Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Rev. argent. microbiol ; 52(1): 27-30, mar. 2020. graf
Article in English | LILACS | ID: biblio-1155681


Abstract The yeast Saccharomyces cerevisiae var. boulardii is a biotherapeutic agent used for the prevention and treatment of several gastrointestinal diseases. We report a case of fungemia in a patient suffering from Clostridium difficile-associated diarrhea and treated with metronidazole and a probiotic containing S. cerevisiae var. boulardii. The yeasts isolated from the blood culture and capsules were identified by MALDI-TOF MS and API ID 32 C as S. cerevisiae, and showed the same appearance and color on CHROMAgar Candida. Treatment with fluconazole 400mg/day was initiated and the probiotic was stopped. The patient was discharged from hospital in good condition and was referred to a rehabilitation center. We suggest that the potential benefit of S. cerevisiae var. boulardii should be accurately evaluated, especially in elderly patients. Moreover, all physicians should be trained in the use of probiotic agents and enquire whether the use probiotics was included in the patients'medical histories. © 2019 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (

Resumen Saccharomyces cerevisiae var. boulardii es un agente bioterapéutico usado en la prevención y el tratamiento de varias enfermedades gastrointestinales. Informamos de un caso de fungemia en una paciente con diarrea asociada a Clostridium difficile, y tratada con metron-idazol y un probiótico que contenía S. cerevisiae var. boulardii. Las levaduras aisladas a partir del hemocultivo y del contenido de las cápsulas tomadas por la paciente se identificaron como S. cerevisiae mediante MALDI-TOF MS y API® ID 32C, las colonias mostraron el mismo color y aspecto en el medio CHROMAgar™ Candida. Se instauró un tratamiento con fluconazol 400mg/día y se suspendió el probiótico. La paciente fue dada de alta del hospital en buenas condiciones, y remitida a un centro de rehabilitación. Sugerimos que el beneficio potencial del uso de S. cerevisiae var. boulardii debe ser evaluado en cada paciente, especialmente en personas añosas. El uso de probióticos debería incluirse en los interrogatorios orientados al diagnóstico y formar parte de la historia clínica. © 2019 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. Este es un artículo Open Access bajo la licencia CC BY-NC-ND (

Aged, 80 and over , Female , Humans , Saccharomyces cerevisiae/isolation & purification , Fungemia/etiology , Probiotics/adverse effects , Saccharomyces boulardii , Mycoses/etiology
São Paulo; s.n; s.n; 2019. 94 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1024757


L-asparaginase é um inibidor eficiente do crescimento tumoral, usado em sessões de quimioterapia contra a Leucemia Linfoblástica Aguda (LLA), resultando na remissão completa da doença em 90% dos pacientes tratados. A L-asparaginase II de Saccharomyces cerevisiae (ScASNaseII) tem alto potencial de superar os efeitos adversos da L-asparaginase de bactéria, porém sua produção endógena resulta em uma proteína hipermanosilada e, consequentemente, imunogênica. A cepa de Pichia pastoris Glycoswitch tem a maquinaria para expressar e secretar altas quantidades de enzima com glicosilação humanizada. Nesse trabalho, descrevemos o processo genético para expressar a ScASNaseII no meio extracelular pela P. pastoris Glycoswitch, e também os parâmetros bioquímicos, perfil cinético, citotoxicidade contra células leucêmicas e a interferência da glicosilação na atividade da enzima obtida. Nossos dados mostram que a cepa aplicada foi capaz de expressar ScASNaseII no meio extracelular passível de purificação de proteínas contaminantes com apenas um passo cromatográfico. A atividade específica para asparagina foi 218,2 UI/mg e a atividade glutaminásica representou 3,1% da atividade asparaginásica. Os parâmetros cinéticos foram KM = 120,5 µM e a eficiência catalítica de 3,8 x 105 M-1s-1. Análises por meio de gel nativo sugerem uma conformação tetramérica de aproximadamente 150 kDa. Essa é uma nova estratégia de produzir essa enzima de forma extracelular, com mais facilidade de purificação e com melhores propriedades biotecnológicas

L-asparaginase is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cell; its use results in 90% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to overcome the side effects of bacteria L-asparaginase, but the endogenous production of it results in hypermannosylated immunogenic enzyme. However, Pichia pastoris Glycoswitch strain has the machinery to express and secrete high quantity of the enzyme and with humanized glycosylation. Here we describe the genetic process to acquire the ScASNaseII in the extracellular medium expressed by P. pastoris Glycoswitch, and the biochemical properties of the resultant enzyme, kinetic profile, cytotoxicity against ALL cell line and the interference of glycosylation in its activity. Our data show that the strain employed is able to express extracellular asparaginase active and possible to be purified of contaminant proteins using a single chromatographic step. The specific activity using asparagine was 218.2 and the glutaminase activity represents 3.1% of its asparaginase activity. The kinetics parameters were KM=120.5 µM and a catalytic efficiency of 3.8x105 M-1s-1. The Native-PAGE suggested a tetrameric protein conformation, with approximately 150 kDa. This is a novel strategy to produce this enzyme extracellularly, easier to purify and with better biotechnological properties

Pichia/isolation & purification , Asparaginase/analysis , Saccharomyces cerevisiae/isolation & purification , Glycosylation , Recombinant Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
Braz. j. microbiol ; 49(4): 808-815, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974288


ABSTRACT Chicha, a type of beer made mainly with maize or cassava, is a traditional fermented beverage of the Andean region. There have only been a few studies on yeasts associated with chicha fermentation, and the species diversity occurring during the production of this beverage is not known. The objective of this study was to determine the biodiversity of yeasts in chicha, and to characterize the Saccharomyces cerevisiae populations associated with the production of chicha de jora, seven-grain chicha, chicha de yuca, and chicha de morocho in Ecuador. The molecular diversity of S. cerevisiae populations was determined by restriction polymorphism mitochondrial profiles. The beverages were characterized based on their physicochemical parameters. Twenty-six species were identified, and the most prevalent species were S. cerevisiae and Torulaspora delbrueckii. Other yeast species were isolated at low frequencies. Among 121 isolates of S. cerevisiae, 68 different mtDNA molecular profiles were identified. These results showed that chichas are fermented by a high number of different strains of S. cerevisiae. Some other species provided a minor contribution to the fermentation process. The chicha presented generally similar physicochemical parameters to those observed for other traditional fermented beverages, and can be considered as an acid fermented beverage.

Saccharomyces cerevisiae/isolation & purification , Beer/microbiology , Yeasts/isolation & purification , Yeasts/metabolism , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Beer/analysis , Yeasts/classification , Yeasts/genetics , Manihot/metabolism , Manihot/microbiology , Zea mays/metabolism , Zea mays/microbiology , Biodiversity , Ecuador , Fermentation
Braz. j. microbiol ; 48(3): 592-601, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889150


Abstract The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41 g L-1, reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid). Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains) providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains.

Humans , Alcoholic Beverages/microbiology , Kefir/analysis , Malus/microbiology , Acetic Acid/analysis , Acetic Acid/metabolism , Acetobacter/isolation & purification , Acetobacter/metabolism , Biodiversity , Brazil , Ethanol/analysis , Ethanol/metabolism , Fermentation , Food Handling , Kefir/microbiology , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Malus/metabolism , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/metabolism , Taste
Braz. j. microbiol ; 48(3): 461-475, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889144


Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS) countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR) and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v), respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ) at 40 °C were achieved using the Box-Behnken experimental design (BBD). The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Ethanol/metabolism , Pichia/isolation & purification , Pichia/genetics , Pichia/chemistry , Asia, Southeastern , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/chemistry , Sorghum/metabolism , Glucose/metabolism , Hot Temperature
Braz. j. microbiol ; 47(1): 181-190, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-775120


Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/isolation & purification , Vitis/microbiology , Acetic Acid/metabolism , Bacterial Adhesion , Czech Republic , DNA Fingerprinting , Drug Tolerance , Ethanol/toxicity , Hydrogen Sulfide/metabolism , Molecular Typing , Mycological Typing Techniques , Malates/metabolism , Osmotic Pressure , Polymerase Chain Reaction , Stress, Physiological , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Sulfur Dioxide/toxicity
Braz. j. microbiol ; 45(3): 977-983, July-Sept. 2014. ilus, tab
Article in English | LILACS | ID: lil-727029


Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05) from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.

Endophytes/isolation & purification , Microbiological Techniques/methods , Sterilization/methods , Triticum/microbiology , Denaturing Gradient Gel Electrophoresis , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/isolation & purification , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Surface Properties , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/ultrastructure , Triticum/ultrastructure
Rev. colomb. biotecnol ; 15(2): 18-28, jul.-dic. 2013. graf
Article in Spanish | LILACS | ID: lil-703333


Una de las técnicas más utilizadas para la predicción de producción de bioproductos y distribución intracelular de flujos de microorganismos es el Análisis de Balance de Flujos - FBA por sus siglas en inglés. El FBA requiere de una función objetivo que represente el objetivo biológico del microorganismo estudiado. En este trabajo se propone un nuevo tipo de funciones objetivo basada en la combinación de objetivos de compartimentos físicos presentes en el microorganismo estudiado. Este tipo de funciones objetivo son examinadas junto con un modelo estequiométrico extraído de la reconstrucción iMM904 del microorganismo S. cerevisiae. Su desempeño se compara con la función objetivo más usada en la literatura, la maximización de biomasa, en condiciones experimentales anaeróbicas en cultivos continuos y aeróbicas en cultivos tipo lote. La función objetivo propuesta en este trabajo mejora las predicciones de crecimiento en un 10% y las predicciones de producción de etanol en un 75% respecto a las obtenidas por la función objetivo de maximización de biomasa, en condiciones anaeróbicas. En condiciones aeróbicas tipo lote la función objetivo propuesta mejora en un 98% las predicciones de crecimiento y en un 70% las predicciones de etanol con respecto a la función objetivo de biomasa.

Flux Balance Analysis - FBA - is one of the most used techniques in prediction of microorganism bioproducts. It requires an objective function that represents biological objective of the studied microorganism. This paper presents a new kind of objective functions based on individual physical compartment objetives in the studied microorganism. These kind of functions was tested with a stoichiometric model extracted from iMM904 reconstruction of S. cerevisiae and its performance is compared with the most used objective function in literature, growth maximization, in anaerobic and aerobic batch conditions. The presented objective function outperform growth predictions in 10% and ethanol predictions in 75% compared with obtained by maximization of growth objective function, in anaerobic conditions. In aerobic batch conditions the presented objective function outperforms in 98% growth preditions and 70% ethanol predictions compared with growth maximization.

Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Ethanol/metabolism , Ethanol/chemistry , Ethanol/chemical synthesis , Forecasting/methods
Braz. j. microbiol ; 44(1): 113-118, 2013. ilus, tab
Article in English | LILACS | ID: lil-676894


Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains.

Base Sequence , Cultured Milk Products , Ethanol/analysis , Genome, Bacterial , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Phenotype , Polymerase Chain Reaction/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Electrophoresis , Genetic Variation , Genotype , Methods
Braz. j. microbiol ; 43(3): 880-887, July-Sept. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-656648


In this work we characterized the occurrence of killer activity in 64 Candida glabrata clinical isolates under different conditions. We found that only 6.25 % of the clinical isolates tested were positive for killer activity against a Saccharomyces cerevisiae W303 sensitive strain. Sensitivity of killer activity to different values of pH and temperatures was analyzed. We found that the killer activity presented by all isolates was resistant to every pH and temperature tested, although optimal activity was found at a range of pH values from 4 to 7 and at 37ºC. We did not observe extrachromosomal genetic elements associated with killer activity in any of the positive C. glabrata isolates. The killer effect was due to a decrease in viability and DNA fragmentation in sensitive yeast.

Humans , Apoptosis , Antifungal Agents/analysis , Antifungal Agents/isolation & purification , Base Sequence , Candidiasis , Candida glabrata/isolation & purification , Disease Susceptibility , Drug Resistance, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Genotype , Methods , Virulence
Braz. j. microbiol ; 43(1): 157-166, Jan.-Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-622800


Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50ºC and produced ethanol at 40, 43 and 45ºC. When the cells were given heat shock at 45ºC for 30min and grown at 40ºC, 100% viability was observed for 60h, and addition of 200gl-1 ethanol has led to complete cell death at 30h. Heat shock given at 45ºC (for 30min) has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. when the cells were subjected to ethanol (200gl-1 for 30 min) and osmotic shock (sorbitol 300gl-1), trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gl-1 added ethanol and to 60% in presence of 300gl-1 sorbitol. In presence of sorbitol (200gl-1) and ethanol (50gl-1) at 40ºC, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation.

Ethanol/analysis , Ethanol/isolation & purification , Microbial Viability , Saccharomyces cerevisiae/isolation & purification , Trehalose/analysis , Cell Death , Methods , Osmotic Pressure
Braz. j. microbiol ; 41(2): 477-485, Apr.-June 2010. tab
Article in English | LILACS | ID: lil-545357


Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

Fermentation , Yeasts/growth & development , Yeasts/isolation & purification , Molasses/analysis , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/isolation & purification , Vitis , Biomass , Food Samples , Methods , Methods
Braz. j. microbiol ; 41(1): 82-90, Jan.-Mar. 2010. ilus, graf
Article in English | LILACS | ID: lil-531738


In this study, we investigated the binding ability of Saccharomayces cerevisiae to aflatoxin in pistachio nuts. The obtained results indicate that S. cerevisiae has an aflatoxin surface binding ability of 40 percent and 70 percent (with initial aflatoxin concentrations of 10 and 20 ppb) in the exponential phase. Acid treatments increase this ability to approximately 60 percent and 73 percent for the two concentrations of aflatoxin, respectively. Heat treatments also enhance surface binding to 55 percent and 75 percent, respectively. Binding appears to be a physical phenomenon that saturates within the first 2-3 hours of the process. The obtained results indicate that yeast immobilization for toxin reduction on aflatoxin-contaminated pistachios had no effect on qualitative characteristics, such as color, texture, and peroxide value. Yeast cells, viable or nonviable, are effective for aflatoxin binding, and this property could lead to a promising solution to aflatoxin contamination in high-risk foods.

Aflatoxins/analysis , Aflatoxins/isolation & purification , Biological Phenomena , Pistacia , Saccharomyces cerevisiae/isolation & purification , Food Contamination , Food Samples , Methods , Methods , Toxicity
Electron. j. biotechnol ; 12(3): 9-10, July 2009. ilus, tab
Article in English | LILACS | ID: lil-551887


The numbers of lactic acid bacteria (LAB) and yeasts that were present during a wild forest noni (Morinda coreia Ham) fermentation, the changes in its physico-chemical properties and levels of plant nutrients were investigated. LAB increased rapidly during the first 7 days and were the dominant population until after day 21 when the LAB were declining and the yeasts began to dominate. Identification of the LAB and yeasts to species level showed that the dominant LAB throughout was Lactobacillus plantarum while Lactobacillus pentosus was found but only at day 21. Saccharomyces cerevisiae was the most dominant species of yeast throughout but was slowly replaced by Pichia membranifaciens and then Pichia anomala. Rhodotolura mucilaginosa, an aerobic yeast, was only detected at the beginning of the fermentation process. It is suggested that the Pichia spp. were responsible for consuming lactic acid. After 56 days, the values of pH, acetic acid, ethanol and electrical conductivity in the fermented product were 3.66, 3.34 g L-1, 16.98 g L-1 and 14.47 mS cm-1, respectively. Increased amounts of plant nutrients were present at day 56 mostly derived from the degradation of plant material. At day 56 the amounts were as follows (in mg L-1): N 633, P 1210, K 4356, Ca 693, Mg 536, Mn 7, B 51, Zn 169, and total carbon/total nitrogen ratio (C/N ratio) 18. Based on the seed germination index (GI) of cherry tomato (Lycopersicon esculentum Mill), the extract diluted 256-fold gave the best GI of 157 percent.

Animals , Fermentation , Morinda/enzymology , Morinda/metabolism , Fertility Agents/chemical synthesis , Fertility Agents/therapeutic use , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/metabolism , Chemical Phenomena , Colony Count, Microbial , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
Journal of Army University of Medical Sciences of the I.R.Iran. 2009; 7 (3): 182-189
in Persian | IMEMR | ID: emr-125410


In the recent decays, application of the fungicides has provided some concern in the scientific society. Recently, biological control was developed as an alternative to synthetic fungicides, and considerable success was achieved by utilizing antagonistic microorganisms for controlling postharvest diseases. In this present research, two yeast antagonists of Saccharomyces cerevisiae [04,69] applied instead of fungicide that it controlled blue mold of apple caused by Penicillium expansum. Blue mold agent isolated from infected apples. Dual culture, cell free metabolite and volatile test were used in vitro assay to evaluate as potential biological control agent against apple blue. In storage assays [in vitro assays], apple fruit wounds were inoculated with 40 microl of yeast cell suspension [10[7] cell/ml] followed 24h later by P.expansum [10[5] conidia/ml]. The apples were then incubated at 20[degree sign] C and 5 [degree sign] C. The inhibition varied among isolates of yeasts and ranged from 33.12% to 58.4%, in dual culture, from 54.93% to 72.87% in volatile metabolite and from 50.23% to 76.23% in cell free metabolite test. In the storage test, two isolates of S. cerevisiae reduced the decay area from 1416 to 1435 mm[2] compared to 3151.1 mm[2] in control after at 5 [degree sign] C. At 20[degree sign] C, the lesion area ranged from 1347 to 1598 mm[2] for the antagonist treatments compared to 3257.4 mm[2] for the control treatments. The two isolates of S. cervisiae were the effective isolates at both temperatures in this assay and could be two of important new biological control agents for apple blue mold

Saccharomyces cerevisiae/isolation & purification , Penicillium
Braz. j. microbiol ; 39(2): 325-332, Apr.-June 2008. graf, tab
Article in English | LILACS | ID: lil-487713


The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL-1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL-1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30ºC. Optimum temperature range for glycerol production was determined as 25-30ºC for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30ºC. Maximum glycerol concentrations at 30ºC were obtained as 8.5 and 7.6 gL-1 for Kalecik 1 and Narince 3, respectively.

Este estudo foi conduzido em sistema descontínuo a fim de determinar o efeito do pH e da temperatura na cinética de crescimento celular ede produção de glicerol de duas linhagens selvagens de vinificação, Saccharomyces cerevisiae Kalecik 1 e Saccharomyces cerevisiae Narince 3. Os maiores valores de massa celular seca e de velocidade específica de crescimento foram obtidos em pH 4,0 para as duas linhagens. A máxima velocidade específica de produção de glicerol foi obtida em pH 5,92 e 6,27 para a linhagem Kalecik 1 e Narince 3, respectivamente. A linhagem Kalecik 1 proporcionou a máxima produção de glicerol, 8,8 gL-1 em pH 6,46. A máxima concentração de glicerol obtida pela linhagem Narince 3 foi de 9,1 gL-1 no pH 6,48. As duas linhagens atingiram a máxima velocidade específica de crescimento à temperatura de 30ºC. A faixa de temperatura ótima para a produção de glicerol para a linhagem Kalecik 1 variou de 25 a 30ºC. A linhagem Narince 3 atingiu a máxima velocidade específica de produção de glicerol a 30ºC. A máxima concentração de glicerol, obtida a 30ºC, foi de 8,5 e 7,6 gL-1 para as linhagens Kalecik 1 e Narince 3, respectivamente.

Cell Enlargement , Glycerol/analysis , In Vitro Techniques , Industrial Microbiology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/isolation & purification , Food Samples , Hydrogen-Ion Concentration , Kinetics , Methods , Reference Standards , Vitis
Braz. j. microbiol ; 39(1): 50-55, Jan.-Mar. 2008. tab
Article in English | LILACS | ID: lil-480673


Probiotics are viable defined microorganisms (bacteria or yeasts) that exert a beneficial effect on the health of the host when ingested in adequate amounts. Screening for such biotherapeutic agents is commonly performed by in vitro assays simulating gastrointestinal environment to determine the ability to survive in the digestive tract. In the present study, the possibility of extrapolation of data obtained in in vitro assays to in vivo conditions was studied using five Saccharomyces cerevisiae strains isolated from Brazilian Atlantic rain forest. Trehalose contents and survival after exposure to a combination of physiological stresses generally found in the gastrointestinal tract of humans were determined for the five yeasts and compared to the behavior of Saccharomyces boulardii, a well-known probiotic. The results were completed with the colonization capacity of the gastrointestinal tract of gnotobiotic mice by these yeast strains. Some results obtained by in vitro assays are not confirmed by in vivo experiments, indicating that the extrapolation cannot be always done.

Probióticos são definidos como microrganismos (bactérias e leveduras) que exercem um efeito benéfico na saúde do hospedeiro quando ingeridos em quantidades adequadas. A seleção desses agentes bioterapêuticos normalmente é feita por testes in vitro simulando o ambiente gastrointestinal que determina a capacidade de sobrevivência no trato digestivo. Neste trabalho, a possibilidade de extrapolação dos dados obtidos nos testes in vitro para as condições in vivo foi estudada utilizando cinco linhagens de Saccharomyces cerevisiae isoladas da floresta Atlântica brasileira. O conteúdo de trealose e a sobrevivência após a exposição a diversos estresses fisiológicos geralmente encontrados no trato gastrointestinal de humanos foram determinados para as cinco linhagens e os resultados comparados com a Saccharomyces boulardii, um probiótico conhecido. Esses resultados foram completados com a capacidade de colonização do trato gastrointestinal de camundongos gnotobióticos pelas leveduras. Pelos resultados obtidos, concluimos que os testes in vitro não são confirmados pelos ensaios in vivo, indicando que essa extrapolação não pode sempre ser feita.

Animals , In Vitro Techniques , Mycoses , Probiotics/isolation & purification , Saccharomyces cerevisiae/isolation & purification , Saccharomyces/isolation & purification , Diagnostic Techniques and Procedures , Trehalose/analysis , Yeasts , Methods , Stress, Mechanical
Braz. j. microbiol ; 39(1): 108-114, Jan.-Mar. 2008. graf, tab
Article in English | LILACS | ID: lil-480685


Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55ºC, and, in the substratum absence, the thermostability was for 1h at 50ºC. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65ºC was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.

A glucoamilase é amplamente utilizada na indústria de alimentos no processamento do amido para a produção de xarope com alto teor de glicose e também muito empregada nos processos de fermentação para produção de cerveja e etanol. Neste trabalho a glucoamilase de Aspergillus awamori expressa em Saccharomyces cerevisiae produzida sob fermentação líquida foi avaliada quanto à produtividade em diferentes amidos e caracterizada físico-quimicamente. A enzima apresentou alta atividade específica de 13,8 U/mg proteína e de 2,9 U/mg biomassa ao final de 48 h de fermentação em meio contendo amido solúvel. A glucoamilase apresentou temperatura ótima de atividade a 55ºC, e temperatura de desnaturação térmica na ausência de substrato por 1h a 50ºC. O pH ótimo de atividade foi na faixa de 3,5 - 4,0 e a estabilidade ao pH entre os valores 5,0 e 7,0. A meia vida a 65ºC foi 30,2 min., e a energia de desnaturação foi de 234.3 KJ mol-1. A hidrólise em diferentes substratos mostrou a preferência da enzima pelos substratos com maior grau de polimerização, sendo o amido de milho gelatinizado o substrato preferencial à ação enzimática.

Aspergillus/enzymology , Aspergillus/isolation & purification , Carbon/analysis , Fermentation , /analysis , In Vitro Techniques , Starch and Fecula , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/isolation & purification , Methods
Rev. argent. microbiol ; 39(4): 230-236, oct.-dic. 2007. ilus, tab
Article in Spanish | LILACS | ID: lil-634563


La identificación rápida y segura de los agentes etiológicos y el desarrollo de nuevos antifúngicos con blancos de acción más específicos resultarán en tratamientos de las micosis más efectivos y menos lesivos. Mediante un método molecular rápido (ITS1-5.8S ADNr-ITS2 PCR-RFLP) se identificaron 53 aislamientos de levaduras provenientes de infecciones no sistémicas registradas en hospitales públicos de la ciudad de Neuquén y en un centro oftalmológico de Buenos Aires durante el año 2005. Adicionalmente y utilizando el método de inhibición del crecimiento en placa, se evaluó la sensibilidad de estas levaduras a toxinas killer producidas por levaduras indígenas de la Patagonia y por cepas de referencia. Ocho especies de levaduras fueron identificadas entre los aislamientos clínicos: Candida albicans (52%) , Candida parapsilosis (17%) , Candida tropicalis (10%) , Candida krusei (5%) , Candida glabrata (4%) , Candida guilliermondii (4%) , Kluyveromyces lactis (4%) y Saccharomyces cerevisiae (4%) . El 69% de los aislamientos de la especie mayoritaria, C. albicans, se relacionó con infecciones vaginales. Por otra parte, el 61% de las levaduras provenientes de infecciones oculares correspondió a la especie C. parapsilosis. En las condiciones de ensayo, las toxinas producidas por las levaduras killer indígenas DVMais5 y HCMeiss5 pertenecientes a las especies Pichia anomala y P. kluyveri, respectivamente, exhibieron el mayor espectro de acción sobre las levaduras aisladas de materiales clínicos.

The use of quick and reliable yeast identification methods, as well as the development of new antifungal agents with more specific targets, will enable a more efficient treatment of mycoses. In the present work, a total of 53 clinical isolates obtained from non-systemic infections in Neuquén Hospitals and an ophthalmologic clinic in Buenos Aires during 2005, were identified by means of a rapid molecular method (ITS1-5.8S ADNr-ITS2 PCR-RFLP). Additionally, the killer susceptibility of the isolates was tested against reference and indigenous killer yeasts on plate tests. Eight yeast species were identified among the clinical isolates: Candida albicans (52%), Candida parapsilosis (17%), Candida tropicalis (10%), Candida krusei (5%), Candida glabrata (4%) , Candida guilliermondii (4%) , Kluyveromyces lactis (4%) and Saccharomyces cerevisiae (4%) . Sixty-nine percent of the isolates corresponding to the predominant species ( C. albicans) were related to vaginal infections. On the other hand, 61% of the yeasts associated with ocular infections were identified as C. parapsilosis. Two indigenous killer isolates DVMais5 and HCMeiss5, belonging to Pichia anomala and P. kluyveri respectively, exhibited the broadest killer spectrum against clinical isolates.

Female , Humans , Male , Mycological Typing Techniques , Mycoses/microbiology , Mycotoxins/pharmacology , Proteins/pharmacology , Yeasts/isolation & purification , Candida/drug effects , Candida/isolation & purification , Candidiasis, Vulvovaginal/microbiology , Candidiasis/microbiology , Drug Resistance, Fungal , Eye Infections, Fungal/microbiology , Killer Factors, Yeast , Kluyveromyces/drug effects , Kluyveromyces/isolation & purification , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/isolation & purification , Yeasts/drug effects
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 42(1): 119-126, jan.-mar. 2006. ilus, tab, graf
Article in English | LILACS | ID: lil-431432


Despite the availability of several Saccharomyces cerevisiae commercial strains intended for wine production, strains isolated from winery regions are usually more adapted to their own climatic conditions, grapes and also partially responsible for particular characteristics that frequently identify specific wines and regions. Thus the microbiota of an important winery region (Colombo) was studied in order to isolate and characterize S. cerevisiae strains that could be used on wine production. From 61 yeasts isolated, 14 were identified as S. cerevisiae. Some of them showed fermentative characteristics even better than commercial strains indicating that they could be applied on wine production in order to increase the quality and assure the particular wine characteristics of that region.

Food Production , Saccharomyces cerevisiae/isolation & purification , Wine , Biotechnology