Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Rev. bras. ginecol. obstet ; 43(6): 457-466, June 2021. tab, graf
Article in English | LILACS | ID: biblio-1341145

ABSTRACT

Abstract Objective Abnormalities in the eutopic endometrium of women with endometriosis may be related to disease-associated infertility. Although previous RNA-sequencing analysis did not show differential expression in endometrial transcripts of endometriosis patients, other molecular alterations could impact protein synthesis and endometrial receptivity. Our aim was to screen for functional mutations in the transcripts of eutopic endometria of infertile women with endometriosis and controls during the implantation window. Methods Data from RNA-Sequencing of endometrial biopsies collected during the implantation window from 17 patients (6 infertile women with endometriosis, 6 infertile controls, 5 fertile controls) were analyzed for variant discovery and identification of functional mutations. A targeted study of the alterations found was performed to understand the data into disease's context. Results None of the variants identified was common to other samples within the same group, and no mutation was repeated among patients with endometriosis, infertile and fertile controls. In the endometriosis group, nine predicted deleterious mutations were identified, but only one was previously associated to a clinical condition with no endometrial impact. When crossing the mutated genes with the descriptors endometriosis and/or endometrium, the gene CMKLR1 was associated either with inflammatory response in endometriosis or with endometrial processes for pregnancy establishment. Conclusion Despite no pattern of mutation having been found, we ponder the small sample size and the analysis on RNA-sequencing data. Considering the purpose of the study of screening and the importance of the CMKLR1 gene on endometrial


Resumo Objetivo Anormalidades no endométrio eutópico de mulheres com endometriose podem estar relacionadas à infertilidade associada à doença. Embora a análise prévia de sequenciamento de RNA não tenha evidenciado expressão diferencial em transcritos endometriais de pacientes com endometriose, outras alterações moleculares poderiam afetar a síntese de proteínas e a receptividade endometrial. Nosso objetivo foi rastrear mutações funcionais em transcritos de endométrios eutópicos de mulheres inférteis com endometriose e de controles durante a janela de implantação. Métodos Os dados do sequenciamento de RNA de biópsias endometriais coletados durante a janela de implantação de 17 pacientes (6 mulheres inférteis com endometriose, 6 controles inférteis, 5 controles férteis) foram analisados para a descoberta de variantes e a identificação de mutações funcionais. Um estudo direcionado das alterações encontradas foi realizado para compreender os dados no contexto da doença. Resultados Nenhuma das variantes identificadas foi comuma outras amostras dentro do mesmo grupo, assim como nenhuma mutação se repetiu entre pacientes com endometriose, controles inférteis e férteis. No grupo de endometriose, foram identificadas nove mutações deletérias preditas, mas apenas uma foi previamente associada a uma condição clínica sem impacto endometrial. Ao cruzar os genes mutados com os descritores endometriose e/ou endométrio, o gene CMKLR1 foi associado a resposta inflamatória na endometriose e a processos endometriais para estabelecimento da gravidez. Conclusão Apesar de nenhum padrão de mutação ter sido encontrado, ponderamos o pequeno tamanho da amostra e a análise dos dados de sequenciamento de RNA. Considerando o objetivo do estudo de triagem e a importância do gene CMKLR1 na modulação endometrial, este poderia ser um gene candidato para estudos adicionais que avaliem mutações no endométrio eutópico de pacientes com endometriose.


Subject(s)
Humans , Female , Pregnancy , Embryo Implantation , Sequence Analysis, RNA , Endometriosis/complications , Endometriosis/genetics , Endometrium/metabolism , Infertility, Female/etiology , Mutation , Computer Simulation , Case-Control Studies , Prospective Studies , Receptors, Chemokine/genetics , Infertility, Female/metabolism
2.
Article in Chinese | WPRIM | ID: wpr-880079

ABSTRACT

OBJECTIVE@#To identify differentiation related miRNA and evaluate roles of miRNA during ATRA induced myeloid differentiation.@*METHODS@#The small RNA sequencing was used to analyze differential expressed miRNAs in ATRA induced NB4 cells. Then the several up or down-regulated miRNA were selected as the research candidates. SgRNAs targeting the genome of each miRNA were designed and NB4 cells with inducible expression of Cas9 protein were generated. After transduced sgRNA into NB4/Cas9 cells, the mutation level by PCR and surveyor assay were evaluated. The cell differentiation level was investigated by surface CD11b expression via flow cytometry.@*RESULTS@#A total of 410 mature miRNAs which expressed in NB4 cells were detected out after treated by ATRA, 74 miRNAs were up-regulated and 55 were down-regulated miRNAs with DNA cleavage generated by CRISPR/Cas9 was assayed directly by PCR or surveyor assay, quantitative PCR showed that the expression of miRNA was downregulated, which evaluated that gene edition successfully inhibitied the expression of mature miRNA. MiR-223 knockout showed the myeloid differentation of NB4 significantly inhibitied, while miRNA-155 knockout showed the myeloid differentation of NB4 cells significantly increased.@*CONCLUSION@#CRISPR/Cas9 is a powerful tool for gene editing and can lead to miRNA knockout. Knockouts of miR-223 and miR-155 have shown a differentiation-related phenotype, and the potential mechanism is the integrative regulation of target genes.


Subject(s)
CRISPR-Cas Systems , Cell Differentiation , Gene Editing , MicroRNAs/genetics , Sequence Analysis, RNA , Tretinoin
3.
Article in English | WPRIM | ID: wpr-922464

ABSTRACT

RNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.


Subject(s)
Humans , Neoplasms , Precision Medicine , Sequence Analysis, RNA , Whole Exome Sequencing
4.
Article in Chinese | WPRIM | ID: wpr-879147

ABSTRACT

Single-cell transcriptome sequencing(scRNA-seq) can be used to analyze the expression characteristics of the transcriptome at the level of individual cell, and discover the heterogeneity of gene expression in individual cell that is "diluted" or averaged in study of group organization. The scRNA-seq, with the characteristics of standardization, high-throughput, and high integration, can greatly simplify the experimental operation and significantly reduce the consumption of reagents. At the same time, a variety of cells are screened and the gene expression patterns are analyzed at the single-cell level to provide a more efficient detection technique and more rich and accurate information for drug research. In the field of traditional Chinese medicine(TCM), the scRNA-seq is still a new technology, but the individual and precision concepts embodied by scRNA-seq and the theory of TCM syndrome differentiation and treatment have reached the same effect between the micro and macro aspects. This study tried to broaden the thinking for the modernization of TCM by introducing the development of scRNA-seq technology and its application in modern drug research and discussing the application prospects of scRNA-seq in TCM research.


Subject(s)
Gene Expression Profiling , Medicine, Chinese Traditional , Reference Standards , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
5.
Chinese Medical Journal ; (24): 935-943, 2021.
Article in English | WPRIM | ID: wpr-878142

ABSTRACT

BACKGROUND@#Since 2019, a novel coronavirus named 2019 novel coronavirus (2019-nCoV) has emerged worldwide. Apart from fever and respiratory complications, acute kidney injury has been observed in a few patients with coronavirus disease 2019. Furthermore, according to recent findings, the virus has been detected in urine. Angiotensin-converting enzyme II (ACE2) has been proposed to serve as the receptor for the entry of 2019-nCoV, which is the same as that for the severe acute respiratory syndrome. This study aimed to investigate the possible cause of kidney damage and the potential route of 2019-nCoV infection in the urinary system.@*METHODS@#We used both published kidney and bladder cell atlas data and new independent kidney single-cell RNA sequencing data generated in-house to evaluate ACE2 gene expression in all cell types in healthy kidneys and bladders. The Pearson correlation coefficients between ACE2 and all other genes were first generated. Then, genes with r values larger than 0.1 and P values smaller than 0.01 were deemed significant co-expression genes with ACE2.@*RESULTS@#Our results showed the enriched expression of ACE2 in all subtypes of proximal tubule (PT) cells of the kidney. ACE2 expression was found in 5.12%, 5.80%, and 14.38% of the proximal convoluted tubule cells, PT cells, and proximal straight tubule cells, respectively, in three published kidney cell atlas datasets. In addition, ACE2 expression was also confirmed in 12.05%, 6.80%, and 10.20% of cells of the proximal convoluted tubule, PT, and proximal straight tubule, respectively, in our own two healthy kidney samples. For the analysis of public data from three bladder samples, ACE2 expression was low but detectable in bladder epithelial cells. Only 0.25% and 1.28% of intermediate cells and umbrella cells, respectively, had ACE2 expression.@*CONCLUSION@#This study has provided bioinformatics evidence of the potential route of 2019-nCoV infection in the urinary system.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Gene Expression , Humans , Kidney/metabolism , SARS-CoV-2 , Sequence Analysis, RNA , Single-Cell Analysis , Urinary Bladder/metabolism
6.
Journal of Biomedical Engineering ; (6): 1010-1017, 2021.
Article in Chinese | WPRIM | ID: wpr-921840

ABSTRACT

The emergence of single-cell sequencing technology enables people to observe cells with unprecedented precision. However, it is difficult to capture the information on all cells and genes in one single-cell RNA sequencing (scRNA-seq) experiment. Single-cell data of a single modality cannot explain cell state and system changes in detail. The integrative analysis of single-cell data aims to address these two types of problems. Integrating multiple scRNA-seq data can collect complete cell types and provide a powerful boost for the construction of cell atlases. Integrating single-cell multimodal data can be used to study the causal relationship and gene regulation mechanism across modalities. The development and application of data integration methods helps fully explore the richness and relevance of single-cell data and discover meaningful biological changes. Based on this, this article reviews the basic principles, methods and applications of multiple scRNA-seq data integration and single-cell multimodal data integration. Moreover, the advantages and disadvantages of existing methods are discussed. Finally, the future development is prospected.


Subject(s)
Base Sequence , Gene Expression Profiling , Gene Expression Regulation , Humans , Sequence Analysis, RNA , Single-Cell Analysis
7.
J. appl. oral sci ; 28: e20190578, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1101256

ABSTRACT

Abstract Objective This study sought to analyze the gene expression of Candida albicans in sound root surface and root caries lesions, exploring its role in root caries pathogenesis. Methodology The differential gene expression of C. albicans and the specific genes related to cariogenic traits were studied in association with samples of biofilm collected from exposed sound root surface (SRS, n=10) and from biofilm and carious dentin of active root carious lesions (RC, n=9). The total microbial RNA was extracted, and the cDNA libraries were prepared and sequenced on the Illumina Hi-Seq2500. Unique reads were mapped to 163 oral microbial reference genomes including two chromosomes of C. albicans SC5314 (14,217 genes). The putative presence of C. albicans was estimated (sum of reads/total number of genes≥1) in each sample. Count data were normalized (using the DESeq method package) to analyze differential gene expression (using the DESeq2R package) applying the Benjamini-Hochberg correction (FDR<0.05). Results Two genes (CaO19.610, FDR=0.009; CaO19.2506, FDR=0.018) were up-regulated on SRS, and their functions are related to biofilm formation. Seven genes ( UTP20 , FDR=0.018; ITR1 , FDR=0.036; DHN6 , FDR=0.046; CaO19.7197 , FDR=0.046; CaO19.7838 , FDR=0.046; STT4 , FDR=0.046; GUT1 , FDR=0.046) were up-regulated on RC and their functions are related to metabolic activity, sugar transport, stress tolerance, invasion and pH regulation. The use of alternative carbon sources, including lactate, and the ability to form hypha may be a unique trait of C. albicans influencing biofilm virulence. Conclusions C. albicans is metabolically active in SRS and RC biofilm, with different roles in health and disease.


Subject(s)
Humans , Tooth Root/microbiology , Candida albicans/genetics , DNA, Fungal/genetics , Root Caries/microbiology , Biofilms/growth & development , Candida albicans/isolation & purification , Candida albicans/growth & development , Gene Expression , Gene Expression Regulation, Fungal , Up-Regulation , Sequence Analysis, RNA , Transcriptome , Morphogenesis
8.
Biol. Res ; 53: 13, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100919

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. RESULTS: After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. CONCLUSIONS: The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.


Subject(s)
Humans , Animals , Male , Middle Aged , Antigens, Tumor-Associated, Carbohydrate/genetics , Indians, South American/genetics , Gallbladder Neoplasms/genetics , Ascitic Fluid/metabolism , Tumor Cells, Cultured , Carcinogenicity Tests , Chile , DNA Fingerprinting , Tumor Suppressor Protein p53/genetics , Cisplatin/pharmacology , Mice, Inbred NOD , Clone Cells/drug effects , Clone Cells/metabolism , Sequence Analysis, RNA , Receptor, ErbB-2/genetics , Genes, erbB-2/genetics , Gene Expression Profiling , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epithelial Cells/metabolism , Keratin-19/genetics , Keratin-7/genetics , Carcinogenesis/genetics , Gallbladder Neoplasms/metabolism , Antineoplastic Agents/pharmacology
9.
Article in English | WPRIM | ID: wpr-880487

ABSTRACT

The recent discovery of circular RNAs (circRNAs) and characterization of their functional roles have opened a new avenue for understanding the biology of genomes. circRNAs have been implicated to play important roles in a variety of biological processes, but their precise functions remain largely elusive. Currently, a few approaches are available for novel circRNA prediction, but almost all these methods are intended for animal genomes. Considering that the major differences between the organization of plant and mammal genomes cannot be neglected, a plant-specific method is needed to enhance the validity of plant circRNA identification. In this study, we present CircPlant, an integrated tool for the exploration of plant circRNAs, potentially acting as competing endogenous RNAs (ceRNAs), and their potential functions. With the incorporation of several unique plant-specific criteria, CircPlant can accurately detect plant circRNAs from high-throughput RNA-seq data. Based on comparison tests on simulated and real RNA-seq datasets from Arabidopsis thaliana and Oryza sativa, we show that CircPlant outperforms all evaluated competing tools in both accuracy and efficiency. CircPlant is freely available at http://bis.zju.edu.cn/circplant.


Subject(s)
Arabidopsis/metabolism , Oryza/metabolism , RNA, Circular/metabolism , RNA, Plant/metabolism , Sequence Analysis, RNA/methods
10.
Protein & Cell ; (12): 740-770, 2020.
Article in English | WPRIM | ID: wpr-828746

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Adult , Aged , Aged, 80 and over , Aging , Genetics , Allergy and Immunology , Betacoronavirus , CD4-Positive T-Lymphocytes , Metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Coronavirus Infections , Allergy and Immunology , Cytokine Release Syndrome , Allergy and Immunology , Cytokines , Genetics , Disease Susceptibility , Flow Cytometry , Methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Humans , Immune System , Cell Biology , Allergy and Immunology , Immunocompetence , Genetics , Inflammation , Genetics , Allergy and Immunology , Mass Spectrometry , Methods , Middle Aged , Pandemics , Pneumonia, Viral , Allergy and Immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Young Adult
11.
Protein & Cell ; (12): 740-770, 2020.
Article in English | WPRIM | ID: wpr-828582

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Adult , Aged , Aged, 80 and over , Aging , Genetics , Allergy and Immunology , Betacoronavirus , CD4-Positive T-Lymphocytes , Metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Coronavirus Infections , Allergy and Immunology , Cytokine Release Syndrome , Allergy and Immunology , Cytokines , Genetics , Disease Susceptibility , Flow Cytometry , Methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Humans , Immune System , Cell Biology , Allergy and Immunology , Immunocompetence , Genetics , Inflammation , Genetics , Allergy and Immunology , Mass Spectrometry , Methods , Middle Aged , Pandemics , Pneumonia, Viral , Allergy and Immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Young Adult
12.
Article in Chinese | WPRIM | ID: wpr-828075

ABSTRACT

Steroidal saponins, which are the characteristic and main active constituents of Polygonatum, exhibit a broad range of pharmacological functions, such as regulating blood sugar, preventing cardiovascular and cerebrovascular diseases and anti-tumor. In this study, we performed RNA sequencing(RNA-Seq) analysis for the flowers, leaves, roots, and rhizomes of Polygonatum cyrtonema using the BGISEQ-500 platform to understand the biosynthesis pathway of steroidal saponins and study their key enzyme genes. The assembly of transcripts for four tissues generated 129 989 unigenes, of which 88 958 were mapped to several public databases for functional annotation, 22 813 unigenes were assigned to 53 subcategories and 64 877 unigenes were annotated to 136 pathways in KEGG database. Furthermore, 502 unigenes involved in the biosynthesis pathway of steroidal saponins were identified, of which 97 unigenes encoding 12 key enzymes. Cycloartenol synthase, the first key enzyme in the pathway of phytosterol biosynthesis, showed conserved catalytic domain and substrate binding domain based on sequence analysis and homology modeling. Differentially expressed genes(DEGs) were identified in rhizomes as compared to other tissues(flowers, leaves or roots).The 2 437 unigenes annotated by KEGG showed rhizome-specific expression, of which 35 unigenes involved in the biosynthesis of steroidal saponins. Our results greatly extend the public transcriptome dataset of Polygonatum and provide valuable information for the identification of candidate genes involved in the biosynthesis of steroidal saponins and other important secondary metabolites.


Subject(s)
Biosynthetic Pathways , Gene Expression Profiling , Polygonatum , Saponins , Sequence Analysis, RNA , Transcriptome
13.
Chinese Medical Journal ; (24): 2565-2572, 2020.
Article in English | WPRIM | ID: wpr-877822

ABSTRACT

BACKGROUND@#Recent studies have reported circular RNA (circRNA) expression profiles in various tissue types; however, circRNA expression profile in human epicardial adipose tissue (EAT) remains undefined. This work aimed to compare circRNA expression patterns in EAT between the heart failure (HF) and non-HF groups.@*METHODS@#RNA-sequencing was carried out to compare circRNA expression patterns in EAT specimens from coronary artery disease cases between the HF and non-HF groups. Quantitative real-time polymerase chain reaction was performed for validation. Comparisons of patient characteristics between the two groups were using t test, Mann-Whitney U test, and Chi-squared test.@*RESULTS@#A total of 141 circRNAs substantially different between the HF and non-HF groups (P 2) were detected, including 56 up-regulated and 85 down-regulated. Among them, hsa_circ_0005565 stood out, for it had the highest fold change and was significantly increased in HF patients in quantitative real-time polymerase chain reaction validation. The top highly expressed EAT circRNAs corresponded to genes involved in cell proliferation and inflammatory response, including GSE1, RHOBTB3, HIPK3, UBXN7, PCMTD1, N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B, and SPECC1. The top enriched Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway were positive regulation of metabolic processes and insulin resistance, respectively.@*CONCLUSION@#These data indicate EAT circRNAs may contribute to the pathogenesis of metabolic disorders causing HF.


Subject(s)
Adipose Tissue , Gene Ontology , Heart Failure/genetics , Humans , RNA, Circular , Sequence Analysis, RNA
14.
Protein & Cell ; (12): 740-770, 2020.
Article in English | WPRIM | ID: wpr-827016

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Adult , Aged , Aged, 80 and over , Aging , Genetics , Allergy and Immunology , Betacoronavirus , CD4-Positive T-Lymphocytes , Metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Coronavirus Infections , Allergy and Immunology , Cytokine Release Syndrome , Allergy and Immunology , Cytokines , Genetics , Disease Susceptibility , Flow Cytometry , Methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Humans , Immune System , Cell Biology , Allergy and Immunology , Immunocompetence , Genetics , Inflammation , Genetics , Allergy and Immunology , Mass Spectrometry , Methods , Middle Aged , Pandemics , Pneumonia, Viral , Allergy and Immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Young Adult
15.
Article in English | WPRIM | ID: wpr-811275

ABSTRACT

Immunoglobulin G4 (IgG4)-related dacryoadenitis and sialoadenitis (IgG4-DS) are part of a multiorgan fibroinflammatory condition of unknown etiology termed IgG4-related disease (IgG4-RD), which has been recognized as a single diagnostic entity for less than 15 years. Histopathologic examination is critical for diagnosis of IgG4-RD. CD4+ T and B cells, including IgG4-expressing plasma cells, constitute the major inflammatory cell populations in IgG4-RD and are thought to cause organ damage and tissue fibrosis. Patients with IgG4-RD who have active, untreated disease exhibit significant increase of IgG4-secreting plasmablasts in the blood. Considerable insight into the immunologic mechanisms of IgG4-RD has been achieved in the last decade using novel molecular biology approaches, including next-generation and single-cell RNA sequencing. Exploring the interactions between CD4+ T cells and B lineage cells is critical for understanding the pathophysiology of IgG4-RD. Establishment of pathogenic T cell clones and identification of antigens specific to these clones constitutes the first steps in determining the pathogenesis of the disease. Herein, the clinical features and mechanistic insights regarding pathogenesis of IgG4-RD were reviewed.


Subject(s)
B-Lymphocytes , Clone Cells , Dacryocystitis , Diagnosis , Fibrosis , Humans , Immunoglobulins , Molecular Biology , Plasma Cells , Sequence Analysis, RNA , Sialadenitis , T-Lymphocytes
16.
Article in English | WPRIM | ID: wpr-811070

ABSTRACT

The transcriptome represents the complete set of RNA transcripts that are produced by the genome under a specific circumstance or in a specific cell. High-throughput methods, including microarray and bulk RNA sequencing, as well as recent advances in biostatistics based on machine learning approaches provides a quick and effective way of identifying novel genes and pathways related to asthma, which is a heterogeneous disease with diverse pathophysiological mechanisms. In this manuscript, we briefly review how to analyze transcriptome data and then provide a summary of recent transcriptome studies focusing on asthma pathogenesis and asthma drug responses. Studies reviewed here are classified into 2 classes based on the tissues utilized: blood and airway cells.


Subject(s)
Asthma , Biostatistics , Genetics , Genome , Machine Learning , RNA , Sequence Analysis, RNA , Transcriptome
17.
Mem. Inst. Oswaldo Cruz ; 115: e190378, 2020. tab, graf
Article in English | SES-SP, LILACS, SES-SP | ID: biblio-1135284

ABSTRACT

BACKGROUND Key genes control the infectivity of the Schistosoma haematobium causing schistosomiasis. A method for understanding the regulation of these genes might help in developing new disease strategies to control schistosomiasis, such as the silencing mediated by microRNAs (miRNAs). The miRNAs have been studied in schistosome species and they play important roles in the post-transcriptional regulation of genes, and in parasite-host interactions. However, genome-wide identification and characterisation of novel miRNAs and their pathway genes and their gene expression have not been explored deeply in the genome and transcriptome of S. haematobium. OBJECTIVES Identify and characterise mature and precursor miRNAs and their pathway genes in the S. haematobium genome. METHODS Computational prediction and characterisation of miRNAs and genes involved in miRNA pathway from S. haematobium genome on SchistoDB. Conserved domain analysis was performed using PFAM and CDD databases. A robust algorithm was applied to identify mature miRNAs and their precursors. The characterisation of the precursor miRNAs was performed using RNAfold, RNAalifold and Perl scripts. FINDINGS We identified and characterised 14 putative proteins involved in miRNA pathway including ARGONAUTE and DICER in S. haematobium. Besides that, 149 mature miRNAs and 131 precursor miRNAs were identified in the genome including novel miRNAs. MAIN CONCLUSIONS miRNA pathway occurs in the S. haematobium, including endogenous miRNAs and miRNA pathway components, suggesting a role of this type of non-coding RNAs in gene regulation in the parasite. The results found in this work will open up a new avenue for studying miRNAs in the S. haematobium biology in helping to understand the mechanism of gene silencing in the human parasite Schistosome.


Subject(s)
Humans , Animals , Schistosoma haematobium/genetics , Schistosomiasis/parasitology , Gene Expression Regulation/genetics , Computational Biology/methods , MicroRNAs/genetics , Sequence Analysis, RNA , Transcriptome/genetics
18.
Electron. j. biotechnol ; 39: 42-51, may. 2019. graf, tab
Article in English | LILACS | ID: biblio-1052010

ABSTRACT

BACKGROUND: Common buckwheat (Fagopyrum esculentum) is an important staple food crop in southwest China, where drought stress is one of the largest limiting factors that lead to decreased crop production. To reveal the molecular mechanism of common buckwheat in response to drought stress, we performed a comprehensive transcriptomics study to evaluate gene expression profiles of common buckwheat during PEG-mediated drought treatment. RESULTS: In total, 45 million clean reads were assembled into 53,404 unigenes with an average length of 749 bp and N50 length of 1296 bp. A total of 1329 differentially expressed genes (DEGs) were identified by comparing wellwatered and drought-treated plants, out of which 666 were upregulated and 663 were downregulated. Furthermore, we defined the functional characteristics of DEGs using GO and KEGG classifications. GO enrichment analysis showed that the DEGs were significantly overrepresented in four categories, namely, "oxidoreductase activity," "oxidation­reduction process," "xyloglucan:xyloglucosyl transferase activity," and "apoplast." Using KEGG pathway analysis, a large number of annotated genes were overrepresented in terms such as "plant hormone signal transduction," "phenylpropanoid biosynthesis," "photosynthesis," and "carbon metabolism." Conclusions: These results can be further exploited to investigate the molecular mechanism of common buckwheat in response to drought treatment and could supply with valuable molecular sources for abiotic-tolerant elite breeding programs in the future.


Subject(s)
Stress, Physiological/genetics , Fagopyrum/genetics , Transcription Factors , Transferases , Signal Transduction , Gene Expression , Sequence Analysis, RNA , Droughts , Chlorophyll Binding Proteins , Real-Time Polymerase Chain Reaction , Transcriptome
19.
Braz. j. biol ; 79(1): 29-37, Jan.-Mar 2019. tab, graf
Article in English | LILACS | ID: biblio-984009

ABSTRACT

Abstract Three phosphate solubilizing bacteria were isolated and identified by 16S rRNA sequencing as Pseudomonas putida, Pseudomonas sp and Pseudomonas fulva . The strains were subjected to plant biochemical testing and all the PGPR attributes were checked in the presence of pesticides (chlorpyrifos and pyriproxyfen). The phosphate solubilizing index of strain Ros2 was highest in NBRIP medium i.e 2.23 mm. All the strains showed acidic pH (ranges from 2.5-5) on both medium i.e PVK and NBRIP. Strain Ros2 was highly positive for ammonia production as well as siderophore production while strain Rad2 was positive for HCN production. The results obtained by the strains Rad1, Rad2 and Ros2 for auxin production were 33.1, 30.67 and 15.38 µg ml-1, respectively. Strain Rad1 showed 16% increase in percentage germination in comparison to control in the presence of pesticide stress. Most promising results for chlorophyll content estimation were obtained in the presence of carotenoids upto 6 mgg-1 without stress by both strains Rad1 and Rad2. Study suggests that especially strain Ros2 can enhance plant growth parameters in the pesticide stress.


Resumo Três bactérias solubilizantes de fosfato foram isoladas e identificadas por seqüenciamento de rRNA 16S como Pseudomonas putida, Pseudomonas sp e Pseudomonas fulva. As estirpes foram submetidas a testes bioquímicos de plantas e todos os atributos PGPR foram verificados na presença de pesticidas (clorpirifos e piriproxifeno). O índice de solubilização de fosfato da estirpe Ros2 foi mais elevado no meio NBRIP, isto é, 2,23 mm. Todas as estirpes apresentaram um pH ácido (varia de 2,5-5) em ambos os meios, isto é PVK e NBRIP. A estirpe Ros2 foi altamente positiva para a produção de amoníaco, bem como a produção de sideróforos enquanto a estirpe Rad2 foi positiva para a produção de HCN. Os resultados obtidos pelas estirpes Rad1, Rad2 e Ros2 para a produção de auxina foram 33,1, 30,67 e 15,38 μg ml-1 , respectivamente. A deformação Rad1 mostrou aumento de 16% na germinação percentual em comparação com o controlo na presença de stress de pesticida. Os resultados mais promissores para a estimativa do teor de clorofila foram obtidos na presença de carotenóides até 6 mgg-1 sem estresse por ambas as cepas Rad1 e Rad2. Estudo sugere que especialmente a estirpe Ros2 pode melhorar parâmetros de crescimento de plantas no estresse de pesticidas.


Subject(s)
Phosphates/metabolism , Pseudomonas/physiology , Pyridines/administration & dosage , Triticum/growth & development , Chlorpyrifos/administration & dosage , Insecticides/administration & dosage , Pakistan , Pseudomonas/drug effects , Triticum/metabolism , Triticum/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Pseudomonas putida/drug effects , Pseudomonas putida/physiology , Sequence Analysis, RNA
20.
Biol. Res ; 52: 13, 2019. graf
Article in English | LILACS | ID: biblio-1011415

ABSTRACT

BACKGROUND: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. METHODS: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 µM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 µM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. RESULTS: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P < 0.05 and P < 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P < 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. CONCLUSION: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/3-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Carboplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Transcriptome/drug effects , Antineoplastic Agents/pharmacology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Phenotype , Signal Transduction , Cell Death/drug effects , Cell Death/genetics , Sequence Analysis, RNA , Cell Line, Tumor , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL