Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
1.
Braz. j. biol ; 81(3): 737-740, July-Sept. 2021. tab, graf
Article in English | LILACS | ID: biblio-1153393

ABSTRACT

Abstract Curcuma longa is an important dietary plant which possess several pharmacological activities, including antioxidant, antimicrobial, anti-inflamatory, anticancer and anti clotting etc. The aim of the present study was to determine the phenolic profile of Curcuma longa and in vitro antioxidant and antidiabetic activities. In HPLC chromatogram of Curcuma longa rhizome extract 15 phenolic compounds were identified namely Digalloyl-hexoside, Caffeic acid hexoside, Curdione, Coumaric, Caffeic acid, Sinapic acid, Qurecetin-3-D-galactoside, Casuarinin, Bisdemethoxycurcumin, Curcuminol, Demethoxycurcumin, and Isorhamnetin, Valoneic acid bilactone, Curcumin, Curcumin-O-glucuronide respectively. The ethanolic extract displayed an IC50 value of 37.1±0.3 µg/ml against alpha glucosidase. The IC50 value of DPPH radical scavenging activity was 27.2 ± 1.1 μg/mL. It is concluded that ethanolic extract of Curcuma long is rich source of curcumin and contain several important phenolics. The in vitro antioxidant and alpha glucosidase inhibitory effect of the plant justifies its popular use in traditional medicine.


Resumo A Curcuma longa é uma importante planta presente na dieta da população, pois possui diversas atividades farmacológicas, incluindo antioxidante, antimicrobiana, anti-inflamatória, anticancerígena, anticoagulante etc. O objetivo do presente estudo foi elucidar o perfil fenólico da Curcuma longa e determinar as atividades antioxidante e antidiabética in vitro do extrato. No cromatograma por HPLC do extrato de rizoma de Curcuma longa, foram identificados 15 compostos fenólicos: digaloil-hexosídeo, hexosídeo de ácido cafeico, curdiona, cumárico, ácido cafeico, ácido sinápico, quercetina-3-D-galactosídeo, casuarinina, bisdemetoxicurcumina, curcuminol, demetoxicurcumina, isoramnetina, bilactona de ácido valônico, curcumina e curcumina-O-glicuronídeo. O extrato etanólico apresentou um valor de IC50 de 37,1 ± 0,3 µg / mL em relação à alfa-glucosidase. O valor de IC50 da atividade de eliminação de radicais DPPH foi de 27,2 ± 1,1 μg / mL. Conclui-se que o extrato etanólico de Curcuma longa é uma rica fonte de curcumina e contém várias substâncias fenólicas importantes. O efeito antioxidante in vitro e inibidor da alfa-glucosidase da planta justifica seu uso popular na medicina tradicional.


Subject(s)
Curcuma , Rhizome , Plant Extracts/pharmacology , Phytochemicals , Antioxidants/pharmacology
2.
Article in Chinese | WPRIM | ID: wpr-888189

ABSTRACT

The present study explored the mechanism of Fagopyri Dibotryis Rhizoma(FDR) and its main active components in the treatment of acute lung injury(ALI) based on the network pharmacology and the in vitro experiments. The main active components of FDR were obtained from the TCMSP database and screened by oral bioavailability and drug-likeness. The related target proteins of FDR were retrieved from the PubChem database, and the target genes related to ALI were screened out from the GeneCards database. A protein-protein interaction(PPI) network of compound target proteins and ALI target genes was constructed using STRING 11.0. Ingenuity Pathway Analysis(IPA) platform was used to analyze the common pathways of the potential compound target proteins of FDR and ALI target genes, thereby predicting the key targets and potential signaling pathways of FDR for the treatment of ALI. Finally, the potential pathways and key targets were verified by the in vitro experiments of lipopolysaccharide-induced RAW264.7 cells intervened by epicatechin(EC), the active component of FDR. The results of network pharmacology showed that 15 potential active components such as EC, procyanidin B1, and luteolin presumedly functioned in the treatment of ALI through nuclear transcription factor-κB(NF-κB) signaling pathway, transforming growth factor-β(TGF-β) signaling pathway, and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway through key targets, such as RELA(P65). The results of in vitro experiments showed that 25 μmol·L~(-1) EC had no toxicity to cells and could inhibit the expression of the p65-phosphorylated protein in the NF-κB signaling pathway to down-regulate the expression of downstream inflammatory cytokines, including tumor necrosis factor-α(TNF-α), IL-1β and nitric oxide(NO), and up-regulate the expression of IL-10. These results suggested that the therapeutic efficacy of FDR on ALI was achieved by inhibiting the phosphorylation of p65 protein in the NF-κB signaling pathway and down-regulating the level of proinflammatory cytokines downstream of the signaling pathways.


Subject(s)
Acute Lung Injury/genetics , Lipopolysaccharides , NF-kappa B/metabolism , Rhizome , Signal Transduction
3.
Article in Chinese | WPRIM | ID: wpr-888188

ABSTRACT

This study aims to explore the main mechanism of Astragali Radix-Coptis Rhizoma pair(hereinafter referred to as the pair) in the treatment of type 2 diabetes mellitus(T2 DM) based on network pharmacology and animal experiment. The main Chinese medicine compound prescriptions for T2 DM were retrieved from CNKI database and the medicinals with high frequency among these prescriptions were screened. The active components in the above medicinals were searched from TCMSP, TCMID, and previous research, targets of the components from SwissTargetPrediction and SEA, and targets for the treatment of T2 DM from DISGENET, TTD, and DrugBank. Thereby, the medicinal-component-disease-target network was constructed with Cytoscape. The targets were input in String database to yield the related proteins and the protein-protein interaction(PPI) network was constructed by Cytoscape. The biological functions of proteins in the PPI network were analyzed by Cluego. Then, high-fat high-sugar diet and 30 mg·kg~(-1) streptozotocin(STZ, intraperitoneal injection, once) were employed to induce T2 DM in rats and the T2 DM rats were classified into the control group, model group, positive drug(metformin) group, and pair group. After one month of administration, the changes of blood glucose and blood lipids [triglyceride(TG), cholesterol(CHO), low density lipoprotein(LDL), high density lipoprotein(HDL)] were detected with biochemical methods and pathological changes of islet and collagen deposition in pancreatic tissue by HE staining and Masson staining, respectively. The result showed that pair can be used for T2 DM treatment. ras-related C3 botulinum toxin substrate 1(RAC1), paraoxonase 1(PON1), beta-galactoside alpha 2,6-sialyltransferase 1(ST6 GAL1), insulin receptor(INSR), sex hormone-binding globulin(SHBG), ileal sodium/bile acid cotransporter(SLC10 A2), endothelin-1 receptor A(EDNRA), peroxisome proliferator-activated receptor A(PPARA), endothelin receptor B(EDNRB), and 5-hydroxytryptamine receptor 2 A(HTR2 A) were the targets of the pair for the treatment of T2 DM. The main biological functions of the pair were regulating the metabolism of blood glucose and li-pids and protecting the cardiovascular system. The fasting blood glucose, and serum TG, CHO, and LDL were higher(P<0.01) and the HDL was lower(P<0.05) in the model group than in the control group on the 7 th, 14 th, and 28 th days. The fas-ting blood glucose and the serum TG, CHO, and LDL decreased(P<0.05) and the serum HDL increased(P<0.05) in the metformin group and the pair group as compared with those in the model group on the 14 th and 28 th days. There were no significant differences in blood glucose, TG, CHO, LDL, and HDL between the metformin group and the pair group. Rats in the model group demonstrated damaged structures of islets and pancreas, obviously increased deposition of collagen in islets and pancreas, and blurred cell boundaries. Metformin and the pair significantly alleviated the damaged structures and collagen deposition. The pair can effectively regulate the disorders of blood glucose and lipid metabolism in T2 DM and protect the structure and functions of pancreas and islets by controlling cardiovascular system, which is worthy of clinical application and can be used for drug development.


Subject(s)
Animals , Blood Glucose , Coptis , Diabetes Mellitus, Type 2/genetics , Drugs, Chinese Herbal , Metformin , Rats , Rhizome
4.
Article in Chinese | WPRIM | ID: wpr-888181

ABSTRACT

The 95% ethanol extract of Baphicacanthis Cusiae Rhizoma et Radix was purified by multi-chromatographic methods including microporous resin, silica gel, Sephadex LH-20, and C_(18) reversed-phase column chromatography. Fourteen compounds were isolated and structurally identified, including five phenylethanoid glycosides, five phenylpropanoids, one lupinane triterpene, two alkaloids, and one flavonoid, listed as follows: 2-(4-hydroxy-3-methoxyphenyl)-3-(2-hydroxy-5-methoxyphenyl)-3-oxo-1-propanol B(1), threo-2,3-bis-(4-hydroxy-3-methoxybenzene)-3-methoxypropanol(2), 2-(3-hydroxy-4-methoxyphenyl)-ethanol-1-O-[3,4-O-di-acetyl-(1→3)-O-α-L-rhamnopyranosyl]-β-D-glucopyranoside(3), verbascoside(4), 2″,3″-di-O-acetyl martynoside(5),(+)-pinore-sinol(6), diospyrosin(7), daidzein(8), wiedemannioside B(9), buddlenol A(10), 2″-O-acetyl martyonside(11), lupeol(12), indirubin(13), and tryptanthrin(14). Compound 3 was a new phenylethanoid glycoside, and the other 10 compounds were isolated for the first time from Baphicacanthis Cusiae Rhizoma et Radix except compounds 12, 13, and 14.


Subject(s)
Cardiac Glycosides , Flavonoids , Glycosides , Molecular Structure , Phenylethyl Alcohol , Rhizome
5.
Article in Chinese | WPRIM | ID: wpr-888179

ABSTRACT

This study aims to establish the high-performance liquid chromatography(HPLC) fingerprints of different batches of Notoginseng Radix et Rhizoma, determine their pharmacodynamic indexes of promoting blood circulation, and explore the spectrum-effect relationship between the chemical components of Notoginseng Radix et Rhizoma and the efficacy of promoting blood circulation. Firstly, the HPLC fingerprints of different batches of Notoginseng Radix et Rhizoma were established. Then, the pharmacodynamic indexes were determined after the capillary coagulation experiment and the cerebral ischemia-reperfusion in rats, including capillary coagulation time, percentage of cerebral ischemic area, cerebral water loss rate, and brain-body index. Afterward, the partial least-squares method was used to explore the spectrum-effect relationship between the chemical components of Notoginseng Radix et Rhizoma and the pharmacodynamic indexes. The results showed that this study successfully established the HPLC fingerprints of different batches of Notoginseng Radix et Rhizoma, found 23 common peaks, and identified 12 of them, all of which were saponins. The method was proved stable and reliable. Both the capillary coagulation experiment and the middle cerebral artery occlusion(MCAO)-induced cerebral ischemia-reperfusion experiment on rats revealed that there were obvious differences in the pharmacodynamic indexes of different batches of Notoginseng Radix et Rhizoma. The relationships between 23 common components of Notoginseng Radix et Rhizoma in different batches and the pharmacodynamic indexes were discussed by means of spectrum-effect correlation analysis, of which 17 components had positive effects while 6 components had negative effects on the pharmacodynamic indexes. This study provides a certain reference basis for the clinical rational use and quality control of Notoginseng Radix et Rhizoma.


Subject(s)
Animals , Blood Coagulation , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Quality Control , Rats , Rhizome , Saponins
6.
Article in Chinese | WPRIM | ID: wpr-888172

ABSTRACT

China has a long history of Salviae Miltiorrhizae Radix et Rhizoma processing with multiple methods available. The pre-sent study collated and summarized the Salviae Miltiorrhizae Radix et Rhizoma processing methods recorded in 23 related herbal medicine books, all editions of Chinese Pharmacopoeia, the 1988 edition of National Regulations for Processing of Chinese Medicine, and 20 current local processing specifications and standards. The results demonstrated various processing methods of Salviae Miltiorrhizae Radix et Rhizoma, such as removing residual part of stem, plantlet, or soil, smashing, filing, cutting, decocting, washing with wine, soaking in wine, and stir-frying with wine or blood from pig heart, while raw and wine-processed products are mainly used in modern times. Due to the lack of unified standards, the phenomena of multiple methods adopted in one place and different methods in different places have led to uneven quality of Salviae Miltiorrhizae Radix et Rhizoma pieces, even affecting the safety and effectiveness of its clinical medication. This study is expected to provide a reference for the development of Salviae Miltiorrhizae Radix et Rhizoma processing and its rational medication.


Subject(s)
Animals , China , Drugs, Chinese Herbal , Plant Roots , Rhizome , Salvia miltiorrhiza , Swine
7.
Article in Chinese | WPRIM | ID: wpr-888096

ABSTRACT

Chinese medicinals feature different medicinal parts and enriched components, which makes their powders show obvious microscopic identification characteristics and specific physical properties. On this basis, the commonly used Chinese medicinals can be divided into several categories, such as powdery, fibrous, sugar, oil, and brittle materials, which is of great importance to the research and development of personalized Chinese medicinal preparation technology. However, the existing classification methods are highly subjective and thus difficult to meet the requirements for the development of personalized Chinese medicinal preparations with high quality. In this study, 55 representative Chinese medicinals, such as Dioscoreae Rhizoma and Leonuri Herba, were selected, and the physical properties of their powders were systematically characterized by comprehensive powder tester, torque rheometer, texture analyzer, etc., based on which a data set encompassing physical properties of these powders was built. The typical physical fingerprints of powders from the above 5 categories were established by multivariate statistical analysis. Then, the Chinese medicinals were classified according to the Euclidean distance between each of them and the typical value in the PCA score plot. For those with multiple material properties, whose classification boundary was fuzzy, the proportions of different types of materials were calculated with the combination of Euclidean distance, powder properties, microscopic identification characteristics, and chemical composition, so as to achieve the multivariate quantitative classification of Chinese medicinals. This lays the foundation for the further creation of intelligent personalized Chinese medicinal preparation technology.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Powders , Rhizome
8.
Article in Chinese | WPRIM | ID: wpr-888092

ABSTRACT

Fourteen classical prescriptions in the Catalog of 100 Ancient Classical Prescriptions(First Batch) promulgated in 2018 contain Chuanxiong Rhizoma, which reveals the high medicinal value and wide application of Chuanxiong Rhizoma. This paper systematically reviews the ancient herbal books and modern literature to explore the name, origin, genuine producing area, medicinal part, harvesting, and processing of Chuanxiong Rhizoma, thus facilitating the development of classical prescriptions containing Chuan-xiong Rhizoma. It is confirmed that Chuanxiong Rhizoma, formerly known as "Xiongqiong" in Chinese, was first called "Chuanxiong" in late Tang Dynasty, which has been gradually accepted as its official name due to the rise of the status of Chuanxiong Rhizoma produced in Sichuan. The main original plant of Chuanxiong Rhizoma in past dynasties has always been deemed to be Ligusticum chuan-xiong(Umbellifera), whose rhizome serves as the medicinal part. In general, it is best harvested in summer but the harvesting time can vary with different growth environments. Since the Song Dynasty, Sichuan province has been recognized as the genuine producing area of Chuanxiong Rhizoma in light of the high yield and good quality. It is suggested that Chuanxiong Rhizoma from Sichuan be used preferentially in the development of classical prescriptions. There are multiple processing methods of Chuanxiong Rhizoma recorded in ancient medical classics, and the raw(after purifying and slicing) or wine-processed or stir-fried Chuanxiong Rhizoma is still in use today. In the development of classical prescriptions containing Chuanxiong Rhizoma, Chuanxiong Rhizoma is advised to be processed in accordance with current processing standards if the specific processing method is described in the medical classics. If not, the raw Chuanxiong Rhizoma is preferred and then processed following the processing standards of Chuanxiong Rhizoma decoction pieces in Chinese Pharmacopoeia.


Subject(s)
China , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Prescriptions , Rhizome
9.
Article in Chinese | WPRIM | ID: wpr-888076

ABSTRACT

This article aims to establish the fingerprints, determine the hemostatic pharmacodynamic indicators, and explore the spectrum-effect relationship of Notoginseng Radix et Rhizoma in 12 different specifications. Firstly, HPLC and liquid chromatography-mass spectrometry(LC-MS) were employed to establish the fingerprints of Notoginseng Radix et Rhizoma. The rat plasma recalcification experiment and the rat gastric bleeding experiment were conducted to determine the pharmacodynamic indicators, including plasma recalcification time(PRT), thrombin time(TT), prothrombin time(PT), and activated partial thromboplastin time(APTT). Afterwards, the partial least squares method was employed to explore the spectrum-effect relationship of Notoginseng Radix et Rhizoma in different specifications. Twenty-six common peaks were detected in the HPLC fingerprints of different specifications of Notoginseng Radix et Rhizoma, and 11 out of the 26 common peaks represented saponins. The content of dencichine was determined by LC-MS. The rat experiments showed that the pharmacodynamic indicators were significantly different among different specifications of Notoginseng Radix et Rhizoma. The spectrum-effect relationship was explored between 27 common components and pharmacodynamic indicators. Among them, 16 components had positive effects on the pharmacodynamic indicators of Notoginseng Radix et Rhizoma, and 11 exerted negative effects. This study provides a basis for the precision medication and quality control of Notoginseng Radix et Rhizoma.


Subject(s)
Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Hemostatics , Quality Control , Rats , Rhizome , Saponins
10.
Article in Chinese | WPRIM | ID: wpr-888061

ABSTRACT

In recent years, the establishment of the commercial grade of Yinpian [traditional Chinese medicine(TCM) pieces for decoction] in the TCM industry has been hotly disputed. In this article, Sophorae Flavescentis Radix(SFR) was selected as a representative example to investigated. Through systematic comparison and analysis, the different grades of SFR slices were traced, verified and evaluated. According to the current published local grade standards of SFR slices, the results showed that the first-class of SFR slices were mostly derived from the wild medicinal materials, the second-class were mostly originated from the cultivated materials in 3-4 years, and the third-class products were from a small number of lateral roots and short-growing years or harsh habitat of wild medicinal materials. On the basis of identifying the sources of different grades of SFR slices, the contents of the active components, including matrine, oxymatrine, oxysophocarpine, sophoridine, N-methyl-cytisine, sophocarpine, were quantitatively determined in typical samples, it was found that the grades were inversely proportional to the contents of active ingredients. In order to ensure the universality of the conclusion, the contents of different grades of commercial SFR slices were determined, and the conclusion was verified as "the commercial grades of SFR slices were inversely linked to their contents of active ingredients". This phenomenon is common in the determination of the commercial grade of Yinpian of radix and rhizome. Therefore, we propose that the method or standard of the commercial grade of Yinpian of radix and rhizome based on the size of Yinpian maybe not proper. Whether and how to classify Yinpian commercial grade is not only a multi-disciplinary issue, especially in combination with clinical efficacy, but also a big problem need to consider the production, commercial circulation and other processes link of quality risk and quality assurance, and should be treated with great caution.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Plant Roots , Rhizome , Sophora
11.
Article in Chinese | WPRIM | ID: wpr-888059

ABSTRACT

Paris polyphylla var. chinensis(PPC) is used as one of the origin plants of Paridis Rhizoma described in the Chinese Pharmacopoeia(2020 edition). Its resources shortage makes the planting scale gradually expand, and plenty of aerial parts are abandoned because of not being effectively used. On the basis of previous research, this study separated steroidal saponins to further clarify the chemical composition of the aerial parts of PPC. As a result, three pairs of 25R or 25S epimers of furostanol saponins were obtained by various column chromatography techniques. Their structures were identified as neosolanigroside Y6(1), solanigroside Y6(2), neoprotogracillin(3), protogracillin(4), neoprotodioscin(5) and protodioscin(6) by spectral data combining with chemical transformation. Compound 1 is a new compound, and compounds 2, 3 and 5 are isolated from Paris plants for the first time. Compounds 4 and 6 are isolated from this plant for the first time. Previously, only several spirostanol glycosides with 25S configuration were isolated from Paris plants. Guided by mass spectrometry, the present study isolated the furostanol saponins with 25S configuration from this genus for the first time, which further enriches the chemical information of Paris genus and provides a reference for the isolation of similar compounds.


Subject(s)
Liliaceae , Melanthiaceae , Plant Extracts , Rhizome , Saponins
12.
Article in Chinese | WPRIM | ID: wpr-888038

ABSTRACT

Cerebral ischemia is one of the most common diseases in China, and the drug pair of Chuanxiong Rhizoma and Paeoniae Radix Rubra can intervene in cerebral ischemia to reduce the inflammatory response of cerebral ischemia and apoptosis. To reveal the intervention mechanism of Chuanxiong Rhizoma-Paeoniae Radix Rubra drug pair on cerebral ischemia systematically, computer network pharmacology technology was used in this paper to predict the target and signaling pathway of the drug pair on the intervention of cerebral ischemia, and then the molecular docking technology was used to further analyze the mechanism of the intervention. The target results were then verified by the rat cerebral ischemia model. The target network results showed that the active compounds of Chuanxiong Rhizoma-Paeoniae Radix Rubra for cerebral ischemic disease contained 30 compounds, 38 targets and 9 pathways. The main compounds included phenolic acids in Chuanxiong Rhizoma and monoterpene glycosides in Paeoniae Radix Rubra. The key targets involved mitogen-activated protein kinase 1(MAPK1), steroid receptor coactivator(SRC), epidermal growth factor receptor(EGFR), mitogen-activated protein kinase 14(MAPK14), caspase-3(CASP3), caspase-7(CASP7), estrogen receptor 1(ESR1), and mitogen-activated protein kinase 8(MAPK8), etc. The target gene functions were biased towards protein kinase activity, protein autophosphorylation, peptidyl-serine phosphorylation and protein serine/threonine kinase activity, etc. The important KEGG pathways involved Ras signaling pathway, ErbB signaling pathway and VEGF signaling pathway. Molecular docking results showed that catechin, oxypaeoniflorin, albiflorin, paeoniflorin and benzoylpaeoniflorin had strong binding ability with MAPK1, SRC, EGFR, MAPK14 and CASP7. MCAO rat experimental results showed that Chuanxiong Rhizoma-Paeoniae Radix Rubra significantly improved the cerebral ischemia injury and interstitial edema, and significantly reduced the activation of caspase-7 and the phosphorylation of ERK1/2. The Chuanxiong Rhizoma-Paeoniae Radix Rubra drug pair alleviated cerebral ischemia injury through a network model of multi-phenotype intervention by promoting cell proliferation and differentiation, reducing inflammatory factor expression, protecting nerve cells from death and figh-ting against neuronal cell apoptosis, with its action signaling pathway most related to Ras signaling pathway, ErbB signaling pathway and VEGF signaling pathway. This study provides the basis for clinical intervention of Chuanxiong Rhizoma-Paeoniae Radix Rubra drug pair on cerebral ischemia, and also provides ideas for the modernization of drug pairs.


Subject(s)
Animals , Brain Ischemia/genetics , Cerebral Infarction , Drugs, Chinese Herbal , Molecular Docking Simulation , Paeonia , Rats , Rhizome
13.
Article in Chinese | WPRIM | ID: wpr-888028

ABSTRACT

Paridis Rhizoma(PR) is prepared from the dried rhizome of Paris polyphylla var. yunnanensis(PPY) or P. polyphylla var. chinensis(PPC) in Liliaceae family. The rapid development of PPY or PPC planting industry resulted from resource shortage has caused the waste of a large number of non-medicinal resources. To clarify the chemical compositions in rhizomes, fibrous roots, stems, leaves, seeds and pericarps of PPC, and explore the comprehensive application value and development prospect of these parts, the qualitative and quantitative analyses on the different parts of PPC were carried out by ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) and high performance liquid chromatography(HPLC). A total of 136 compounds were identified, including 112 steroidal saponins, 6 flavonoids, 11 nitrogen-containing compounds and 7 phytosterols. Rhizomes, fibrous roots, and seeds mainly contained protopennogenyl glycosides and pennogenyl glycosides; leaves and stems mainly contained protodiosgenyl glycosides and diosgenyl glycosides; pericarps mainly contained pennogenyl glycosides, followed by diosgenyl glycosides. The total level of four saponins was the highest in fibrous roots and rhizomes, followed by those in the pericarps and arillate seeds, and the lowest in the stems and exarillate seeds. This study can provide data support for the comprehensive development and rational application of non-medicinal parts of PPC.


Subject(s)
Chromatography, High Pressure Liquid , Liliaceae , Melanthiaceae , Rhizome , Saponins , Tandem Mass Spectrometry
14.
Article in Chinese | WPRIM | ID: wpr-888014

ABSTRACT

The volatile oil of Curcumae Rhizoma has many active components,which are the key to the quality of Curcumae Rhizoma. Exploring the difference between volatile oil of different kinds of Curcumae Rhizoma facilitates the quality control and rational application of resources. In this study,GC-MS was applied to realize online qualitative and semi-quantitative analysis of the chemical composition spectrum of volatile oil from Curcuma wenyujin( CW),C. phaeocaulis( CP),and C. kwangsiensis( CK). Forty components were identified and their fingerprints were compared and evaluated. Hierarchical cluster analysis( HCA),principal component analysis( PCA),and orthogonal partial least squares discrimination analysis( OPLS-DA) were adopted to analyze the overall and outlier data. The results showed that the whole data could be divided into three kinds according to each analysis mode,and the volatile components of Curcumae Rhizoma vary greatly among species. PCA explored the difference between outliers and the mean value of the group and found that some volatile oils from CW may be greatly affected by the origin. By OPLS-DA,the samples from Zhejiang were able to gather,but those from Guizhou remained isolated,indicating the influence of growing environment on Curcumae Rhizoma metabolites. Based on VIP results combined with the heat map,characteristic volatile oil components of Curcumae Rhizoma from different varieties were screened out: curdione and linalool for CW; 2-undecanone for CP; humulene,γ-selinene,and zederone for CK. The GCMS method established in this study describes Curcumae Rhizoma samples comprehensively and accurately,and the characteristic components screened based on chemometrics can be used to distinguish Curcumae Rhizoma from different varieties and give them unique pharmacodynamic significance,which is fast,convenient,stable,and reliable and supports the rational application of Curcu-mae Rhizoma resources. It is found that the region of origin has great influence on CW,which is worthy of further study.


Subject(s)
Curcuma , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Principal Component Analysis , Rhizome
15.
Article in Chinese | WPRIM | ID: wpr-888001

ABSTRACT

Coptidis Rhizoma is a common Chinese medicinal in clinical practice,with the effects of clearing heat,drying dampness,purging fire,and removing toxin. All the medicinal plants of Coptis can be used for clinical treatment,but some species are endangered due to resource destruction and difficulty in planting. The dominant medicinal components in Coptidis Rhizoma are isoquinoline alkaloids. There are various methods for the analysis and detection of alkaloids,such as LC-MS,HPLC,and TLC,among which LC-MS is the most widely applied. Different plants of Coptis vary in the kind and content of alkaloids. C. chinensis,C. deltoidea,C. teeta,C. chinensis var. brevisepala,C. omeiensis,C. quinquefolia,and C. quinquesecta mainly contain berberine,palmatine,coptisine,jatrorrhizine,and columbamine,five effective alkaloid components. Plant isoquinoline alkaloids( PIAs) have strong pharmacological activity but are difficult to prepare. The application of synthetic biology of PIAs will be helpful for the clinical application of PIAs. This paper reviews the research progress on biological resources of Coptis species and structures of alkaloids as well as analysis methods and synthetic biology for isoquinoline alkaloids in the medicinal plants of Coptis in recent years,which will facilitate the protection of Coptis medicinal resources and the application and development of alkaloids.


Subject(s)
Alkaloids , Berberine , Berberine Alkaloids , Coptis , Drugs, Chinese Herbal , Isoquinolines , Rhizome
16.
Article in Chinese | WPRIM | ID: wpr-887985

ABSTRACT

With Sangtang Yin granule as model drug,and based on the strategy of " unification of medicines and excipients",the feasibility of preparing high drug loading granules with traditional Chinese medicine( TCM) raw powder as carrier was explored. The powder yield,particle size and particle size distribution,fillibility,flowability,hygroscopicity,reconstituability and other key physical properties relating to preparations of 8 herbs( Dioscoreae Rhizoma,Euryales Semen,Atractylodis Macrocephalae Rhizoma,Coicis semen,Poria,Puerariae Lobatae Radix,Puerariae Thomsonii Radix and Coicis Semen by stir-frying with bran) were studied after being smashed,and the feasibility of taking them as excipients of TCM granules was evaluated by co-spray drying,dry granulation and other preparation techniques. According to the results of the physical properties of raw powders,raw powders of Dioscoreae Rhizoma,Euryales Semen and Puerariae Thomsonii Radix had a high powder yield,uniform particle size distribution,good fillibility,poor hygroscopicity and good reconstitutability,with the feature of assisting granule forming. Compared with the prescription of spray dry powder Sangtang Yin without any excipient,the co-sprayed powder had a high yield,good fillibility and compressibility. The yield of dry granules prepared by co-spraying dry powder was increased by more than 10%,and the particles had a uniform color,good fluidity and dissolubility with the drug-loading rate up to 100%. Based on the physical characteristics of TCM raw powder combined with the analysis of the preparation process,Dioscoreae Rhizoma and Puerariae Thomsonii Radix raw powder were selected as the carriers of granule preparations,and Sangtang Yin granule without any excipient was successfully prepared. The findings provide a feasible idea for the preparation of TCM granules with a high drug loading capacity.


Subject(s)
Excipients , Medicine, Chinese Traditional , Particle Size , Powders , Pueraria , Rhizome
17.
Article in Chinese | WPRIM | ID: wpr-887944

ABSTRACT

Drynariae Rhizoma is warm in nature and bitter in taste, mainly acting on liver and kidney systems. It is a common Chinese herbal medicine for the treatment of fracture and bone injury. The chemical compositions of Drynariae Rhizoma mainly include flavonoids, triterpenoids, phenylpropanoids and lignans. At present, modern pharmacological and clinical studies have shown that Drynariae Rhizoma has the effects of anti osteoporosis, promoting fracture healing, kidney protection, anti-inflammatory, promoting tooth growth, preventing and treating aminoglycoside ototoxicity and lowering blood lipid. In addition, the toxicity evaluation experiment of Drynariae Rhizoma has also shown that it has no obvious toxic and side effects. Naringin is a kind of dihydroflavone in Drynariae Rhizoma. Many studies have shown that naringin and other total flavonoids play an important role in anti-osteoporosis, promoting fracture healing, anti-inflammation, promoting tooth growth and lowering blood lipid. In this study, the research progresses on chemical consti-tuents and pharmacological activities of Drynariae Rhizoma in recent years were reviewed, and some mechanisms of action were summarized, to provide references for the further research and development of Drynariae Rhizoma.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Flavonoids , Humans , Osteoporosis/drug therapy , Polypodiaceae , Rhizome
18.
Article in Chinese | WPRIM | ID: wpr-887942

ABSTRACT

Coptidis Rhizoma, as a bulk medicinal material, is in great demand in clinical practice. Its quality is uneven in the market due to the mixture of genuine, counterfeit and adulterants. Therefore, it is particularly important to establish a quality control system for Coptidis Rhizoma. Based on the concept of Chinese medicine quality marker(Q-marker), the potential quality markers of Coptidis Rhizoma were analyzed and predicted from the perspective of chemistry and pharmacology. The sources of the Q-markers of Coptidis Rhizoma were identified by literature retrieval. The potential Q-markers were then screened through the visualization of the "components-targets-pathways" network. High performance liquid chromatography(HPLC) was used to establish a multi-indicator qualitative and quantitative control method featuring fingerprints for 10 batches of Coptidis Rhizoma. A supervised mode of orthogonality partial least squares method-discriminant analysis(OPLS-DA) was used to screen the main marker components that caused differences between groups. The literature review results showed that the alkaloids were the main source of Coptidis Rhizoma Q-markers.The fingerprints of 13 common peaks were successfully established, and berberine, palmatine, berberine and epiberberine were selected as Q-markers of Coptidis Rhizoma, and their contents were determined.Based on the concept of the Q-marker of traditional Chinese medicine, the four components can be selected as the Q-marker of Coptidis Rhizoma after comprehensive consideration. The results of this study are not only conducive to the quality evaluation of Coptidis Rhizoma on the market, but also provide a reference for the overall quality control of Coptidis Rhizoma and lay foundation for the future exploration of the mechanism of Coptidis Rhizoma.


Subject(s)
Alkaloids , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Multivariate Analysis , Rhizome
19.
Article in Chinese | WPRIM | ID: wpr-887936

ABSTRACT

Glycyrrhizae Radix et Rhizoma, a traditional Chinese herbal medicine, mainly contains triterpenoids, flavonoids, polysaccharides, coumarins and volatile oils with many pharmacological activities such as anti-tumor, anti-bacterial, anti-viral, anti-inflammatory, immune regulatory and anti-fibrotic effects. The widespread applications of Glycyrrhizae Radix et Rhizoma in food, medicine and chemical industries make its demand increase gradually. Therefore, the quality guarantee of the medicinal is of great value. Starting from the elaboration of chemical components and pharmacological effects of Glycyrrhizae Radix et Rhizoma and the introduction to the concept of quality marker(Q-marker), this study analyzed the Q-markers of Glycyrrhizae Radix et Rhizoma from the aspects of plant phylogene-tics, chemical component specificity, traditional efficacy, traditional medicinal properties, absorbed components, different processing methods and so on, which provides reference for quality evaluation, development and utilization of Glycyrrhizae Radix et Rhizoma.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Glycyrrhiza , Rhizome , Triterpenes
20.
Article in Chinese | WPRIM | ID: wpr-921813

ABSTRACT

To reveal the rationality of compatibility of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) and Puerariae Lobatae Radix(PLR) from the perspective of pharmacokinetics, this study established a UPLC-MS/MS method for quantitative determination of PLR flavonoids(3'-hydroxy puerarin, puerarin, puerarin 6″-O-xyloside, 3'-methoxy puerarin, puerarin apioside) and salvianolic acids and tanshinones(salvianolic acid B, cryptotanshinone, and tanshinone Ⅱ_A) in plasma of rats. Rats were given SMRR extract, PLR extract, and SMRR-PLR extract by gavage and then plasma was collected at different time. UPLC separation was performed under the following conditions: Eclipse C_(18) column(2.1 mm×50 mm, 1.8 μm), 0.1% formic acid in water(A)-0.1% formic acid in acetonitrile(B) as mobile phase for gradient elution. Conditions for MS are as below: multiple reaction monitoring(MRM), ESI~(+/-). Comprehensive validation of the UPLC-MS/MS method(specifically, from the aspects of calibration curve, precision, accuracy, repeatability, stability, matrix effect, extract recovery) was performed and the result demonstrated that it complied with quantitative analysis requirements for biological samples. Compared with SMRR extract alone or PLR extract alone, SMRR-PLR extract significantly increased the AUC and C_(max) of PLR flavonoids and tanshinones in rat plasma, suggesting that the combination of SMRR and PLR promoted the absorption of the above components. The underlying mechanism needs to be further studied.


Subject(s)
Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacokinetics , Plant Roots/chemistry , Pueraria/chemistry , Rats , Rhizome/chemistry , Salvia miltiorrhiza/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL