Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
2.
Chinese Journal of Biotechnology ; (12): 2127-2146, 2021.
Article in Chinese | WPRIM | ID: wpr-887786

ABSTRACT

Streptomyces are major sources of bioactive natural products. Genome sequencing reveals that Streptomyces have great biosynthetic potential, with an average of 20-40 biosynthetic gene clusters each strain. However, most natural products from Streptomyces are produced in low yields under regular laboratory cultivation conditions, which hamper their further study and drug development. The production of natural products in Streptomyces is controlled by the intricate regulation mechanisms. Manipulation of the regulatory systems that govern secondary metabolite production will strongly facilitate the discovery and development of natural products of Streptomyces origin. In this review, we summarize progresses in pathway-specific regulators from Streptomyces in the last five years and highlight their role in improving the yields of corresponding natural products.


Subject(s)
Biological Products , Multigene Family , Secondary Metabolism , Streptomyces/genetics
3.
Article in Chinese | WPRIM | ID: wpr-879149

ABSTRACT

Plants have a memory function for the environmental stress they have suffered. When they are subjected to repeated environmental stress, they can quickly and better activate the response and adaptation mechanism to environmental stress, thus realizing long-term stable reproduction. However, most of the relevant studies are applied to crops and Arabidopsis thaliana rather than medicinal plants about the improvement of plant growth status and the effect on phytoalexin biosynthesis. In this study, yeast extract(YE) was used as an elicitor to simulate biotic stress, and the changes in biomass and the content of some secondary metabolites were measured by giving repeated stresses to Sorbus aucuparia suspension cell(SASC). The results showed that the accumulation levels of biomass and some secondary metabolites in SASC subjected to repeated stress are significantly increased at some time points compared with single stress. A phenomenon that SASC can memorize biotic stress is confirmed in this study and influences phytoalexin accumulation in SASC. Furthermore, the work laid the groundwork for research into the transgenerational stress memory mechanism of medicinal plant.


Subject(s)
Cells, Cultured , Secondary Metabolism , Sorbus , Stress, Physiological
4.
Article in English | WPRIM | ID: wpr-881042

ABSTRACT

Two new 2-carboxymethyl-3-hexyl-maleic anhydride derivatives, arthrianhydride A (1) and B (2), along with three known compounds 3-5, were isolated from the fermentation broth of a grasshopper-associated fungus Arthrinium sp. NF2410. The structures of new compounds 1 and 2 were determined based on the analysis of the HR-ESI-MS and NMR spectroscopic data. Furthermore, compounds 1 and 2 were evaluated on inhibitory activity against the enzyme SHP2 and both of them showed moderate inhibitory activity against SHP2.


Subject(s)
Animals , Anhydrides/pharmacology , Biological Products/pharmacology , Enzyme Inhibitors/pharmacology , Fungi/chemistry , Grasshoppers/microbiology , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Secondary Metabolism
5.
Article in Chinese | WPRIM | ID: wpr-827987

ABSTRACT

Numerous studies showed that the growth of medicinal plants in their native areas was simultaneously affected by abiotic stress combinations. Compared with single stress, plants have unique responses to a combination of different abiotic stresses and cannot be inferred directly from plants' responses to each individual stress. The effect of combined stresses on plants usually has three types of synergistic antagonism or independence. The secondary metabolism in the process of medicinal plant stress combination response also played a vital role, and environmental stresses can spur the accumulation of secondary metabolites, but under the stress combination, plants induce specific gene expression of key enzymes on secondary metabolic pathways, in turn, the accumulation of secondary metabolites against stress is formed. When plants are subjected to stress combination, the interaction of multiple signaling pathways makes it highly complex for plants to respond to stress combination. This paper summarized the effects of stress combination on physiological and secondary metabolism of medicinal plants, and discussed the related physiological, biochemical and molecular mechanisms. It provides theoretical basis for improving the adaptability of medicinal plants to adversity, improving the quality of Chinese medicinal materials, and further optimizing the cultivation of medicinal plants.


Subject(s)
Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plants, Medicinal , Secondary Metabolism , Stress, Physiological
6.
Article in Chinese | WPRIM | ID: wpr-827988

ABSTRACT

This paper summarized the effects of ecological planting on secondary metabolism firstly and pointed out that ecological planting can increase the content of secondary metabolites in plants, especially the content of defensive secondary metabolites. The possible mechanism was analyzed subsequently. Then, we reviewed the induction and utilization of secondary metabolism in the ecological planting of Chinese materia medica from the perspectives of biological control of pests and diseases, promotion of beneficial microorganism accumulation, optimization of mixed planting, regulation of no-tillage and straw cover. In this article, we pointed out that paying close attention to secondary metabolism is the most important feature of ecological planting of Chinese materia medica. Ecological planting can promote the accumulation of secondary metabolites of Chinese materia medica which means can improve the quality of Chinese materia medica, beneficial to the prevention and control of diseases, insects and weeds. Furthermore, lacking of systemic researches,the extensive verifications and systematic in-depth researches on the ecological planting of Chinese materia medica should be carry out urgently.


Subject(s)
Drugs, Chinese Herbal , Materia Medica , Medicine, Chinese Traditional , Plants, Medicinal , Secondary Metabolism
7.
Article in Chinese | WPRIM | ID: wpr-1008497

ABSTRACT

"Huajiao" is dried ripe fruit peel of Zanthoxylum bungeanum or Z. schinifolium, is konwn as geoherbs, especially the "Dahongpao" cultivated in Hanyuan, Maoxian and Jiulong of Sichuan province. However, the genetic basis of Dao-di "Huajiao" is virtually unknown. The transcriptome of the fruit and leaf from Sichuan(Hanyuan, Jiulong, Lixian, Maoxian), Gansu(Wudu) province and Shaanxi(Fengxian) province was sequenced. Trinity de novo assembling resulted in a total of 177 616 unigenes. Through the KEGG, NR, SwissProt, Trembl, KOG/COG, GO, Pfam database comparision 106 644 annotated Unigene finally, 4 574 deferentially expressed genes were found in fruit between Sichuan and other provinces, including 3 740 up-regulated genes and 834 down-regulated genes. Among the up-regulated genes, 27 up-regulated genes were raleted to terpenoids, and 8 up-regulated genes were related to isoquinoline alkaloid bio-synthesis. Furthermore, it was also showed remarkable differences in groups which enrichment ratio of the diffe-rent expressed gene compared. The different expressed genes were annotated by the KEGG database into plant-pathogen interaction, plant hormone signal transduction and phenylpropanoid biosynthesis in fruit and leaf, but isoflavonoid bio-synthesis and betaine bio-synthesis were significantly different in fruit and leaf. The study laid a certain reference basis for comparison of quality and different expressed gene of Z. bungeanum from different groups.


Subject(s)
China , Fruit/chemistry , Gene Expression Profiling , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Secondary Metabolism , Transcriptome , Zanthoxylum/chemistry
8.
Article in Chinese | WPRIM | ID: wpr-1008498

ABSTRACT

Study the growth and development process of rhizomes(bamboo-like part) of Notopterygium incisum and the changes of carbohydrate, endogenous hormones and secondary metabolites, and provide theoretical guidance for the formation of high-quality N. incisum medicinal commodities under artificial cultivation. The One-year-old seedlings were transplanted to the original habitat,and the growth and physiological characteristics of N. incisum were dynamically monitored. The results showed that: ① Seedlings transplanted to the original habitat in spring could form rhizomes(bamboo-like part) in the same year. ② After 60 days of transplantation, the root length and root diameter of underground part of N. incisum had increased rapidly, and carbohydrate content in roots and rhizomes had accumulated rapidly. After 120 days of transplantation, the roots and rhizomes of underground part had grown slowly, and starch content in roots and rhizomes increased continuously, while sucrose and total soluble sugar content decreased gradually. ③ The content of abscisic acid(ABA) in rhizomes decreased firstly and then increased, while the indole acetic acid(IAA) content stabilized firstly and then increased rapidly, and the contents of gibberellin(GA_3) and zeatin riboside(ZR) continued to increase. ④ The content of notopterol in rhizomes was higher than that in roots, while the content of isoimperatorin was lower than that in roots, but the total content of the both in rhizomes was higher than that in roots. Therefore, N. incisum can form rhizomes with high content of secondary metabolites under wild tending, and the growth and development of rhizomes are closely related to changes in carbohydrates and are regulated by related endogenous hormones.


Subject(s)
Apiaceae/growth & development , Ecosystem , Phytochemicals/analysis , Plant Roots/growth & development , Plants, Medicinal/growth & development , Rhizome/growth & development , Secondary Metabolism , Seedlings/growth & development
9.
Article in Chinese | WPRIM | ID: wpr-1008543

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) is a novel technique for in-situ distribution of various substances in tissue without labeling. This technique is increasingly applied to the study of medicinal plants owing to its high spatial resolution and its potential of in-situ analysis in small molecules. In this study, the structural information and their fragmentation patterns of the midazole alkaloids(1,3-dibenzyl-4,5-dimethylimidazolium chloride and 1,3-dibenzyl-2,4,5-trimethylimi-dazolium chloride) and benzylglucosinolate in the medicinal plant Maca(Lepdium meyeni) root were analyzed by ultra-high-performance liquid phase combined with LTQ-Orbitrap mass spectrometry(UHPLC-HR-MS). The localization of these active ingredients in the cross-sections of Maca root was performed by MALDI-MSI. These results demonstrated that the two types of imidazole alkaloids had a similar distributed pattern. They were located more in the cortex and the periderm than those in the medulla of a lateral root, while the localization of benzylglucosinolate was concentrated in the center of the root rather than in the cortex and the periderm. The precise spatial distribution of various secondary metabolites in tissue provides an important scientific basis for the accumulation of medicinal plant active ingredients in tissues. In addition, this imaging method is a promising technique for the rapid evaluation and identification of the active ingredients of traditional Chinese medicine in plant tissues, as well as assisting the research on the processing of medicinal plants.


Subject(s)
Chromatography, High Pressure Liquid , Lepidium/chemistry , Phytochemicals/analysis , Plant Roots/chemistry , Plants, Medicinal/chemistry , Secondary Metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Article in Chinese | WPRIM | ID: wpr-1008567

ABSTRACT

Molecular biology is a new subject that clarifies the phenomena and nature of life at the molecular level. Its development provides new biotechnology and methods for the study of traditional pharmacognosy. The formation of molecular biology has brought the development of pharmacognosy into a new era of gene research. Lonicerae Japonicae Flos is a classical Chinese medicine. Many scholars of home and abroad have carried out relevant studies on its molecular biology on the basis of the in-depth study with traditional methods, and have achieved certain results. In order to provide references on the method, technical for promoting the modernization of Lonicerae Japonicae Flos, and the development, protection, and utilization of other traditional Chinese medicine resources. This article summarized the application status of molecular biology methods and techniques on the identification, biosynthesis of active constituents, and molecular mechanism of secondary metabolite under stress conditions of Lonicerae Japonicae Flos in recent years. In hybridization technology of tag(RFLP), molecular markers based on PCR(RAPD, AFLP, SSR and ISSR), based on DNA sequence analysis of SNP and DNA barcode for the variety identification, diagnosis, identification of Lonicerae Japonicae Flos, and so forth in detail. At the same time, it is proposed that multi-omics technology can be used to build systems biology technology and platforms, and establish related models of secondary metabolite biosynthesis, so as to deepen acknowledge the molecular mechanism of the active component biosynthesis of Lonicerae Japonicae Flos and the accumulation of metabolites, life activities of other medicinal plants under adverse environment, then to regulate them.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Chromatography, High Pressure Liquid , DNA Barcoding, Taxonomic , Drugs, Chinese Herbal/pharmacology , Lonicera/chemistry , Medicine, Chinese Traditional , Microsatellite Repeats , Plants, Medicinal/chemistry , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Random Amplified Polymorphic DNA Technique , Secondary Metabolism
11.
Article in Chinese | WPRIM | ID: wpr-1008581

ABSTRACT

Eight compounds,(R)-2-[5-(methoxycarbonyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]acetic acid(1),(3S,4R)-3,4-dihydro-3,4-epoxy-5-hydroxynaphthalen-1(2H)-one(2),(-)-mitorubrinol(3),(-)-mitorubrin(4),(±)-asperlone A(5), terreusinone(6), verrucisidinol(7) and cerebroside C(8) were isolated from the endophytic fungus Talaromyces purpurogenus by using various column chromatographic techniques. Their structures were identified by NMR, MS, CD and optical rotation. Compounds 1 and 2 were new compounds. Their anti-diabetic activities in vitro were evaluated, and compound 1 showed moderate inhibitory activity toward XOD at 10 μmol·L~(-1) with the inhibition rate of 69.9%.


Subject(s)
Endophytes/chemistry , Hypoglycemic Agents/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Secondary Metabolism , Talaromyces/chemistry , Tylophora/microbiology , Xanthine Oxidase/antagonists & inhibitors
12.
Article in Chinese | WPRIM | ID: wpr-1008340

ABSTRACT

Atropa belladonna seedlings were used as experimental materials and cultivated by soil culture method. Different concentrations(0,0.05,0.1,0.2,0.5 mmol·L~(-1))of NO donor sodium nitroprusside(SNP) were sprayed on the leaves. The effects of different concentrations of SNP and different treatment time(4,8,12,16 d) on nitrogen metabolism, secondary metabolite content, precursor content of tropane alkaloid synthesis pathway and expression of key enzyme genes under 100 mmol·L~(-1) NaCl stress were studied. The results showed that with the prolongation of salt stress, the nitrogen metabolism and the accumulation of secondary metabolites of A. belladonna were inhibited to some extent. After treatment with different concentrations of exogenous SNP, the ammonium nitrogen content decreased dramatically, and the contents of nitrate nitrogen, free amino acid, soluble protein and the activities of key enzymes of nitrogen metabolism(NR, GS, GDH) were all greatly improved; the contents of precursor amino acids(ornithine, arginine) and polyamines(Put, Spd, Spm) in the secondary metabolic pathway have increased to varying degrees. The qRT-PCR analysis showed that exogenous SNP treatment can effectively promote the high expression of key enzyme genes PMT, TRⅠ and H6H in the secondary metabolic pathway of A. belladonna, and the production of hyoscyamine and scopolamine were increased notably. In summary, the application of appropriate concentration of SNP can effectively alleviate the inhibition of salt stress on the nitrogen metabolism and secondary metabolism of Atropa belladonna, and enhance its salt tolerance. Overall, 0.1 mmol·L~(-1) and 0.2 mmol·L~(-1) SNP treatment achieved the most remarkable effect.


Subject(s)
Atropa belladonna/metabolism , Hyoscyamine/analysis , Nitrogen/metabolism , Nitroprusside , Scopolamine/analysis , Secondary Metabolism , Sodium Chloride , Stress, Physiological
13.
Article in Chinese | WPRIM | ID: wpr-1008321

ABSTRACT

Phytochemical investigation of the culture of Epicoccum nigrum,an endolichenic fungus inhabiting Leptogium masiaticum,led to the isolation of 11 compounds. Based on NMR spectroscopy and HRESIMS data,their structures were determined as one alkaloid fusaricide( 1),and seven benzofuran derivatives including epicoccone( 2),4,6-dihydroxy-5-methoxy-7-methyl-1,3-dihydro isobenzofuran( 3),5-methyl-epicoccone B( 4),3,6,7-trihydroxy-5-methoxy-4-methylisobenzo furan-1( 3 H)-one( 5),3-methoxyepicoccone B( 6),2,3,4-trihydroxy-6-( hydroxymethyl)-5-methylbenzyl-alcohol( 7),and isoochracinic acid( 8),together with three epicoccolide analogs epicocconigrones A( 9),epicoccolide B( 10),and epicocconigrones B( 11). Compounds 1,9 and 10 showed potent microorganism inhibitory effects. These results indicated the potential perspective of this endophytic fungus as an eco-friendly biocide.


Subject(s)
Ascomycota/chemistry , Endophytes/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Secondary Metabolism
14.
Biol. Res ; 52: 39, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019503

ABSTRACT

In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.


Subject(s)
Plant Growth Regulators/metabolism , Stress, Physiological/physiology , Plant Physiological Phenomena , Secondary Metabolism/physiology , Plants/metabolism , Signal Transduction , Plant Shoots/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant/physiology , Cell Culture Techniques
15.
Braz. j. microbiol ; 49(2): 207-209, Apr.-June 2018. tab
Article in English | LILACS | ID: biblio-889240

ABSTRACT

Abstract Streptomycetes remain as one of the important sources for bioactive products. Isolated from the mangrove forest, Streptomyces gilvigriseus MUSC 26T was previously characterised as a novel streptomycete. The high quality draft genome of MUSC 26T contained 5,213,277 bp with G + C content of 73.0%. Through genome mining, several gene clusters associated with secondary metabolites production were revealed in the genome of MUSC 26T. These findings call for further investigations into the potential exploitation of the strain for production of pharmaceutically important compounds.


Subject(s)
Streptomyces/genetics , Genome, Bacterial , Environmental Microbiology , Streptomyces/isolation & purification , Base Composition , Biological Products/metabolism , Sequence Analysis, DNA , Computational Biology , Wetlands , Metabolic Networks and Pathways/genetics , Secondary Metabolism
16.
Article in Chinese | WPRIM | ID: wpr-776390

ABSTRACT

The increasing demand of Chinese materia medica could not be supplied by wild resource, and the cultivated medicinal materials become popular, which led to decreased quality of many medicinal materials due to the difference of the circumstance between the wild and the cultivated. How to improve quality becomes key points of Chinese medicine resource. The leaves of Scutellaria baicalensis were sprayed with H₂O₂, the activities of superoxide dismutase (SOD) and catalase (CAT) changed little, but there had been a marked decrease of peroxidase (POD) and ascorbic oxidase (APX), which showed that the antioxidase system declined. Meanwhile, H₂O₂, as enhanced the expression of phenylalnine ammonialyase (PAL) and β-glucuronidase (GUS) as well as activity of PAL, promoted the biosynthesis and biotransformation of flavonoids. At the day 2 after treated, H₂O₂ of 0.004 μmol·L⁻¹ the contents of the baicalin and the wogonoside decreased slightly, but the contents of the baicalein and the wogonin increased significantly, the baicalein from 0.094% to 0.324%, the wogonin from 0.060% to 0.110%, i. e. increased 246% and 83.3%, respectively.


Subject(s)
Ascorbate Oxidase , Metabolism , Catalase , Metabolism , Drugs, Chinese Herbal , Chemistry , Flavanones , Flavonoids , Glucosides , Glucuronidase , Metabolism , Hydrogen Peroxide , Peroxidase , Metabolism , Phenylalanine Ammonia-Lyase , Metabolism , Scutellaria baicalensis , Metabolism , Secondary Metabolism , Superoxide Dismutase , Metabolism
17.
Braz. j. microbiol ; 47(supl.1): 86-98, Oct.-Dec. 2016. tab
Article in English | LILACS | ID: biblio-839326

ABSTRACT

ABSTRACT The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.


Subject(s)
Animals , Plants/microbiology , Ecology , Host-Pathogen Interactions , Microbial Interactions , Microbiota , Soil Microbiology , Quorum Sensing , Secondary Metabolism
18.
Rev. biol. trop ; 64(3): 1171-1184, jul.-sep. 2016. tab, ilus
Article in Spanish | LILACS | ID: biblio-958204

ABSTRACT

ResumenEntre los principales compuestos químicos sintetizados por las plantas, pero considerados no esenciales para su metabolismo básico, están los alcaloides, los polifenoles, los glucósidos cianogénicos y las saponinas que tienen diversas funciones en las plantas y reconocidas propiedades medicinales y farmacológicas. En esta investigación se determinaron las concentraciones de los mencionados metabolitos secundarios en los extractos de las hojas de las plantas medicinales Taraxacum officinale, Parthenium hysterophorus, Artemisia absinthium, Cnidoscolus aconitifolius y Piper carpunya y se relacionaron con la toxicidad aguda contra Artemia salina. En cada bioensayo con A. salina se usaron los extractos alcohólicos de las hojas de las plantas seleccionadas a diferentes concentraciones, calculándose la proporción de organismos muertos y los CL50. Las concentraciones de alcaloides, fenoles totales, taninos, glucósidos cianogénicos y saponinas fueron determinadas mediante métodos espectrofotométricos. Este es el primer reporte de cuantificación de metabolitos secundarios en las plantas analizadas provenientes de Ecuador. T. officinale presentó las mayores concentraciones de fenoles (22.30 ± 0.23 mg/g) y taninos (11.70 ± 0.10 mg/g), C aconitifolius de glucósidos cianogénicos (5.02 ± 0.37 µg/g) y P. hysterophorus de saponinas (6.12 ± 0.02 mg/g). Las plantas evaluadas presentaron actividades hemolíticas dependiendo de las concentraciones de saponinas. Los valores de taninos determinados estuvieron entre 0.20 ± 0.01 y 11.70 ± 0.10 mg/g, por lo que no son adversos para su consumo. Aunque los valores de glucósidos cianogénicos son permisibles, es necesario monitorear la presencia de estos compuestos químicos en las plantas para minimizar problemas de salud. Los CL50 obtenidos oscilaron entre los valores 3.37 µg/mL, extremadamente letal o tóxica, para P. carpunya y 274.34 µg/mL, altamente tóxica, para T. officinale. De los análisis de correlaciones realizados a los resultados, se observó que los alcaloides favorecen de manera significativa (p<0.001) a la toxicidad aguda contra A. salina, mientras que a mayor contenido de polifenoles dicha toxicidad disminuye significativamente (p<0.001) el nivel de toxicidad de las plantas. Del análisis de componentes principales, se demuestra que las saponinas están en sinergia con los polifenoles para disminuir la toxicidad, pero tienen un efecto antagónico con los alcaloides y los glucósidos cianogénicos, lo cual evidencia que estos metabolitos secundarios presentan variabilidades en los mecanismos de acción contra A. salina, como compuestos citotóxicos. Estos resultados demuestran que las saponinas y los polifenoles pueden ser letales para A. salina a bajas concentraciones, evidenciando que este bioensayo permite evaluar extractos vegetales que contengan bajas concentraciones de compuestos con altas polaridades. La correspondencia significativamente positiva entre citoxicidad y concentración de los alcaloides, confirmada con el bioensayo de Artemia salina, puede ser útil para hallar fuentes promisorias de compuestos antitumorales y para evaluar los límites tolerables que no afecten otras células benignas. El contenido de metabolitos secundarios hallados en las plantas analizadas les atribuye un gran valor farmacológico.


Abstract:Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher polyphenol concentration the level of plants cytotoxicity decreased significantly (p<0.001). The results of principal component analysis showed that saponins apparently were in synergy with polyphenols to decrease cytotoxicity, but antagonize with alkaloids and cyanogenic glycosides, indicating that these secondary metabolites present variability in the mechanisms of action against A. salina, as cytotoxic compounds. These results also demonstrate that polyphenols and saponins can be lethal at low concentrations, demonstrating the potential of brine shrimp bioassay as a model to evaluate plant extracts containing low concentrations of chemical compounds with high polarities. The significant positive correlation between cytotoxicity and concentration of alkaloids confirmed by the bioassay of brine shrimp can be useful to identify promising sources of antitumor compounds, and to evaluate tolerable limits not affecting other benign cells. Contents of secondary metabolites found in the selected plants confer them great pharmacologic values. Rev. Biol. Trop. 64 (3): 1171-1184. Epub 2016 September 01.


Subject(s)
Animals , Plants, Medicinal/chemistry , Artemia/drug effects , Saponins/analysis , Alkaloids/analysis , Polyphenols/analysis , Glycosides/analysis , Time Factors , Biological Assay , Plant Extracts/chemistry , Asteraceae/toxicity , Asteraceae/chemistry , Euphorbiaceae/chemistry , Artemisia absinthium/chemistry , Taraxacum/chemistry , Piper/chemistry , Ecuador , Secondary Metabolism
19.
Chinese Journal of Biotechnology ; (12): 599-609, 2016.
Article in Chinese | WPRIM | ID: wpr-337438

ABSTRACT

We isolated and identified the symbiotic and adnascent microorganisms from an unidentified sponge collected from 10-meter-deep seawater of the Paracel Islands in China. A total of 16 strains were obtained and identified. Through bacteriostatic activity assay, one of the strains, Dermacoccus sp. X4, was found to effectively inhibit the growth of Staphylococcus aureus. Subsequently, its secondary metabolites were purified by silica gel partition, octadecylsilane (ODS) reverse phase, Sephadex™LH-20 size exclusion, and C18 reverse phase chromatography. Using liquid chromatography, mass spectrometry, and nuclear magnetic resonance, three of the purified compounds were structurally characterized to be one 3-(4-hydroxybenzyl) hexahydropyrrolo [1,2-a]pyrazine-1,4-dione and two indole acid glycerides. This is the first report about indole acid glyceride isolated from microbial secondary metabolites, enriching marine drug candidate resources.


Subject(s)
Animals , Actinomycetales , Chemistry , China , Chromatography, Liquid , Indoles , Pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Porifera , Microbiology , Seawater , Secondary Metabolism , Staphylococcus aureus
20.
Rev. bras. plantas med ; 18(2,supl.1): 588-596, 2016. tab
Article in Portuguese | LILACS | ID: biblio-830064

ABSTRACT

RESUMO Objetivou neste trabalho analisar a concentração de polifenóis totais, flavonoides e capacidade antioxidantes por meio dos métodos ABTS e FRAP, em erveiras jovens cultivadas em solo coberto e com sombreamento. Mudas de erva-mate foram submetidas aos tratamentos com solos cobertos e desnudos em sombreamentos de 0, 18, 35 e 50%, após sete e onze meses de cultivo, verão e outono, respectivamente. Foram coletadas folhas maduras para realização dos extratos utilizados para as análises de compostos fenólicos por meio da reação de oxirredução com reagente de Folin-Ciocalteu, flavonoides por método colorimétrico e capacidade antioxidante por frente ao radical ABTS e poder de redução do ferro (FRAP). O teor de compostos fenólicos foi maior nos tratamentos com 35% de sombreamento em comparação ao grupo dos flavonoides e capacidade antioxidante, o que foi demonstrado pela correlação do sombreamento com estes parametros. No método FRAP a maior correlação demonstra que o outono é a melhor época de colheita por apresentar maior concentração de compostos fitoquímicos. Ficou evidente a influência positiva dos sombreamentos (35 e 50%) no teor de compostos fenólicos e flavonoides relacionados à capacidade antioxidante e à qualidade da erva-mate para atender ao mercado consumidor.


ABSTRACT This study aimed to analyze the concentration of total polyphenols, flavonoids, and antioxidant capacity, by the methods ABTS and FRAP, in young herbs grown in covered and shaded soil. Yerba mate seedlings were subjected to treatment with bare and covered soils in shadings of 0, 18, 35, and 50%, after seven and eleven months cultivation, summer and fall, respectively. Mature leaves were collected to perform the analyses of phenolic compounds by redox reaction with Folin-Ciocalteu reagent, of flavonoids by colorimetric method, and of antioxidant capacity by ABTS radical and FRAP (iron reduction method). The content of phenolic compounds was higher in the treatments with 35% shading in correlation with the group of flavonoids and antioxidant capacity. In the FRAP method, the higher correlation shows that autumn is the best time to harvest because of the higher concentration of phytochemical compounds. The positive influence of shading (35 and 50%) was evident in the content of phenolic compounds and flavonoids related to antioxidant capacity and better quality of yerba mate to meet the consumer market.


Subject(s)
Flavonoids/analysis , Ilex paraguariensis/growth & development , Phenolic Compounds/analysis , Antioxidants/analysis , Fluorescence Recovery After Photobleaching/methods , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL