Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Chinese journal of integrative medicine ; (12): 34-41, 2024.
Article in English | WPRIM | ID: wpr-1010288

ABSTRACT

OBJECTIVE@#To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.@*METHODS@#Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.@*RESULTS@#Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).@*CONCLUSION@#Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.


Subject(s)
Female , Humans , Uterine Cervical Neoplasms/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Chaperone BiP , HeLa Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Cell Line, Tumor
2.
Biol. Res ; 57: 5-5, 2024. ilus, graf
Article in English | LILACS | ID: biblio-1550060

ABSTRACT

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Subject(s)
Humans , Male , Semen/metabolism , Mitochondria , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Embryonic Development
3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 75-88, 2024.
Article in English | WPRIM | ID: wpr-1011013

ABSTRACT

NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.


Subject(s)
Humans , NAD/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Cytokines/metabolism , Quinones , Oxidoreductases
4.
Journal of Southern Medical University ; (12): 552-559, 2023.
Article in Chinese | WPRIM | ID: wpr-986961

ABSTRACT

OBJECTIVE@#To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.@*METHODS@#The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.@*RESULTS@#The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).@*CONCLUSION@#Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.


Subject(s)
Humans , Synoviocytes , Berberine/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide/metabolism , Sincalide/metabolism , Cell Proliferation , Arthritis, Rheumatoid/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Fibroblasts , Autophagy , Cells, Cultured
5.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 681-689, 2023.
Article in Chinese | WPRIM | ID: wpr-986945

ABSTRACT

Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.


Subject(s)
Animals , Male , Mice , Apoptosis , bcl-2-Associated X Protein , Diabetes Mellitus, Type 2 , Evans Blue , Glucose , Hearing Loss , Mice, Inbred C57BL , Pericytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
6.
Chinese journal of integrative medicine ; (12): 905-913, 2023.
Article in English | WPRIM | ID: wpr-1010302

ABSTRACT

OBJECTIVE@#To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.@*METHODS@#RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.@*RESULTS@#The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.@*CONCLUSION@#EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.


Subject(s)
Animals , Mice , Antioxidants/pharmacology , Lipopolysaccharides/pharmacology , Polygala , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ethanol/chemistry , Interleukin-6/metabolism , Anti-Inflammatory Agents/chemistry , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Nitrites/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Superoxide Dismutase/metabolism , RNA, Messenger , Nitric Oxide Synthase Type II/metabolism
7.
Journal of Zhejiang University. Medical sciences ; (6): 306-317, 2023.
Article in English | WPRIM | ID: wpr-982048

ABSTRACT

OBJECTIVES@#To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.@*METHODS@#siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.@*RESULTS@#Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).@*CONCLUSIONS@#The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.


Subject(s)
Animals , Female , Mice , Antioxidants/metabolism , Cholesterol/metabolism , Ethanol/pharmacology , Glutathione/pharmacology , Inflammation , Lipids/pharmacology , Liver , Malondialdehyde/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen Species/metabolism , RNA, Small Interfering/pharmacology , Superoxide Dismutase , Triglycerides/metabolism , Cytochrome P-450 CYP2E1/metabolism
8.
Chinese Journal of Cellular and Molecular Immunology ; (12): 626-632, 2023.
Article in Chinese | WPRIM | ID: wpr-981909

ABSTRACT

Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.


Subject(s)
Humans , Beclin-1/metabolism , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Oxidative Stress , Autophagy , Mesenchymal Stem Cells/metabolism , Cell Proliferation
9.
Chinese Journal of Cellular and Molecular Immunology ; (12): 318-324, 2023.
Article in Chinese | WPRIM | ID: wpr-981871

ABSTRACT

Objective To study the effect and mechanism of blueberry on regulating the mitochondrial inner membrane protein mitofilin/Mic60 in an in vitro model of metabolic dysfunction-associated liver disease (MAFLD). Methods L02 human hepatocytes were induced by free fatty acids (FFA) to establish MAFLD cell model. A normal group, a model group, an 80 μg/mL blueberry treatment group, a Mic60 short hairpin RNA (Mic60 shRNA) transfection group, and Mic60 knockdown combined with an 80 μg/mL blueberry treatment group were established. The intracellular lipid deposition was observed by oil red O staining, and the effect of different concentrations of blueberry pulp on the survival rate of L02 cells treated with FFA was measured by MTT assay. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were measured by visible spectrophotometry. The expression of reactive oxygen species (ROS) in hepatocytes was observed by fluorescence microscopy, and the mRNA and protein expression of Mic60 were detected by real-time quantitative PCR and Western blot analysis, respectively. Results After 24 hours of FFA stimulation, a large number of red lipid droplets in the cytoplasm of L02 cells was observed, and the survival rate of L02 cells treated with 80 μg/mL blueberry was higher. The results of ALT, AST, TG, TC, MDA and the fluorescence intensity of ROS in blueberry treated group were lower than those in model group, while the levels of SOD, GSH, Mic60 mRNA and protein in blueberry treated group were higher than those in model group. Conclusion Blueberry promotes the expression of Mic60, increases the levels of SOD and GSH in hepatocytes, and reduces the production of ROS, thus alleviating the injury of MAFLD hepatocytes and regulating the disorder of lipid metabolism.


Subject(s)
Humans , Blueberry Plants/chemistry , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Plant Extracts/pharmacology
10.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 748-757, 2023.
Article in Chinese | WPRIM | ID: wpr-981664

ABSTRACT

OBJECTIVE@#To summarize the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis (OA) and analyze its application prospects.@*METHODS@#The recent literature at home and abroad was reviewed to summarize the mechanism of mitochondrial homeostasis imbalance, the relationship between mitochondrial homeostasis imbalance and the pathogenesis of OA, and the application prospect in the treatment of OA.@*RESULTS@#Recent studies have shown that mitochondrial homeostasis imbalance, which is caused by abnormal mitochondrial biogenesis, the imbalance of mitochondrial redox, the imbalance of mitochondrial dynamics, and damaged mitochondrial autophagy of chondrocytes, plays an important role in the pathogenesis of OA. Abnormal mitochondrial biogenesis can accelerate the catabolic reaction of OA chondrocytes and aggravate cartilage damage. The imbalance of mitochondrial redox can lead to the accumulation of reactive oxygen species (ROS), inhibit the synthesis of extracellular matrix, induce ferroptosis and eventually leads to cartilage degradation. The imbalance of mitochondrial dynamics can lead to mitochondrial DNA mutation, decreased adenosine triphosphate production, ROS accumulation, and accelerated apoptosis of chondrocytes. When mitochondrial autophagy is damaged, dysfunctional mitochondria cannot be cleared in time, leading to ROS accumulation, which leads to chondrocyte apoptosis. It has been found that substances such as puerarin, safflower yellow, and astaxanthin can inhibit the development of OA by regulating mitochondrial homeostasis, which proves the potential to be used in the treatment of OA.@*CONCLUSION@#The mitochondrial homeostasis imbalance in chondrocytes is one of the most important pathogeneses of OA, and further exploration of the mechanisms of mitochondrial homeostasis imbalance is of great significance for the prevention and treatment of OA.


Subject(s)
Humans , Reactive Oxygen Species/metabolism , Chondrocytes/metabolism , Osteoarthritis/metabolism , Homeostasis , Mitochondria/metabolism , Cartilage, Articular/metabolism
11.
China Journal of Chinese Materia Medica ; (24): 1927-1935, 2023.
Article in Chinese | WPRIM | ID: wpr-981412

ABSTRACT

This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.


Subject(s)
Animals , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Oxidative Stress , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Parkinson Disease/genetics , bcl-2-Associated X Protein/metabolism , Neuroprotective Agents/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Drosophila/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Superoxide Dismutase/metabolism , Adenosine Triphosphate/pharmacology
12.
China Journal of Chinese Materia Medica ; (24): 2657-2666, 2023.
Article in Chinese | WPRIM | ID: wpr-981370

ABSTRACT

Renal tubular injury in patients with diabetic kidney disease(DKD) may be accompanied by glomerular and microvascular diseases. It plays a critical role in the progression of renal damage in DKD, and is now known as diabetic tubulopathy(DT). To explore the multi-targeted therapeutic effects and pharmacological mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese medicine for treating kidney disease, in attenuating DT, the authors randomly divided all rats into four groups: a normal control group(normal group), a DT model group(model group), a DT model+TFA-treated group(TFA group) and a DT model+rosiglitazone(ROS)-treated group(ROS group). The DT rat model was established based on the DKD rat model by means of integrated measures. After successful modeling, the rats in the four groups were continuously given double-distilled water, TFA suspension, and ROS suspension, respectively by gavage every day. After 6 weeks of treatment, all rats were sacrificed, and the samples of their urine, blood, and kidneys were collected. The effects of TFA and ROS on various indicators related to urine and blood biochemistry, renal tubular injury, renal tubular epithelial cell apoptosis and endoplasmic reticulum stress(ERS), as well as the activation of the protein kinase R-like endoplasmic reticulum kinase(PERK)-eukaryotic translation initiation factor 2α(eIF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP) signaling pathway in the kidney of the DT model rats were investigated. The results indicated that hypertrophy of renal tubular epithelial cells, renal tubular hyperplasia and occlusion, as well as interstitial extracellular matrix and collagen deposition occurred in the DT model rats. Moreover, significant changes were found in the expression degree and the protein expression level of renal tubular injury markers. In addition, there was an abnormal increase in tubular urine proteins. After TFA or ROS treatment, urine protein, the characteristics of renal tubular injury, renal tubular epithelial cell apoptosis and ERS, as well as the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney of the DT model rats were improved to varying degrees. Therein, TFA was superior to ROS in affecting the pathological changes in renal tubule/interstitium. In short, with the DT model rats, this study demonstrated that TFA could attenuate DT by multiple targets through inhibiting renal tubular ERS-induced cell apoptosis in vivo, and its effect and mechanism were related to suppressing the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney. These findings provided preliminary pharmacological evidence for the application of TFA in the clinical treatment of DT.


Subject(s)
Rats , Animals , Abelmoschus , Reactive Oxygen Species/metabolism , Flavones/pharmacology , Endoplasmic Reticulum Stress , Diabetic Nephropathies/drug therapy , Apoptosis , Diabetes Mellitus
13.
China Journal of Chinese Materia Medica ; (24): 2176-2183, 2023.
Article in Chinese | WPRIM | ID: wpr-981348

ABSTRACT

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Subject(s)
Humans , Ferroptosis , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/pharmacology , Signal Transduction , Epithelial Cells/metabolism , Glutathione
14.
Chinese Medical Journal ; (24): 922-932, 2023.
Article in English | WPRIM | ID: wpr-980843

ABSTRACT

BACKGROUND@#Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear.@*METHODS@#In this study, using obese ( ob/ob ) mice with an absence of NF-Y subunit A (NF-YA) in β-cells ( ob , Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress.@*RESULTS@#Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment.@*CONCLUSION@#Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.


Subject(s)
Rats , Mice , Animals , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Insulin , Insulin-Secreting Cells/metabolism , Apoptosis , Stress, Physiological , Transcription Factors/metabolism , Palmitates/pharmacology , Obesity/metabolism
15.
Chinese Acupuncture & Moxibustion ; (12): 1287-1292, 2023.
Article in English | WPRIM | ID: wpr-1007474

ABSTRACT

OBJECTIVES@#To explore the possible mechanism of Shao's five-needle therapy pretreatment on relieving airway inflammatory response in asthmatic rats.@*METHODS@#Forty SPF-grade SD rats were randomly divided into a blank group, a model group, an acupuncture group, and a medication group, with 10 rats in each group. Except the blank group, asthma model was established by aerosol inhalation of ovalbumin in the other 3 groups. The rats in the acupuncture group were treated with acupuncture at "Dazhui" (GV 14) and bilateral "Feishu" (BL 13) and "Fengmen" (BL 12), with each session lasting for 20 min. Acupuncture was given before each motivating, once daily for 7 consecutive days. The rats in the medication group were treated with intraperitoneal injection of dexamethasone sodium phosphate solution before each motivating, once daily for 7 days. General situation of the rats was observed in each group; ELISA method was used to detect the levels of inflammatory cytokines interleukin (IL)-1β and IL-18 in serum; immunofluorescence staining method was performed to assess the expression of reactive oxygen species (ROS) in lung tissues; Western blot method was used to measure the protein expression of thioredoxin interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in lung tissues.@*RESULTS@#The rats in the blank group exhibited normal behavior, while those in the model group showed signs of respiratory distress, ear scratching, cheek rubbing, and dysphoria. Compared with the model group, the rats in the acupuncture group and the medication group showed stable respiration and relatively agile responses. Compared with those in the blank group, the serum levels of IL-18 and IL-1β were elevated (P<0.01), the expression intensity of ROS was increased, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were increased (P<0.01) in the model group. Compared with those in the model group, the serum levels of IL-18 and IL-1β were reduced (P<0.01), the expression intensity of ROS was lowered, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were reduced (P<0.01) in the acupuncture group and the medication group. Compared with the medication group, the protein expression of ASC in lung tissue was reduced in the acupuncture group (P<0.05).@*CONCLUSIONS@#Pretreatment of Shao's five-needle therapy could alleviate airway inflammatory response in asthmatic rats by reducing ROS levels and decreasing the aggregation and activation of pathway-related proteins in the ROS/TXNIP/NLRP3 pathway, ultimately leading to decreased secretion of IL-1β and IL-18. This mechanism may contribute to the effectiveness of Shao's five-needle therapy in preventing and treating asthma.


Subject(s)
Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Interleukin-18/metabolism , NLR Proteins , Rats, Sprague-Dawley , Asthma/metabolism , Caspases , Cell Cycle Proteins
16.
Journal of Zhejiang University. Science. B ; (12): 1027-1036, 2023.
Article in English | WPRIM | ID: wpr-1010580

ABSTRACT

随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。


Subject(s)
Mice , Animals , Reactive Oxygen Species/metabolism , Pseudomonas aeruginosa , Macrophages/metabolism , Mitochondria , Cytokines/metabolism
17.
Journal of Zhejiang University. Medical sciences ; (6): 751-765, 2023.
Article in English | WPRIM | ID: wpr-1009936

ABSTRACT

OBJECTIVES@#To investigate the mechanism of comorbidity between non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS) based on metabolomics and network pharmacology.@*METHODS@#Six ApoE-/- mice were fed with a high-fat diet for 16 weeks as a comorbid model of NAFLD and AS (model group). Normal diet was given to 6 wildtype C57BL/6J mice (control group). Serum samples were taken from both groups for a non-targeted metabolomics assay to identify differential metabolites. Network pharmacology was applied to explore the possible mechanistic effects of differential metabolites on AS and NAFLD. An in vitro comorbid cell model was constructed using NCTC1469 cells and RAW264.7 macrophage. Cellular lipid accumulation, cell viability, morphology and function of mitochondria were detected with oil red O staining, CCK-8 assay, transmission electron microscopy and JC-1 staining, respectively.@*RESULTS@#A total of 85 differential metabolites associated with comorbidity of NAFLD and AS were identified. The top 20 differential metabolites were subjected to network pharmacology analysis, which showed that the core targets of differential metabolites related to AS and NAFLD were STAT3, EGFR, MAPK14, PPARG, NFKB1, PTGS2, ESR1, PPARA, PTPN1 and SCD. The Kyoto Encyclopedia of Genes and Genomes showed the top 10 signaling pathways were PPAR signaling pathway, AGE-RAGE signaling pathway in diabetic complications, alcoholic liver disease, prolactin signaling pathway, insulin resistance, TNF signaling pathway, hepatitis B, the relax in signaling pathway, IL-17 signaling pathway and NAFLD. Experimental validation showed that lipid metabolism-related genes PPARG, PPARA, PTPN1, and SCD were significantly changed in hepatocyte models, and steatotic hepatocytes affected the expression of macrophage inflammation-related genes STAT3, NFKB1 and PTGS2; steatotic hepatocytes promoted the formation of foam cells and exacerbated the accumulation of lipids in foam cells; the disrupted morphology, impaired function, and increased reactive oxygen species production were observed in steatotic hepatocyte mitochondria, while the formation of foam cells aggravated mitochondrial damage.@*CONCLUSIONS@#Abnormal lipid metabolism and inflammatory response are distinctive features of comorbid AS and NAFLD. Hepatocyte steatosis causes mitochondrial damage, which leads to mitochondrial dysfunction, increased reactive oxygen species and activation of macrophage inflammatory response, resulting in the acceleration of AS development.


Subject(s)
Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Cyclooxygenase 2/metabolism , PPAR gamma/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Hepatocytes , Macrophages/metabolism , Liver
18.
Journal of Zhejiang University. Medical sciences ; (6): 544-557, 2023.
Article in English | WPRIM | ID: wpr-1009917

ABSTRACT

OBJECTIVES@#To investigate the effect of borneol on cutaneous toxicity of gilteritinib and to explore possible compounds that can intervene with the cutaneous toxicity.@*METHODS@#C57BL/6J male mice were given gilteritinib by continuous gavage for 28 d and the damage to keratinocytes in the skin tissues was observed with hematoxylin and eosin (HE) staining, TUNEL assay and immunohistochemistry. Human keratinocytes HaCaT were treated with gilteritinib, and cell death and morphological changes were examined by SRB staining and microscopy; apoptosis of HaCaT cells was examined by Western blotting, flow cytometry with propidium iodide/AnnexinⅤ double staining and immunofluorescence; the accumulation of cellular reactive oxygen species (ROS) was examined by flow cytometry with DCFH-DA. Compounds that can effectively intervene the cutaneous toxicity of gilteritinib were screened from a natural compound library using SRB method, and the intervention effect of borneol on gilteritinib cutaneous toxicity was further investigated in HaCaT cells and C57BL/6J male mice.@*RESULTS@#In vivo studies showed pathological changes in the skin with apoptosis of keratinocytes in the stratum spinosum and stratum granulosum in the modeling group. Invitro studies showed apoptosis of HaCaT cells, significant up-regulation of cleaved poly (ADP-ribose) polymerase (c-PARP) and gamma-H2A histone family member X (γ-H2AX) levels, and increased accumulation of ROS in gilteritinib-modeled skin keratinocytes compared with controls. Screening of the natural compound library revealed that borneol showed excellent intervention effects on the death of HaCaT cells. In vitro, cell apoptosis was significantly reduced in the borneol+gilteritinib group compared to the gilteritinib control group. The levels of c-PARP, γ-H2AX and ROS in cells were significantly decreased. In vivo, borneol alleviated gilteritinib-induced skin pathological changes and skin cell apoptosis in mice.@*CONCLUSIONS@#Gilteritinib induces keratinocytes apoptosis by causing intracellular ROS accumulation, resulting in cutaneous toxicity. Borneol can ameliorate the cutaneous toxicity of gilteritinib by reducing the accumulation of ROS and apoptosis of keratinocytes in the skin tissue.


Subject(s)
Male , Humans , Animals , Mice , Reactive Oxygen Species/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Mice, Inbred C57BL , Apoptosis , Poly(ADP-ribose) Polymerases/metabolism
19.
China Journal of Orthopaedics and Traumatology ; (12): 1136-1141, 2023.
Article in Chinese | WPRIM | ID: wpr-1009200

ABSTRACT

OBJECTIVE@#To explore pro-oxidative state of rotator cuff tissue and expression levels of Beclin-1 and mam-malian target of rapamycin(mTOR) in patients with acute and chronic rotator cuff injury, and then analyzed relationship between rotator cuff injury and oxidative stress and autophagy.@*METHODS@#Forty patients with rotator cuff injury were seleceted from July 2019 to December 2020, and divided into male chronic injury group, male acute injury group, female chronic injury group, and female acute injury group, 10 patients in each group. All patients were performed rotator cuff repair under arthroscopy. The sample of tendon at the rotator cuff injury site of the patient was taken during operation, and total reactive oxygen species (ROS) and superoxide dismutase(SOD) were detected by detection kit;expression of Beclin-1 and mTOR mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR), and Western-blot was applied to detect protein expression of Beclin-1 and p-mTOR/mTOR.@*RESULTS@#There were no significant difference in expression of ROS, SOD, Beclin-1mRNA and mTOR mRNA between male and female chronic injury groups, and between male and female acute injury groups (P>0.05); ROS, SOD and Beclin-1mRNA in male chronic injury group were higher than those in male chronic injury group, while mTOR mRNAand protein decreased (P<0.05);ROS, SOD and Beclin-1 mRNA in female chronic injury group were up-regulated compared with female acute injury group, while mTOR mRNA was down-regulated (P<0.05).@*CONCLUSION@#Chronic rotator cuff injury is more likely to stimulate the pro-oxidation state of rotator cuff tissue than acute rotator cuff injury, which could up-regulating expression of autophagy factor Beclin-1 and down-regulating expression of mTOR. Therefore, patients with chronic rotator cuff injury may have higher levels of oxidative stress and autophagy.


Subject(s)
Female , Humans , Male , Beclin-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
China Journal of Chinese Materia Medica ; (24): 6740-6748, 2023.
Article in Chinese | WPRIM | ID: wpr-1008872

ABSTRACT

This study observed the effects of Guiqi Yiyuan Ointment(GQYY) on the left lung subjecting to bystander effect of right lung injury induced by ~(12)C~(6+) beam in rats and decipher the underlying mechanism from NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteinyl aspartate specific proteinase-1(caspase-1) pathway. Wistar rats were randomized into 7 groups: blank, model, inhibitor [200 mg·kg~(-1), N-acetylcysteine(NAC)], western drug [140 mg·kg~(-1) amifostine(AMI)], and high-, medium-, and low-dose(4.8, 2.4, and 1.2 g·kg~(-1), respectively) GQYY groups. The model of bystander effect damage was established by 4 Gy ~(12)C~(6+) beam irradiation of the right lung(with the other part shielded by a lead plate). The pathological changes in the lung tissue, the level of reactive oxygen species(ROS) in the lung tissue, and the levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum were observed and measured in each group. Furthermore, the mRNA and protein levels of NLRP3, ASC, caspase-1, and phosphorylated nuclear factor-κB p65(p-NF-κB p65)/nuclear factor-κB p65(NF-κB p65) were determined. Compared with the blank group, the model group showed thickened alveolar wall, narrowed alveolar cavity, and presence of massive red blood cells and inflammatory infiltration in the alveolar wall and alveolar cavity. In addition, the model group showed elevated ROS levels in both left and right lungs, elevated MDA level, lowered SOD level, and up-regulated mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. Compared with the model group, the drug administration in all the groups reduced inflammatory cell infiltration in the lung tissue. The inhibitor group and the western drug group showed enlarged alveolar cavity, thinned interstitium, and reduced inflammation. There was a small amount of alveolar wall rupture in the high-and medium-dose GQYY groups and reduced inflammatory cell infiltration in the low dose GQYY group. Compared with the model group, drug administration lowered level of ROS in the left and right lungs, lowered the MDA level, elevated the SOD level, and down-regulated the mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. GQYY can effectively reduce the damage caused by radiation and bystander effect, which may be associated with the ROS-mediated NLRP3 inflammasome activation.


Subject(s)
Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Inflammasomes/metabolism , Lung Injury/genetics , Reactive Oxygen Species/metabolism , Bystander Effect , Ointments , Rats, Wistar , Lung/metabolism , Caspase 1/metabolism , RNA, Messenger , Superoxide Dismutase
SELECTION OF CITATIONS
SEARCH DETAIL