Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Braz. j. biol ; 83: 1-9, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468817

ABSTRACT

Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.


Subject(s)
Fabaceae/drug effects , Fabaceae/microbiology , Herbicides/administration & dosage , Meliaceae/drug effects , Meliaceae/microbiology , Myrsine/drug effects , Myrsine/microbiology , Polygonaceae/drug effects , Polygonaceae/microbiology , Rhizosphere , Atrazine
2.
Braz. j. biol ; 83: e242676, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278552

ABSTRACT

Abstract Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Resumo As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.


Subject(s)
Soil Pollutants , Mycorrhizae/chemistry , Herbicides , Soil , Soil Microbiology , Trees , Brazil , Plant Roots/chemistry , Seedlings , Rhizosphere
3.
China Journal of Chinese Materia Medica ; (24): 6030-6038, 2023.
Article in Chinese | WPRIM | ID: wpr-1008801

ABSTRACT

This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of β,β'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.


Subject(s)
Rhizosphere , Soil Microbiology , Bacteria/genetics , Phosphorus , Soil , Boraginaceae
4.
China Journal of Chinese Materia Medica ; (24): 5172-5180, 2023.
Article in Chinese | WPRIM | ID: wpr-1008715

ABSTRACT

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Subject(s)
Fertilizers , Rhizosphere , Angelica/chemistry , Fungi/genetics , Phosphorus
5.
China Journal of Chinese Materia Medica ; (24): 1498-1509, 2023.
Article in Chinese | WPRIM | ID: wpr-970621

ABSTRACT

To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.


Subject(s)
Rhizosphere , Rheum , Droughts , Soil , Catechin , Emodin , Bacteria/metabolism , Water/metabolism , Firmicutes , Soil Microbiology
6.
Chinese Journal of Biotechnology ; (12): 3663-3674, 2021.
Article in Chinese | WPRIM | ID: wpr-921455

ABSTRACT

Aquatic plants and the epiphytic microorganisms are important contributors to the purification of constructed wetlands. Taking the dragon-shaped water system of Beijing Olympic Park as a model, this study analyzed the structure and function of the microbial communities reside the sediment, the water body and the rhizosphere and phyllosphere of three submerged plants-Vallisneria natans, Myriophyllum verticillatum, and Potamogeton pectinatus using high-throughput sequencing technology. The results showed that the microbial diversity from the highest to the lowest were samples from sediment, plant rhizosphere, plant phyllosphere and water. The microbial diversity of plant phyllosphere samples were significantly higher than those of the water body. LEfSe analysis showed that different habitats enriched different microbial groups. The sediments mainly enriched anaerobic microbes, while the water body and the phyllosphere of plants mainly enriched aerobic microbes, and the rhizosphere of plants had the both. Functional prediction analysis showed that the abundance of denitrification marker genes in phyllosphere samples was higher than that in samples from rhizosphere, sediment and water body, and the abundance of denitrification marker genes in phyllosphere samples of M. verticillatum and P. pectinatus was higher than that of V. natans. This study could serve as a guidance for the selection of submerged plants and functional microorganisms for constructed wetlands.


Subject(s)
Beijing , Hydrocharitaceae , Microbiota , Rhizosphere , Water
7.
China Journal of Chinese Materia Medica ; (24): 1073-1078, 2021.
Article in Chinese | WPRIM | ID: wpr-879006

ABSTRACT

The study aiming at exploring the potassium-dissolving capacity of rhizosphere potassium-dissolving bacteria from diffe-rent sources and screen the strains with high potassium-dissolving ability, so as to lay a theoretical foundation for cultivation and quality improvement of Paris polyphylla var. yunnanensis sources. The rhizosphere soil of 10 wild and transplanted species from Yunnan, Sichuan and Guizhou provinces was used as the research object. Potassium-dissolving bacteria were isolated and purified, and their potassium-dissolving capacity was determined by flame spectrophotometry, and identified by physiological, biochemical and molecular biological methods. Twenty-six potassium-dissolving bacteria were purified and 13 were obtained from wild and transplanted strains respectively. It was found through the determination of potassium-dissolving capacity that the potassium-dissolving capacity of 26 strains was significantly different, and the mass concentration of K~+ in the fermentation broth were 1.04-2.75 mg·L~(-1), the mcentration of potassium were 0.01-1.82 mg·L~(-1). The strains were identified as Bacillus, Agrobacterium rhizome and Staphylococcus by physiological, biochemical and 16 S rDNA molecular methods, among them Bacillus amylolyticus(4 strains) was the dominant bacterium of Bacillus. The physiology and biochemistry of rhizosphere potassium-dissolving bacteria in P. polyphylla var. yunnanensis rhizosphere were diffe-rent, and the living environment were different, so the potassium-dissolving capacity also changed. Strain Y4-1 with the highest potassium decomposability was Bacillus amylolytic with a potassium increase of 1.82 mg·L~(-1). The potassium-dissolving ability and the distribution of potassium-dissolving bacteria were different in various habitats. The screening of potassium-dissolving bacteria provided a new strain for the preparation of microbial fertilizer. It is expected that B. amyloidococcus Y4-1 can be used as an ideal strain to cultivate mycorrhizal seedlings of P. polyphylla var. yunnanensis.


Subject(s)
China , Liliaceae , Paenibacillus , Potassium , Rhizosphere , Soil
8.
China Journal of Chinese Materia Medica ; (24): 582-590, 2021.
Article in Chinese | WPRIM | ID: wpr-878882

ABSTRACT

The natural forest and artificial shed are the main cropping modes of Coptis chinensis. This study is aimed to reveal the rhizosphere soil bacterial community structure difference between under tow C. chinensis cropping modes-natural forest and artificial shed, and to assist us to completely understand soil quality condition,and provide theoretical guidance for soil improvement and C. chinensis planting. The rhizosphere soil samples of 1-5-year-old C. chinensis under tow cropping modes-natural forest and artificial shed were collected. Illumina high-throughput sequencing technology was used to analyze the alpha diversity, community composition, community structure of soil bacteria under the tow cropping modes,and the effects of soil nutriment indices on soil bacterial community structure. Through the analysis of species number, Shannon, Chao1 index and ACE index of bacterial community, it was found that the bacterial diversity of 1-year-old C. chinensis soil under natural forest cropping mode was significantly lower than that under artificial shed cropping mode, and the diversity of bacterial communities in soil of 2-5-years old C. chinensis were not significant different between two cropping modes. A total of 53 phyla,60 classes,140 orders and 266 families were detected in the rhizosphere soil of C. chinensis under the cropping modes of natural forest, respectively. The rhizosphere soil of C. chinensis under the cropping modes of artificial shed included 54 phyla,65 classes,140 orders and 264 families, respectively. Under the two cropping modes, the top 10 dominant species of bacterial community abundance are the same, they are Proteobacteria, Acidobacteria, Actinobacteria,Bacteroidetes, Planctomycetes, Chloroflexi, Verrucomicrobia, Gemmatimonadetes, Firmicutes and Cyanobacteria, but there are differences in the abundance sequence. The top 10 dominant species of bacterial community abundance accounted for 74.36% to 74.30% of the total bacteria, and 3.15% to 3.92% of the bacteria are unclassified. The results of Metastat analysis showed that the abundance of Gemmatimonadetes in the rhizosphere soil of C. chinensis under the cropping modes the artificial shed was significantly higher than that under the natural forest cropping mode(P<0.05). MRPP analysis of community structure differences showed that under tow cropping modes, there were significant differences in the bacterial community structure of 1-4-year-old soil bacteria, among which the difference between 1-year-old soil samples was the largest. With the increase of cropping years, the difference gradually decreases, and there is no significant difference in the bacterial community structure between 5-year-old soil samples. RDA analysis and correlation analysis of bacterial community structure and soil physical and chemical properties showed that the order of environmental factors on the rhizosphere soil bacteria of Coptis chinensis was: pH>available P> total P> total K>bulk density>total N>available N>organic matter. The results are helpful to understand the soil health of C. chinensis and provide scientific basis and theoretical guidance for soil improvement and C. chinensis planting.


Subject(s)
Child, Preschool , Humans , Infant , Coptis , Forests , Rhizosphere , Soil , Soil Microbiology
9.
Malaysian Journal of Microbiology ; : 471-481, 2021.
Article in English | WPRIM | ID: wpr-973838

ABSTRACT

Aims@#Plant growth promoting rhizobacteria (PGPR) is a group of bacteria that colonise plant roots and enhance plant growth by a diverse range of mechanisms. This study aims to determine the capabilities of PGPR isolated from cocoa tree roots and their efficiency in enhancing plant growth under greenhouse conditions.@*Methodology and results@#Eight samples of healthy cocoa tree roots were collected from different locations in Malaysia. Isolated bacteria were screened based on nitrogen fixation, phosphate and potassium solubilization, and catalase activity. The efficiency of purified PGPR was evaluated from pot experiments of cocoa seedlings under greenhouse conditions. Out of 122 isolates, 18 isolates showed several traits of nitrogen fixation, phosphorus and potassium solubilization and were further screened for other plant growth promoting (PGP) traits like catalase and production of indole acetic acid (IAA). Out of all the PGP trait tests, seven isolates showed the most prominent results for in vitro tests and were further tested in vivo for growth promotion of cocoa seedlings under greenhouse conditions. In the presence of bacterial isolates with 2.5 g of inorganic fertilizer, Leclercia adecarboxylata resulted in increases in plant height, leaf number, root length, stem fresh weight and total fresh and dry weight of cocoa seedlings by 15.68%, 17.14%, 9.48%, 5.67%, 11.84% and 25.12%, respectively.@*Conclusion, significance and impact of study@#Based on the result, L. adecarboxylata incorporated with selected carrier material improve cocoa seedling growth and biomass. This formulation also reduces the production cost of inorganic fertilizer and increase the application and development of biofertilizer.


Subject(s)
Rhizosphere
10.
Malaysian Journal of Microbiology ; : 690-700, 2021.
Article in English | WPRIM | ID: wpr-974479

ABSTRACT

Aims@#The purpose of this research was to explore the composition and genomic functions of bacterial community inhabiting the rhizosphere of Mimosa pudica, which were naturally growing on tailing and non-tailing soils of an ex-tin mining area.@*Methodology and results@#DNA were extracted from rhizosphere soils and PCR targeting the hypervariable region V3-V4 was carried out by Illumina 16S metagenomic library. Libraries were sequenced using Illumina MiSeq. The Operational Taxonomic Units (OTUs) were assigned to 23 bacterial phyla, 72 classes, 165 orders, 248 families and 357 genera. The most represented and dominant phylum was Proteobacteria, with an average abundance value of 41.2%. The most represented genera included Paraburkholderia, Bradyrhizobium, Bacillus, Candidatus, Acidothermus, Acidibacter and Nitrospira. Non-tailing soils had more number and richness of species while the tailings had more diversity of species. The metagenomes accommodate suspected genes for heavy metal tolerance of microbes (As, Cr, Co, Zn, Ni, Cu, Cd, Fe and Hg) and microbial plant-growth-promoting traits for hyperaccumulator plants (synthesis of indole acetic acid (IAA), siderophore and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase; solubilization of phosphate and potassium and nitrogen fixation). @*Conclusion, significance and impact of study@#Bacteria and predicted genes discovered could be part of major factors influencing growth of M. pudica in heavy metal-contaminated soils. The study provides the first report and a basis into the bacterial community associated with M. pudica in ex-tin mining soils from the studied geographical location. The findings also provide fundamental knowledge on phytoremediation potential of heavy metal contaminated soils involving indigenous beneficial microbial populations.


Subject(s)
Bacteria , Rhizosphere , Mimosa , Plant Growth Regulators
11.
Malaysian Journal of Microbiology ; : 80-89, 2021.
Article in English | WPRIM | ID: wpr-969507

ABSTRACT

Aims@#Knowledge of the Trichoderma taxa is important for both control efficiency and environmental conservation. Therefore, the objective of this study is to isolate and identify Trichoderma species from various rhizosphere soil samples using phenotypic and molecular characterization.@*Methodology and results@#Native Trichoderma spp. were isolated from agricultural fields in 17 sites from seven states of Malaysia. These isolates were characterized via morphological observation and molecular phylogenetic analysis based on the translation elongation factor-1α (tef1-α) gene. About 42 isolates were classified into eight Trichoderma species, which are Trichoderma asperellum, T. hamatum, T. harzianum, T. koningiopsis, T. rodmanii, T. spirale, T. viride and T. virens. Comparison of DNA sequences of tef1-α showed that the isolates were 98-100% similar to respective Trichoderma species from GenBank, thus confirming the fungal identity. Phylogenetic trees of maximum likelihood (ML) dataset of tef1-α inferred that the isolates were clustered according to species.@*Conclusion, significance and impact of study@#Findings in the present study will be beneficial for the purposes of biodiversity conservation and plant disease management using biocontrol agents.


Subject(s)
Rhizosphere
12.
Rev. argent. microbiol ; 52(3): 111-120, Sept. 2020. graf
Article in English | LILACS | ID: biblio-1340910

ABSTRACT

Abstract Mine tailings contain high concentrations of heavy metals such as As, Pb, Cu, Mn, andFe, which are detrimental to the health of humans and the environment. In tailings at the ElFraile mine in Guerrero, Mexico, some plant species are apparently tolerant of heavy metals andcan be found growing in the tailings. These plants could be associating with heavy metal-tolerantbacteria that promote plant growth and improve biomass production, and these bacteria couldbe a useful alternative for bacteria-assisted phytoremediation. The objective of this study wasto isolate bacteria detected in the mine tailings at El Fraile-Taxco, focusing on those in the soilfrom the rhizosphere, the inner tissue of the root, leachate, and water, which have the poten-tial to promote plant growth. The ability of the isolated bacteria to promote plant growth wasevaluated in vitro. Of the 151 morphotypes isolated, 51% fix nitrogen, 12% dissolve phosphates,and 12%, 39.7%, and 48.3% produce indole acetic acid, gibberellins, and siderophores, respec-tively. In addition, 66.7% were observed to produce lytic enzymes, such as proteases, celluloses,lipases, esterases, and amylases, which exhibited activity against Fusarium, Aspergillus, andColletotrichum. The use of 16S rRNA analysis led to the identification of the bacterial generaChryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium,Enterobacter, Agrobacterium, Ochrobactrum, Serratia, Stenotrophomonas, and Acinetobac-ter. The bacteria isolated from the rhizosphere exhibited the greatest ability to fix nitrogenand produced indole acetic acid, gibberellins, siderophore, and lytic enzymes. In addition, theisolates collected from the soil samples demonstrated ability to solubilize phosphate.


Resumen Los jales mineros contienen una alta concentración de metales pesados como As, Pb, Cu, Mn y Fe. Estas altas concentraciones de metales son perjudiciales para la salud humana y el medio ambiente. En los jales mineros de El Fraile, México, es posible detectar especies de plantas tolerantes a los metales pesados; estas plantas podrían estar asociadas con bacterias capaces de promover su crecimiento, además de poseer actividad antagonista contra hongos. El objetivo de este estudio fue aislar de diferentes microambientes (suelo rizosférico, tejido de raíz, lixiviado y agua) del área del jale El Fraile bacterias con potencial de promover el crecimiento vegetal y actividad antagonista contra hongos fitopatógenos. Estudios in vitro demostraron que el 51% de los morfotipos aislados (151 en total) fijan nitrógeno y el 12% disuelven fosfatos. Asimismo, el 12, 39,7 y 48,3% producen ácido indolacético, giberelinas y sideróforos, respectivamente. Por otro lado, se observó que el 66,7% producía enzimas líticas como proteasas, celulasas, lipasas, esterasas y amilasas, además de exhibir actividad antagonista contra Fusarium, Aspergillus y Colletotrichum. Mediante análisis del gen 16S ARNr, se identificó a estas bacterias como pertenecientes a los géneros Chryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium, Enterobacter, Agrobacterium, Ochrobac-trum, Serratia, Stenotrophomonas y Acinetobacter. Las bacterias de la rizosfera exhibieron la mayor capacidad para fijar nitrógeno y produjeron ácido indolacético, giberelinas, sideróforos y enzimas líticas. Además, se detectó que las cepas aisladas de suelo rizosférico eran las que tenían la capacidad de solubilizar fosfatos.


Subject(s)
Humans , Bacteria , Rhizosphere , Soil Microbiology , Biodegradation, Environmental , RNA, Ribosomal, 16S/genetics , Plant Roots , Mexico
13.
Braz. j. biol ; 80(1): 209-214, Feb. 2020. graf
Article in English | LILACS | ID: biblio-1089298

ABSTRACT

Abstract Rhizosphere microorganisms and endophytes can help their hosts absorb nutrients and regulate the levels of plant hormones. Moreover, they can modulate the expressions of host genes, assist hosts in eliminating reactive oxygen species (ROS) and secreting volatile organic compounds. Therefore, rhizosphere microorganisms and endophytes are considered as determinant factors driving processes involved in the growth of host plants. However, the physiological and ecological functions, as well as the molecular mechanism underlying the behavior of rhizosphere microorganisms and endophytes in their role in the adaptive capacity of host plants in the karstic high-calcium environment have not been systematically studied. This review summarizes the physiological and molecular mechanisms of rhizosphere microorganisms and endophytes which help host plants to adapt to various kinds of adverse environments. The adaptive capacities of plants growing in adverse environments, partly, or totally, depends on microorganisms co-existing with the host plants.


Resumo Os microorganismos e endófitos da rizosfera podem ajudar seus hospedeiros a absorver nutrientes e regular os níveis de hormônios vegetais. Além disso, eles podem modular as expressões dos genes hospedeiros, auxiliar os hospedeiros na eliminação de espécies reativas de oxigênio (ROS) e secretar compostos orgânicos voláteis. Portanto, microorganismos e endófitos da rizosfera são considerados determinantes dos processos envolvidos no crescimento de plantas hospedeiras. No entanto, as funções fisiológicas e ecológicas, bem como o mecanismo molecular subjacente ao comportamento dos microrganismos e endofíticos da rizosfera no seu papel na capacidade adaptativa das plantas hospedeiras no ambiente cárstico de alto teor de cálcio, não foram sistematicamente estudados. Esta revisão resume os mecanismos fisiológicos e moleculares de microrganismos e endófitos da rizosfera que ajudam as plantas hospedeiras a se adaptarem a vários tipos de ambientes adversos. As capacidades adaptativas das plantas que crescem em ambientes adversos, em parte ou totalmente, dependem de microrganismos coexistentes com as plantas hospedeiras.


Subject(s)
Symbiosis , Calcium , Plants , Rhizosphere , Endophytes
14.
China Journal of Chinese Materia Medica ; (24): 3414-3421, 2020.
Article in Chinese | WPRIM | ID: wpr-828430

ABSTRACT

Soil microorganisms are one of the important biological indictors of soil quality and can reflct the comprehensive ecological environment characteristics of the soil. The research of soil microbial diversity is the key to know the ecological functions and balance with soil. In this paper, high-throughput sequencing on PCR-amplified 16 S rRNA gene V3-V4 fragments was used to determine the bacterial diversity in rhizosphere soil of A. macrocephala under the treatment with BZJN1 or streptoprofen. The results showed that there were no significant differences of the bacteria in A. macrocephala rhizosphere soil of the streptoprofen treatment group and the biocontrol BZJN1 treatment group. All the soil bacteria was classified into 25 categories,67 classes, 108 orders, 167 families and 271 generas, except some unidentified bacteria. Proteobacteria(30.7%-34.8%) was the dominant phylum, of which Alphaproteobacteria(16.8%-18.5%) was the dominant subgroup. Compared with the control group, the relative abundance of multiple phylums bacteria in the rhizosphere soil of A. macrocephala was significantly changed in the streptoprofen treatment group and the biocontrol BZJN1 treatment group. In addition, RDA analysis showed that there was connection with different environmental factors and microbial communities. The abundance of the three genera in the rhizosphere soil of A. macrocephala was significantly positively correlated with Invertase, Urease and AP. PICRUSt function prediction results showed that BZNJ1 could enhance some bacterial functions and promote the plant growth. Biocontrol is a new type of green and safety control pest method. BZNJ1 significantly enhances some bacterial functions on the basis of effectively preventing root rot of A. macrocephala and promoting plant growth, and has no significant effect on the soil bacterial community structure. All the results can provide theoretical support for popularization of BZNJ1.


Subject(s)
Atractylodes , Bacteria , Rhizosphere , Soil , Soil Microbiology
15.
China Journal of Chinese Materia Medica ; (24): 2017-2022, 2020.
Article in Chinese | WPRIM | ID: wpr-827986

ABSTRACT

Intercropping farming system is one of the essence of traditional agriculture in China and one of the most common and basic patterns of modern ecological planting. Intercropping system uses the principle of species diversity to create reasonable interspecific interaction conditions with obvious productivity advantages. In this paper, the interspecies interaction is divided into aboveground and underground parts from the space view, and its influence and mechanism on the yield and secondary metabolites of medicinal plants are elaborated.The interspecific interaction in the aboveground part mainly introduces the distribution and utilization of space resources among plants. The interspecific interaction in the underground part mainly introduces the soil rhizosphere effect and related mediating factors, root exudates, soil microorganisms, root space structure and soil environmental factors. On the basis of understanding the mechanism of interspecific interaction, this paper further discusses the application of intercropping in traditional Chinese medicine ecological agriculture, taking the effective control of diseases and insect pests, the increase of medicinal material yield and the improvement of medicinal material quality as the benefit index, so as to seek better advantages of intercropping and provide ideas for the utilization of intercropping production mode in traditional Chinese medicine ecological agriculture.


Subject(s)
Agriculture , China , Plants, Medicinal , Rhizosphere , Soil
16.
China Journal of Chinese Materia Medica ; (24): 2023-2030, 2020.
Article in Chinese | WPRIM | ID: wpr-827985

ABSTRACT

Rhizosphere is the main place for the communication between medicinal plants and rhizosphere microorganisms. Medicinal plants are closely related to the diversity and richness of rhizosphere microorganisms, and rhizosphere microorganisms in the rhizosphere of medicinal plants have important effects on the growth and development, yield, quality and resilience of medicinal plants. The reasonable and effective utilization of the principle of interaction between medicinal plants and rhizosphere microorganisms has practical guiding significance for promoting the growth of medicinal plants, enhancing the ability of resistance to diseases and resisting the invasion of pathogens. This paper reviewed the research status of medicinal plants and rhizosphere microorganisms in recent years, including the influence of medicinal plants on rhizosphere microorganisms, the influence of rhizosphere microorganisms on medicinal plants and the mechanism of interaction between medicinal plants and rhizosphere microorganisms. The problems existing in the study of medicinal plants and rhizosphere microorganisms and the direction for further study were also pointed out.


Subject(s)
Plant Roots , Plants, Medicinal , Rhizosphere , Soil Microbiology
17.
Arq. Inst. Biol ; 87: e0762018, 2020. graf
Article in English | LILACS, VETINDEX | ID: biblio-1121084

ABSTRACT

Intoxication by dispersion of glyphosate droplets in coffee seedlings is common and, in addition to the problem of drift, there are reports of contamination of this herbicide to a nontarget plant via the rhizosphere. Hydroponics allows the comparison of the translocation of the glyphosate absorbed by the foliage or the roots and avoids the interaction with the soil, which could hamper the achievement of more accurate conclusions when it is absorbed by the root. Thus, the toxicity of glyphosate sublethal dosages in the initial growth of coffee plants in hydroponics was evaluated by applying four sublethal dosages in two different locations (solution and leaf). Fifty days after the application of the herbicide, the intoxication percentage and the growth of the coffee seedlings were evaluated. From the reduced dose of 115.2 g·ha-1 of glyphosate, height reductions, root length; number of leaves, dry mass of leaf, roots and total, leaf area, and leaf mass ratio were observed. The first two parameters were observed only in leaf application and the others via leaf and solution. The aerial part­root ratio system had an increase in herbicide sublethal dosages when applied to leaves and the ratio of leaf area and specific leaf area increased in both applications. Sublethal dosages of glyphosate applied to young coffee plants under hydroponic conditions impair their growth, and it is more accentuated with increasing doses and when the leaves, instead of the roots, absorb the herbicide.(AU)


Intoxicação por dispersão das gotas de glifosato em mudas de café são comuns, além do problema da deriva, há relatos da passagem desse herbicida para planta não alvo via rizosfera. A hidroponia possibilita comparar a translocação do glifosato absorvido pelas folhagens ou raízes e evita a interação do solo que poderia dificultar a obtenção de conclusões mais precisas quando absorvido pela raiz. Assim, a toxidade de subdoses de glifosato no crescimento inicial de plantas de café em hidroponia foi avaliada aplicando-se quatro subdoses em dois locais distintos (solução e folha). Cinquenta dias após a aplicação do herbicida, a porcentagem de intoxicação e o crescimento das mudas de café foram avaliados. A partir da subdose de 115,2 g·ha-1 de glifosato observaram-se reduções da altura; comprimento radicular; número de folhas; massa seca da folha, raiz, radicular e total; área foliar; razão de massa foliar, sendo os dois primeiros parâmetros observados somente na aplicação foliar e os demais via foliar e solução. A relação parte aérea/sistema radicular aumentaram com o incremento das subdoses do herbicida quando aplicado nas folhas e a razão de área foliar e área foliar específica aumentaram em ambas as vias de aplicação. Subdoses de glifosato aplicadas em plantas jovens de café, em condições hidropônicas, prejudicam o seu crescimento sendo mais acentuados com o aumento das doses e quando o herbicida é absorvido pelas folhas em relação à absorção radicular.(AU)


Subject(s)
Coffee , Hydroponics , Herbicides , Absorption , Environmental Pollution , Toxicity , Rhizosphere
18.
China Journal of Chinese Materia Medica ; (24): 5160-5168, 2020.
Article in Chinese | WPRIM | ID: wpr-878801

ABSTRACT

This study is aimed to reveal the rhizosphere soil fungal community structure difference of Coptis chinensis cropping between natural forest and artificial shed modes, and provide theoretical guidance for soil improvement and C. chinensis planting. The rhizosphere soil samples of 1-5-year-old C. chinensis under natural forest and artificial shed modes were collected. Illumina high-throughput sequencing technology was used to analyze the community structure and diversity of soil fungi under the tow cropping modes,and the effects of soil nutriment indices on soil fungal community structure. The results suggested that the abundance and diversity of fungal communities in soil of 2-5-year-old C. chinensis were not significant different in both two cropping modes, but it was significantly higher than that in the 1-year-old C. chinensis. Comparing soil samples from the same year-old C. chinensis under the two cropping modes, it was found that there was no significant difference in the abundance and diversity of fungal communities. The fungal community of the rhizosphere soil was different in composition and abundance between tow cropping modes, and between different planting years. The 17 phyla,59 classes and 155 orders,and 17 phyla,59 classes and 157 orders were detected in the rhizosphere soil of C. chinensis under the cropping modes of natural forest and the artificial shed, respectively. Ascomycota, Basidiomycota and Mortierellomycota were dominant phyla in rhizosphere soil, and the average abundance of the 3 phyla accounted for 74.36% and 74.30% of the total fungi. The results of analysis of similarities showed that there were significant differences in the fungal community structure of 1-year-old and 2-year-old C. chinensis soil fungi, and there was no significant difference in the community structure of 3-5-year-old samples. Under the natural forest cropping mode, there were significant differences among the samples of different years. Under the artificial shed cropping, there were significant differences in fungal community structure between 1-year-old and 3-5-year-old C. chinensis soil, and between 2-year-old and 3-5-year-old C. chinensis soil. The results of canonical correlation analysis showed that soil pH and soil organic matter content were the main factors affecting the soil fungal community structure. Soil organic matter content was positively correlated with Basidiomycota and Cryptomycota, pH was negatively correlated with Basidiomycota and C. ryptomycota. The planting of C. chinensis has promoted the diversity and abundance of rhizosphere fungal community significantly. For the same year-old C. chinensis soil, abundance of fungal community was no significant difference between two cropping modes. There are significant differences in the rhizosphere soil fungal community structure between tow cropping modes in the first two years of planting. Through the interaction between the rhizosphere and the soil and the continuous selection of the rhizosphere to the fungal community, the fungal community structure tended to be the same between the two cropping modes in rhizosphere soil of 3-5-year old C. chinensis. The soil pH and orga-nic matter content were the main factors affecting the change of fungal community structure.


Subject(s)
Coptis , Forests , Fungi , Mycobiome , Plant Roots , Rhizosphere , Soil , Soil Microbiology
19.
China Journal of Chinese Materia Medica ; (24): 5452-5458, 2020.
Article in Chinese | WPRIM | ID: wpr-878780

ABSTRACT

To investigate the effect of Polygonum multiflorum-Andrographis paniculata intercropping system on rhizosphere soil actinomycetes of P. multiflorum, the community structure and diversity of soil actinomycetes were studied by using the original soil as the control group and the rhizosphere soil actinomycetes communities of P. multiflorum under monoculture and intercropping systems as the experimental group. In this study 655 221 effective sequences were obtained with an average length of 408 bp. OTU coverage and rarefaction curve showed that the sequencing could represent the real situation of soil actinomycetes. According to the results of alpha diversity analysis, the diversity soil actinomycetes varied as follows: original soil>intercropping soil>monoculture soil. The soil actinomycetes community structure and the relative abundance of dominant genera were significantly changed by both monoculture and intercropping, especially monoculture. OTU clustering and PCA analysis of soil samples showed that all the soil samples were divided into three distinct groups and the original soil was more similar to intercropping soil. In addition, intercropping increased the relative abundance of some beneficial actinomyces, such as Kitasatospora and Mycobacterium, which was beneficial to maintain soil health and reduce the occurrence of soil-borne diseases. The results show that, P. multiflorum-A. paniculata intercropping reduced the change of community structure and the decrease of diversity of soil actinomycetes caused by P. multiflorum monoculture, and made the actinomycete community in rhizosphere soil of P. multiflorum close to the original soil.


Subject(s)
Actinobacteria , Actinomyces , Agriculture , Andrographis , Fallopia multiflora , Rhizosphere , Soil , Soil Microbiology
20.
China Journal of Chinese Materia Medica ; (24): 463-471, 2020.
Article in Chinese | WPRIM | ID: wpr-1008526

ABSTRACT

Gastrodia elata is a heterotrophic plant that needed to be symbiotic with Armillaria. The obstacle of continuous cropping in G. elata is serious during the G. elata cultivation, and the mechanism of obstacle in G. elata continuous cropping had not been solved. The planting of G. elata-Phallus impudicus is a new sequential planting pattern adopted in Guizhou province, but the effect of the cultivation on soil microbial community structure is still unclear. In this study, we collected four soil samples for the research including the soil without planted G. elata as control(CK), rhizosphere soil samples tightly adhering to the G. elata surface(GE), rhizosphere soil samples tightly adhering to Armillaria which was symbiotic with G. elata(AGE), the rhizosphere soil of P. impudicus planting after G. elata cultivation(PI). In order to explore the mechanism, the research study on the soil of G. elata-P. impudicus by using ITS and 16 S rDNA high-throughput sequencing technologies to detect soil microbial community structure including fungi and bacteria in the soil of CK, AGE, GE and PI. OTU clustering and PCA analysis of soil samples showed that the soil microbial diversity was relatively similar in AGE and GE. And the soil microbial in PI and CK clustered together. The results showed that AGE and GE had similar soil microbial diversity, as well as PI and CK. Compared with CK, the soil microbial diversity and abundance in AGE and GE were significantly increased. But the microbial diversity and abundance decreased in PI compared with AGE and GE. The annotation indicated that the abundance of Basidiomycota, Acidobacteria and Chloroflexi decreased, and that of Ascomycota, Zygomycota and Proteobacteria increased in AGE and GE compared with CK. In contrast to AGE and GE, PI was the opposite. The abundance of Basidiomycota, Acidobacteria and Chloroflexi increased in PI compared with AGE and GE. The abundance of microorganisms in the soil of PI and CK was similar. In addition, the co-culture of Armillaria and P. impudicus indicated that P. impudicus had obvious antagonistic effects on the growth of Armillaria. Therefore, it is speculated that the mechanism of G. elata-P. impudicus planting pattern related to the change of soil microbial. And we supposed that P. impudicus might inhibit the growth of Armillaria and change the soil microbial community structure and the abundance of soil microbial. And the soil microbial community structure was restored to a state close to that of uncultivated G. elata. Thus, the structure of soil microbial community planting G. elata could be restored by P. impudicus planting.


Subject(s)
Agaricales/growth & development , Bacteria/classification , Fungi/classification , Gastrodia/microbiology , Microbiota , Rhizosphere , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL