Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Chinese Journal of Biotechnology ; (12): 150-162, 2024.
Article in Chinese | WPRIM | ID: wpr-1008086

ABSTRACT

Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.


Subject(s)
RNA , Solanum lycopersicum/genetics , Photosynthesis/genetics , Chlorophyll , RNA-Binding Proteins/genetics
2.
Article in English | WPRIM | ID: wpr-1010585

ABSTRACT

无义介导的信使RNA(mRNA)降解途径(nonsense-mediated mRNA decay,简称为NMD)是真核生物细胞内一种重要的基因转录后表达调控机制,它积极参与一系列细胞生理和生化过程,控制细胞命运和生命体的组织稳态。NMD的缺陷会导致人类疾病,如神经发育障碍、肿瘤发生和自身免疫疾病等。UPF3 (Up-frameshift protein 3)是一个核心的NMD因子,它最早在酵母中被发现。UPF3A和UPF3B是UPF3在生物进化到脊椎动物阶段出现的两个旁系同源物,在NMD中具有激活或抑制的作用。以往研究发现,UPF3B蛋白几乎在所有哺乳动物器官中均有表达,而UPF3A蛋白在除睾丸外的大多数哺乳动物组织中难以被检测到。解释这一现象的假说为:在NMD途径中,UPF3B具有比UPF3A更高的竞争性结合UPF2的能力,UPF3B和UPF2的结合促使UPF3A成为游离状态,而游离的UPF3A蛋白不稳定且易被降解。此假说提示UPF3A和UPF3B在NMD中存在拮抗作用。在本研究中,我们重新定量评估了UPF3A和UPF3B在野生型成年雄性和雌性小鼠的9个主要组织和生殖器官中的mRNA和蛋白表达,结果证实UPF3A在雄性生殖细胞中表达量最高。令人惊讶的是,我们发现在包括大脑和胸腺在内的大多数组织中,UPF3A与UPF3B的蛋白水平相当,而在小鼠脾、肺组织中,UPF3A表达高于UPF3B。公共基因表达数据进一步支持了上述发现。因此,我们的研究表明了UPF3A是小鼠组织中普遍表达的NMD因子。同时,该研究结果推测:在生理条件下,UPF3A和UPF3B蛋白之间不存在竞争抑制,且UPF3A在多种哺乳动物组织的稳态中发挥重要作用。


Subject(s)
Animals , Humans , Mice , HeLa Cells , Nonsense Mediated mRNA Decay , RNA-Binding Proteins/genetics
3.
Article in English | WPRIM | ID: wpr-971382

ABSTRACT

OBJECTIVES@#Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of head and neck. Screening of target genes for malignant tumor therapy is one of the focuses of cancer research, with proto-oncogene and tumor suppressor gene as the breakthrough. It has become an urgent need to find the target gene related to the treatment and prognosis of LSCC.This study aims to explore the role of Lin28B and C-myc in LSCC by detecting the expressions of these two proteins and analyze the correlation between the expression of Lin28B and C-myc and clinicopathological features and prognosis of LSCC.@*METHODS@#We detected the expression of Lin28B and C-myc proteins in 102 specimens of LSCC and 90 specimens of adjacent tissues by immunochemistry, and analyzed the correlation between Lin28B and C-myc protein expressions in LSCC as well as the correlation between the expressions of the two proteins and the clinicopathological features of LSCC. At the same time, the Kaplan-Meier method was used to analyze the relation between Lin28B and C-myc protein levels with the postoperative survival rate of LSCC patients.@*RESULTS@#The protein levels of Lin28B and C-myc in the LSCC tissnes were significantly higher than those in the adjacent tissues (both P<0.05),and there was a positive correlation between the expression of Lin28B and C-myc in LSCC (r=0.476, P<0.05). The expression of Lin28B protein was closely related to age, lymph node metastasis, clinical stage, tumor size, and pathological differentiation of LSCC patients (all P<0.05). while the expression of C-myc protein was closely related to lymph node metastasis, clinical stage, tumor size, and pathological differentiation of LSCC patients (all P<0.05). A relevant survival analysis showed that in patients with higher level of Lin28B (P=0.001) or C-myc protein (P<0.001), the postoperative survival rate was relatively low.@*CONCLUSIONS@#Lin28B and C-myc proteins are highly expressed in LSCC with a positive correlation. Furthermore, they are closely related to lymph node metastasis, clinical stage, tumor size, pathological differentiation and prognosis, suggesting that both Lin28B and C-myc might be involved in the occurrence and development of LSCC.


Subject(s)
Humans , Squamous Cell Carcinoma of Head and Neck , Proto-Oncogene Proteins c-myc/metabolism , Laryngeal Neoplasms/diagnosis , Carcinoma, Squamous Cell/genetics , Lymphatic Metastasis , Prognosis , Head and Neck Neoplasms , Biomarkers, Tumor/metabolism , RNA-Binding Proteins/genetics
4.
Article in Chinese | WPRIM | ID: wpr-971494

ABSTRACT

OBJECTIVE@#To investigate the effect of ANP32A silencing on invasion and migration of colon cancer cells and the influence of the activity of AKT signaling pathway on this effect.@*METHODS@#Colorectal cancer HCT116 and SW480 were transfected with a small interfering RNA targeting ANP32A via a lentiviral vector. At 24, 48 and 72 h after the transfection, the changes in cell proliferation and AKT activity in the cells were detected using MTT assay and Western blotting, respectively. HCT116 and SW480 cells were treated with the AKT agonist SC79 or its inhibitor MK2206 for 24, 48, 72 and 96 h, and the changes in cell migration and invasion ability were analyzed using Transwell chamber assay and cell proliferation was assessed using MTT assay. The effects of SC79 and MK2206 on migration and invasion abilities of HCT116 and SW480 cells with or without ANP32A silencing were examined using wound healing and Transwell chamber assays, and the changes in the expression of metadherin (MTDH), a factor associated with cells invasion and migration, was detected with Western blotting.@*RESULTS@#Lentivirus-mediated ANP32A silencing significantly down-regulated the activity of AKT and inhibited the proliferation of both HCT116 and SW480 cells (P < 0.01). The application of AKT inhibitor MK2206 obviously inhibited the proliferation, invasion and migration of the colorectal cancer cells (P < 0.05), while the AKT agonist SC79 significantly promoted the invasion and migration of the cells (P < 0.01). In HCT116 and SW480 cells with ANP32A silencing, treatment with MK2206 strongly enhanced the inhibitory effects of ANP32A silencing on cell invasion and migration (P < 0.05) and the expression of MTDH, while SC79 partially reversed these inhibitory effects (P < 0.01).@*CONCLUSION@#ANP32A silencing inhibits invasion and migration of colorectal cancer cells possibly by inhibiting the activation of the AKT signaling pathway.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt , Cell Proliferation , Blotting, Western , Cell Movement , Colonic Neoplasms , Membrane Proteins , RNA-Binding Proteins/genetics , Nuclear Proteins
5.
Protein & Cell ; (12): 51-63, 2023.
Article in English | WPRIM | ID: wpr-971605

ABSTRACT

RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.


Subject(s)
Animals , Mice , 3' Untranslated Regions/genetics , Cell Cycle Proteins/metabolism , Gametogenesis/genetics , Meiosis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
6.
Article in Chinese | WPRIM | ID: wpr-928308

ABSTRACT

OBJECTIVE@#Osteosarcoma(OS) and Ewing's sarcoma (EWS) are the two most common primary malignant bone tumors in children. The aim of the study was to identify key genes in OS and EWS and investigate their potential pathways.@*METHODS@#Expression profiling (GSE16088 and GSE45544) were obtained from GEO DataSets. Differentially expressed genes were identified using GEO2R and key genes involved in the occurrence of both OS and EWS were selected using venn diagram. Gene ontology and pathway enrichment analyses were performed for the ensembl. Protein-protein interaction (PPI) networks were established by STRING. Further, UCSC was used to predict the transcription factors of the cell division cycke 5-like(CDC5L) gene, and GEPIA was used to analyze the correlation between the transcription factors and the CDC5L gene.@*RESULTS@#The results showed that CDC5L gene was the key gene involved in the pathogenesis of OS and EWS. The gene is mainly involved in mitosis, and is related to RNA metabolism, processing of capped intron-containing pre-mRNA, mRNA and pre-mRNA splicing.@*CONCLUSION@#CDC5L, as a key gene, plays a role in development of OS and EWS, which may be reliable targets for diagnosis and treatment of these primary malignant tumors.


Subject(s)
Child , Humans , Bone Neoplasms/pathology , Cell Cycle Proteins/genetics , Computational Biology , Gene Expression Profiling , Osteosarcoma/genetics , RNA-Binding Proteins/genetics , Sarcoma, Ewing/genetics
7.
Article in Chinese | WPRIM | ID: wpr-928363

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a Chinese pedigree affected with dyschromatosis symmetrica hereditaria (DSH).@*METHODS@#PCR and Sanger sequencing were carried out for the proband, and suspected variant was validated by Sanger sequencing in the pedigree.@*RESULTS@#The proband was found to harbor a novel variant of c.1352delA (p.N451Mfs*13) of the ADAR (NM_001111) gene. The same variant was found in her affected mother and sister, but not in her unaffected father, uncle, and 100 healthy individual.@*CONCLUSION@#The novel variant of the ADAR gene probably underlay the pathogenesis of DSH in this pedigree.


Subject(s)
Female , Humans , Adenosine Deaminase/genetics , China , Mutation , Pedigree , Pigmentation Disorders/congenital , RNA-Binding Proteins/genetics
8.
Article in Chinese | WPRIM | ID: wpr-928389

ABSTRACT

OBJECTIVE@#To analyze the clinical features and genetic basis for a Chinese pedigree affected with hereditary dyschromatosis symmetrica hereditaria (DSH).@*METHODS@#Peripheral blood samples of the proband and his mother were collected and subjected to PCR and Sanger sequencing.@*RESULTS@#The patient has conformed to the typical pattern of DSH and manifested with hyperpigmentation, hypo- and hyperpigmentation spots on the back of hands, feet and face. Sanger sequencing confirmed that the proband and his mother have both harbored heterozygous splicing variant c.2762+1G>T in exon 9 of the ADAR gene, which was unreported previously. The same variant was not detected among 100 healthy controls. According to the guidelines of the American College of Medical Genetics and Genomics, the variant was predicted to be pathogenic (PVS1+PM2+PP4).@*CONCLUSION@#The c.2762+1G>T variant of the ADAR gene probably underlay the DSH in this pedigree. Above finding has enriched the spectrum of ADAR gene mutations.


Subject(s)
Humans , Adenosine Deaminase/genetics , China , Mutation , Pedigree , Pigmentation Disorders/congenital , RNA-Binding Proteins/genetics
9.
Article in Chinese | WPRIM | ID: wpr-880136

ABSTRACT

OBJECTIVE@#To investigate the regulatory effects of RBM47 on HMGA2 and the function of RBM47 in human chronic myeloid leukemia cell K562.@*METHODS@#K562 cells were transduction by the overexpressed and knockdown RBM47 lentiviral vector. CCK-8 assay was used to detect the effect of RBM47 on the proliferation of K562 cells. Flow cytometry assay was used to detect the effect of RBM47 on the cell cycle progression of K562 cells. RNA immunoprecipitation assay was used to detect the association between RBM47 and HMGA2 mRNA. RT-qPCR was used to detect the effects of RBM47 on the stability of HMGA2 mRNA. Western blot was used to evaluate the effect of RBM47 on HMGA2 protein expression.@*RESULTS@#The overexpressed RBM47 could inhibit the proliferation and cell cycle progression of K562 cells. However, the inhibitation of RBM47 could improve the proliferation and cell cycle progression of K562 cells. RBM47 combined with HMGA2 mRNA could promote the degradation of HMGA2 mRNA. Thus, the overexpressed RBM47 could decrease the expression of HMGA2 protein in K562 cells.@*CONCLUSION@#RNA binding protein RBM47 can inhibit the proliferation of K562 cells by regulating HMGA2 expression.


Subject(s)
Humans , Apoptosis , Cell Proliferation , HMGA2 Protein/genetics , K562 Cells , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
10.
Article in Chinese | WPRIM | ID: wpr-880170

ABSTRACT

OBJECTIVE@#To analyze the dynamic molecular expression characteristics of single cell RNA binding proteins (RBPs) in the development of mouse embryonic hematopoitic stem cells (HSCs), and obtain the functional research target RNA splicing factor--Mbnl1, to clarify the function of Mbnl1 involved in regulating mouse embryonic HSC development.@*METHODS@#Bioinformatics was used to analyze the single-cell transcriptome data of mouse embryos during HSC development, and the single-cell RBP dynamic molecular expression maps in HSC development was obtained. Mbnl1 was obtained by combining differential analysis and literature research screening. The Mbnl1-knockout mouse model was constructed by the CRISPER/Cas9 technology. Aorta-gonad-mesonephros (AGM) and yolk sac (YS) tissue in two genotype embryos of Mbnl1@*RESULTS@#The in vitro CFU-C experiment of hematopoietic cells preliminarily indicated that there was no significant difference in the number of cell colonies in AGM region and YS transformed by the two genotypes of Mbnl1@*CONCLUSION@#Through functional experiments in vivo and in vitro, it has been confirmed that knockout of the RNA splicing factor--Mbnl1 does not affect the development of HSPC in AGM region of mouse embryo.


Subject(s)
Animals , Mice , DNA-Binding Proteins , Gonads , Hematopoiesis , Hematopoietic Stem Cells , Mesonephros , RNA-Binding Proteins/genetics , Yolk Sac
11.
Electron. j. biotechnol ; 46: 8-13, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223212

ABSTRACT

BACKGROUND: Poly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed. RESULT: S17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content. CONCLUSION: The impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.


Subject(s)
Escherichia coli/metabolism , Hydroxybutyrates/metabolism , Repressor Proteins/genetics , Biopolymers/genetics , Recombinant Proteins , RNA-Binding Proteins/genetics , Gene Deletion , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Metabolic Engineering , Ligases/metabolism
12.
Article in Chinese | WPRIM | ID: wpr-879473

ABSTRACT

OBJECTIVE@#To detect variants of ADAR1 gene in two Chinese pedigrees affected with dyschromatosis symmetrica hereditaria (DSH).@*METHODS@#Clinical data and peripheral blood samples of the pedigrees were collected. All exons of the ADAR1 gene were amplified by PCR and subjected to Sanger sequencing. Suspected pathogenic variants were validated among other members of the pedigrees and 100 unrelated healthy controls.@*RESULTS@#For pedigree 1, Sanger sequencing has identified a heterozygous missense variant c.3002G>C (p.Asp968His) in exon 11 of the ADAR1 gene in the proband and his father. For pedigree 2, a novel nonsense variant c.3145C>T (p.Gln1049Ter) was identified in exon 12 of the ADAR1 gene in the proband and his son, which were previously unreported and absent among the healthy controls.@*CONCLUSION@#The c.3002G>C (p.Asp968His) and c.3145C>T (p.Gln1049Ter)variants of the ADAR1 gene probably underlay the DSH in the two pedigrees.


Subject(s)
Humans , Adenosine Deaminase/genetics , Mutation , Pedigree , Pigmentation Disorders/genetics , RNA-Binding Proteins/genetics
13.
Braz. j. med. biol. res ; 53(4): e9290, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089356

ABSTRACT

This study was designed to investigate the expression of RBM8A protein in patients with gastric cancer (GC) and to explore its correlation with clinical pathological features as well as prognosis. One hundred pairs of gastric carcinoma tissues and adjacent tissues from patients undergoing gastrectomy for GC were included in this study. The protein expression level of RBM8A was determined by immunohistochemistry using tissue microarrays. We also detected the mRNA expression level of RBM8A in 16 pairs of gastric carcinoma tissues and adjacent tissues. Meanwhile, we predicted the potential correlation between RBM8A and tumor stages as well as survival condition in patents with GC based on The Cancer Genome Atlas (TCGA) database. The correlation of RBM8A with the clinical pathological features and prognosis of the 100 patients with GC was also elucidated. The expression level of RBM8A was significantly higher in gastric carcinoma tissues compared to the adjacent tissues. The protein level of RBM8A was correlated with tumor size (P=0.031), depth of invasion (P<0.001), lymph node metastasis (P<0.001), TNM stage (<0.001), and distant metastasis (P=0.001). Patients with increased RBM8A expression (P<0.0018, 95%CI=0.322−0.871), higher TNM stage (P<0.001, 95%CI=4.990−11.283), and lymph node metastasis (P<0.001, 95%CI=2.873−4.002) had a lower overall survival. Taken together, our study demonstrated that RBM8A may act as a proto-oncogene, which could be a promising biomarker and therapeutic target in the diagnosis and treatment of GC.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Stomach Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , RNA, Messenger/metabolism , Immunohistochemistry , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Survival Analysis , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/genetics , Gastric Mucosa/pathology , Lymphatic Metastasis/pathology , Neoplasm Metastasis , Neoplasm Staging
14.
Biol. Res ; 53: 42, 2020. tab, graf
Article in English | LILACS | ID: biblio-1131886

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) or triple-negative breast cancer (TNBC) is an aggressive and highly metastatic subtype of human breast cancer. The present study aimed to elucidate the potential tumor-suppressive function of MATR3, an abundant nuclear protein, in BLBC/TNBC, whose cancer-relevance has not been characterized. METHODS: We analyzed in vitro tumorigenecity by cell proliferation and soft agar colony formation assays, apoptotic cell death by flow cytometry and Poly (ADP-ribose) polymerase (PARP) cleavage, epithelial-mesenchymal transition (EMT) by checking specific EMT markers with real-time quantitative PCR and in vitro migration and invasion by Boyden Chamber assays. To elucidate the underlying mechanism by which MATR3 functions as a tumor suppressor, we performed Tandem affinity purification followed by mass spectrometry (TAP-MS) and pathway analysis. We also scrutinized MATR3 expression levels in the different subtypes of human breast cancer and the correlation between MATR3 expression and patient survival by bioinformatic analyses of publicly available transcriptome datasets. RESULTS: MATR3 suppressed in vitro tumorigenecity, promoted apoptotic cell death and inhibited EMT, migration, and invasion in BLBC/TNBC cells. Various proteins regulating apoptosis were identified as MATR3-binding proteins, and YAP/TAZ pathway was suppressed by MATR3. MATR3 expression was inversely correlated with the aggressive and metastatic nature of breast cancer. Moreover, high expression levels of MATR3 were associated with a good prognosis of breast cancer patients. CONCLUSIONS: Our data demonstrate that MATR3 functions as a putative tumor suppressor in BLBC/TNBC cells. Also, MATR3 potentially plays a role as a biomarker in predicting chemotherapy-sensitivity and patient survival in breast cancer patients.


Subject(s)
Humans , Female , Genes, Tumor Suppressor , RNA-Binding Proteins/genetics , Nuclear Matrix-Associated Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , Apoptosis , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition
15.
Biol. Res ; 51: 36, 2018. graf
Article in English | LILACS | ID: biblio-983940

ABSTRACT

BACKGROUND: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA ( ADAR ) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer.


Subject(s)
Humans , Female , Breast Neoplasms/genetics , Adenosine Deaminase/genetics , RNA-Binding Proteins/genetics , RNA Editing/genetics , Untranslated Regions/genetics , RNA Stability/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Adenosine Deaminase/metabolism , RNA-Binding Proteins/metabolism , Gene Expression Profiling , RNA Stability/physiology , Cell Line, Tumor
16.
Biol. Res ; 51: 13, 2018. graf
Article in English | LILACS | ID: biblio-950899

ABSTRACT

BACKGROUND: Neuroblastoma (NB) represents the most common extracranial solid tumor in children. Accumulating evidence shows that microRNAs (miRs) play an important role in the carcinogenesis of NB. Here, we investigated the biological function of miR-1247 in NB in vitro. METHODS/RESULTS: We found miR-1247 was downregulated in NB tissues and cells using quantitative PCR analysis. Gain- and loss-of-function studies demonstrated that miR-1247 significantly suppressed cell proliferation and induced cell cycle G0/G1 phase arrest and cell apoptosis of NB cells in vitro by using MTT, colony formation assay and Flow cytometry analysis. Luciferase assay suggested ZNF346 was the target of miR-1247 and its expression could be down-regulated by miR-1247 overexpression using Western blotting. Furthermore, downregulation of ZNF346 by siRNA performed similar effects with overexpression of miR-1247 in NB cells. CONCLUSIONS: Our findings suggested miR-1247 directly targeted to repress ZNF346 expression, thus suppressing the progression of NB, which might be a novel therapeutic target against NB.


Subject(s)
Humans , Male , Female , RNA-Binding Proteins/metabolism , MicroRNAs/metabolism , DNA-Binding Proteins/metabolism , Neuroblastoma/metabolism , Phenotype , Time Factors , Tumor Cells, Cultured , Down-Regulation , Gene Expression Regulation, Neoplastic , Child, Preschool , RNA-Binding Proteins/genetics , Colony-Forming Units Assay , MicroRNAs/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Real-Time Polymerase Chain Reaction , Flow Cytometry , Neuroblastoma/genetics , Neuroblastoma/pathology
17.
Braz. j. med. biol. res ; 50(4): e5861, 2017. tab, graf
Article in English | LILACS | ID: biblio-839274

ABSTRACT

Myocardial ischemia is a major cause of death and remains a disease with extremely deficient clinical therapies and a major problem worldwide. Cold inducible RNA-binding protein (CIRBP) is reported to be involved in multiple pathological processes, including myocardial ischemia. However, the molecular mechanisms of myocardial ischemia remain elusive. Here, we first overexpressed CIRBP by transfection of pc-CIRBP (pcDNA3.1 containing coding sequenced for CIRBP) and silenced CIRBP by transfection of small interfering RNA targeting CIRBP (siCIRBP). pcDNA3.1 and the negative control of siCIRBP (siNC) were transfected into H9C2 cells to act as controls. We then constructed a cell model of myocardial ischemia through culturing cells in serum-free medium with hypoxia in H9C2 cells. Subsequently, AlamarBlue assay, flow cytometry and western blot analysis were used, respectively, to assess cell viability, reactive oxygen species (ROS) level and apoptosis, and expression levels of IκBα, p65 and Bcl-3. We demonstrated that CIRBP overexpression promoted cell proliferation (P<0.001), inhibited cell apoptosis (P<0.05), reduced ROS level (P<0.001), down-regulated phosphorylated levels of IκBα and p65 (P<0.01 or P<0.001), and up-regulated expression of Bcl-3 (P<0.001) in H9C2 cells with myocardial ischemia. The influence of CIRBP knockdown yielded opposite results. Our study revealed that CIRBP could protect H9C2 cells against myocardial ischemia through inhibition of NF-κB pathway.


Subject(s)
Animals , Rats , Myocardial Ischemia/metabolism , Myocardial Ischemia/prevention & control , NF-kappa B/antagonists & inhibitors , Protective Agents/pharmacology , RNA-Binding Proteins/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Cell Survival , Cells, Cultured , Flow Cytometry , Gene Expression Regulation , NF-kappa B/metabolism , Reactive Oxygen Species/analysis , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , RNA, Small Interfering , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Time Factors , Transfection/methods
18.
Clinics ; 71(12): 695-698, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-840026

ABSTRACT

OBJECTIVES: Primary ovarian failure is a rare disorder, and approximately 90% of cases are of unknown etiology. The aim of this study was to search for mutations in NANOS3, a gene that was recently related to the etiology of primary ovarian failure, in a group of Brazilian women. METHODS: We screened for NANOS3 DNA variants in 30 consecutive women who were previously diagnosed with primary ovarian failure, of unknown etiology and compared the results with those from 185 women with normal fertility. The NANOS3 gene was amplified by polymerase chain reaction using pairs of specific primers and then sequenced. The resulting sequences were compared with control sequences available in the National Center for Biotechnology and Information database. RESULTS: No mutations in NANOS3 were found in primary ovarian failure patients, but four previously described polymorphisms were identified at a similar frequency in the control and primary ovarian failure groups. CONCLUSIONS: Mutations in NANOS3 were not associated with primary ovarian failure in the present cohort.


Subject(s)
Humans , Female , Adolescent , Adult , Middle Aged , Aged , Young Adult , RNA-Binding Proteins/genetics , Primary Ovarian Insufficiency/genetics , Mutation , Polymorphism, Genetic , Brazil , DNA Mutational Analysis , Case-Control Studies , Polymerase Chain Reaction , Cohort Studies , Amino Acid Sequence , Electrophoresis/methods , Alleles
19.
Biol. Res ; 49: 1-8, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950853

ABSTRACT

BACKGROUND: Zinc finger RNA binding protein (ZFR) is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA) targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.


Subject(s)
Animals , Cattle , Humans , Pancreatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , RNA, Small Interfering/pharmacology , Gene Knockdown Techniques/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Tetrazolium Salts , Cell Survival , Cells, Cultured , Blotting, Western , RNA-Binding Proteins/genetics , Lentivirus/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Molecular Targeted Therapy , Real-Time Polymerase Chain Reaction , Flow Cytometry/methods , Formazans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
20.
Salud colect ; 11(1): 99-114, ene.-mar. 2015. ilus, tab
Article in Spanish | LILACS | ID: lil-746687

ABSTRACT

El Consejo Federal de Medicina de Brasil (CFM) -órgano normativo y fiscalizador del ejercicio ético de la medicina- prohibió, en 2008, la participación de médicos brasileños en investigaciones que utilizaran placebo para enfermedades con tratamiento eficaz y efectivo, en contraposición a la Declaración de Helsinki, que permite su uso en condiciones metodológicamente justificadas. Con el objetivo de verificar si la normativa ética del CFM modificó el uso de placebo en ensayos clínicos de fase III en Brasil, se analizaron varias características de sus registros en el ClinicalTrials.gov, en los períodos de 2003 a 2007 y de 2009 a 2013. Se concluye que: a) la normativa promulgada por el CFM en 2008 fue ineficaz y prevaleció la posición adoptada por la Declaración de Helsinki; b) el patrocinio de ensayos con placebo por parte de la industria farmacéutica multinacional fue significativo; c) predominaron las investigaciones de fármacos para enfermedades crónicas, y fueron poco significativas para las enfermedades postergadas, de importancia para Brasil.


In 2008, Brazil's Federal Council of Medicine [Conselho Federal de Medicina] (CFM) - regulatory and supervisory agency on the ethical practice of medicine - banned the participation of Brazilian doctors in studies using placebos for diseases with efficient and effective treatment. This position differs with the Helsinki Declaration, which allows the use of placebos in methodologically justified conditions. To ascertain whether the CMF's ethical regulation modified the use of placebos in phase III clinical trials in Brazil, characteristics of the records in ClinicalTrials.gov were researched in the periods from 2003 to 2007 and from 2009 to 2013. The conclusions reached were: a) the regulations issued by the CFM in 2008 were ineffective and the position adopted by the Helsinki Declaration prevails; b) there was significant sponsorship by the multinational pharmaceutical industry of trials with placebos; c) the research was predominantly on new drugs for chronic diseases, with little study done of the neglected diseases which are of great importance to Brazil.


Subject(s)
Animals , Rats , Apoptosis/genetics , Gene Expression Regulation, Enzymologic/genetics , Heme/deficiency , Nerve Degeneration/genetics , Neurons/metabolism , Porphyrias/complications , Apoptosis/drug effects , Caspases/drug effects , Caspases/metabolism , Cell Survival/drug effects , Cell Survival/genetics , Collagen Type XI/drug effects , Collagen Type XI/metabolism , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Down-Regulation/drug effects , Down-Regulation/physiology , Enzyme Inhibitors , Gene Expression Regulation, Enzymologic/drug effects , Heme/biosynthesis , Heptanoates , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Membrane Proteins/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Nerve Tissue Proteins/drug effects , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/drug effects , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Neurons/drug effects , Neurons/pathology , Poly(ADP-ribose) Polymerases , Porphyrias/metabolism , Porphyrias/physiopathology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , RNA-Binding Proteins/drug effects , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SMN Complex Proteins , Up-Regulation/drug effects , Up-Regulation/physiology , Vesicular Transport Proteins/drug effects , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL