Male , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Prostatic Neoplasms/metabolism , RNA, Small Interfering/pharmacology , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Insulin-Like Growth Factor I/metabolism , Phosphorylation , Prostatic Neoplasms/pathology , Real-Time Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
18.
Braz. j. med. biol. res ; 43(10): 1001-1009, Oct. 2010. ilus, tab
Article in English | LILACS | ID: lil-561220

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive disease, representing 15 percent of all cases of lung cancer, has high metastatic potential and low prognosis that urgently demands the development of novel therapeutic approaches. One of the proposed approaches has been the down-regulation of BCL2, with poorly clarified and controversial therapeutic value regarding SCLC. The use of anti-BCL2 small interfering RNA (siRNA) in SCLC has never been reported. The aim of the present study was to select and test the in vitro efficacy of anti-BCL2 siRNA sequences against the protein and mRNA levels of SCLC cells, and their effects on cytotoxicity and chemosensitization. Two anti-BCL2 siRNAs and the anti-BCL2 G3139 oligodeoxynucleotide (ODN) were evaluated in SCLC cells by the simultaneous determination of Bcl-2 and viability using a flow cytometry method recently developed by us in addition to Western blot, real-time reverse-transcription PCR, and cell growth after single and combined treatment with cisplatin. In contrast to previous reports about the use of ODN, a heterogeneous and up to 80 percent sequence-specific Bcl-2 protein knockdown was observed in the SW2, H2171 and H69 SCLC cell lines, although without significant sequence-specific reduction of cell viability, cell growth, or sensitization to cisplatin. Our results question previous data generated with antisense ODN and supporting the present concept of the therapeutic interest in BCL2 silencing per se in SCLC, and support the growing notion of the necessity of a multitargeting molecular approach for the treatment of cancer.


Subject(s)
Humans , Lung Neoplasms/drug therapy , Oligoribonucleotides, Antisense/pharmacology , /metabolism , RNA, Small Interfering/pharmacology , Small Cell Lung Carcinoma/drug therapy , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Survival/drug effects , Cisplatin/pharmacology , Down-Regulation , Flow Cytometry , Gene Silencing , Lung Neoplasms/metabolism , /drug effects , Reverse Transcriptase Polymerase Chain Reaction , Small Cell Lung Carcinoma/metabolism , Tumor Cells, Cultured
19.
Experimental & Molecular Medicine ; : 428-436, 2010.
Article in English | WPRIM | ID: wpr-27760

ABSTRACT

Inadequate apoptosis contributes to synovial hyperplasia in rheumatoid arthritis (RA). Recent study shows that low expression of Puma might be partially responsible for the decreased apoptosis of fibroblast-like synoviocytes (FLS). Slug, a highly conserved zinc finger transcriptional repressor, is known to antagonize apoptosis of hematopoietic progenitor cells by repressing Puma transactivation. In this study, we examined the expression and function of Slug in RA FLS. Slug mRNA expression was measured in the synovial tissue (ST) and FLS obtained from RA and osteoarthritis patients. Slug and Puma mRNA expression in FLS by apoptotic stimuli were measured by real-time PCR analysis. FLS were transfected with control siRNA or Slug siRNA. Apoptosis was quantified by trypan blue exclusion, DNA fragmentation and caspase-3 assay. RA ST expressed higher level of Slug mRNA compared with osteoarthritis ST. Slug was significantly induced by hydrogen peroxide (H2O2) but not by exogenous p53 in RA FLS. Puma induction by H2O2 stimulation was significantly higher in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. After H2O2 stimulation, viable cell number was significantly lower in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. Apoptosis enhancing effect of Slug siRNA was further confirmed by ELISA that detects cytoplasmic histone-associated DNA fragments and caspase-3 assay. These data demonstrate that Slug is overexpressed in RA ST and that suppression of Slug gene facilitates apoptosis of FLS by increasing Puma transactivation. Slug may therefore represent a potential therapeutic target in RA.


Subject(s)
Humans , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Arthritis, Rheumatoid/genetics , Cells, Cultured , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Hydrogen Peroxide/pharmacology , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/pharmacology , Synovial Membrane/cytology , Transcription Factors/antagonists & inhibitors , Transcriptional Activation/drug effects , Transfection
20.
Experimental & Molecular Medicine ; : 437-445, 2010.
Article in English | WPRIM | ID: wpr-27759

ABSTRACT

TNF-alpha, a proinflammatory cytokine, inhibits osteoblast differentiation under diverse inflammatory conditions; however, the underlying mechanisms in terms of the TNF-alpha signaling pathway remain unclear. In this study, we examined the role of Msx2 in TNF-alpha-mediated inhibition of alkaline phosphatase (ALP) expression and the signaling pathways involved. TNF-alpha down-regulated ALP expression induced by bone morphogenetic protein 2 (BMP2) in C2C12 and Runx2-/- calvarial cells. Over-expression of Msx2 suppressed BMP2-induced ALP expression. Furthermore, TNF-alpha induced Msx2 expression, and the knockdown of Msx2 by small interfering RNAs rescued ALP expression, which was inhibited by TNF-alpha. TNF-alpha activated the NF-kappaB and the JNK pathways. Inhibition of NF-kappaB or JNK activation reduced the inhibitory effect of TNF-alpha on ALP expression, whereas TNF-alpha-induced Msx2 expression was only suppressed by the inhibition of the NF-kappaB pathway. Taken together, these results indicate that Msx2 mediates the inhibitory action of TNF-alpha on BMP2-regulated osteoblast differentiation and that the TNF-alpha-activated NF-kappaB pathway is responsible for Msx2 induction.


Subject(s)
Animals , Mice , Alkaline Phosphatase/genetics , Animals, Newborn , Bone Morphogenetic Protein 2/pharmacology , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Homeodomain Proteins/antagonists & inhibitors , Mice, Inbred ICR , Mice, Transgenic , Osteoblasts/drug effects , RNA, Small Interfering/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL