ABSTRACT
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Subject(s)
Humans , Ferroptosis , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/pharmacology , Signal Transduction , Epithelial Cells/metabolism , GlutathioneABSTRACT
This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.
Subject(s)
Humans , Carcinoma, Hepatocellular/genetics , Proto-Oncogene Proteins c-akt/metabolism , Caspase 3/metabolism , Liver Neoplasms/genetics , Molecular Docking Simulation , Sincalide/pharmacology , Cell Line, Tumor , Cell Proliferation , Hep G2 Cells , TOR Serine-Threonine Kinases/metabolism , ApoptosisABSTRACT
OBJECTIVES@#To investigate the inhibitory effect of cholecystokinin octapeptide (CCK-8) binding to cholecystokinin 2 receptor (CCK2R) on methamphetamine (METH)-induced neuronal apoptosis, and to explore the signal transduction mechanism of β-arrestin 2 in CCK-8 inhibiting METH-induced neuronal apoptosis.@*METHODS@#SH-SY5Y cell line was cultured, and HEK293-CCK1R and HEK293-CCK2R cell line were constructed by lentivirus transfection. Small interfering RNA (siRNA) was used to knockdown the expression of β-arrestin 2. Annexin Ⅴ-FITC/PI staining and flow cytometry were used to detect the apoptotic rate of cells, and Western blotting was used to detect the expression of apoptosis-related proteins.@*RESULTS@#The apoptosis of SH-SY5Y cells was induced by 1 mmol/L and 2 mmol/L METH treatment, the number of nuclear fragmentation and pyknotic cells was significantly increased, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were increased. CCK-8 pre-treatment at the dose of 0.1 mmol/L and 1 mmol/L significantly reversed METH-induced apoptosis in SH-SY5Y cells, and inhibited cell nuclear fragmentation, pyknosis and the changes of apoptosis-related proteins induced by METH. In lentivirus transfected HEK293-CCK1R and HEK293-CCK2R cells, the results revealed that CCK-8 had no significant effect on METH-induced changes of apoptosis-related proteins in HEK293-CCK1R cells, but it could inhibit the expression level of apoptosis-related proteins in HEK293-CCK2R cells induced by METH. The inhibitory effect of CCK-8 on METH-induced apoptosis was blocked by the knockdown of β-arrestin 2 expression in SH-SY5Y cells.@*CONCLUSIONS@#CCK-8 can bind to CCK2R and exert an inhibitory effect on METH-induced apoptosis by activating the β-arrestin 2 signal.
Subject(s)
Humans , Apoptosis/physiology , Central Nervous System Stimulants/pharmacology , HEK293 Cells , Methamphetamine/pharmacology , Sincalide/pharmacologyABSTRACT
BACKGROUND/AIMS: Pancreatic acini of streptozotocin (STZ)-induced diabetic rats release amylase less than normal acini on cholecystokinin (CCK) stimulation. Pancreatic enzyme secretion has been closely related to the intracellular calcium concentration ([Ca2+]i) of the acinar cell. In the present study, sequential changes of the intracellular calcium signal which probably underlie the altered enzyme secretion in response to CCK-8 were investigated using pancreatic acini from diabetic rats. METHODS: Diabetic rats were prepared by single intravenous injection of STZ (70 mg/kg). Stimulating experiments with CCK-8 were performed 7 days later. Pancreatic acini were isolated by collagenase digestion. Amylase release and [Ca2+]i were measured by colorimethod and calcium imaging, respectively. The geometry of intracellular calcium signal was analyzed. RESULTS: Normal acini exhibited concentration-dependent [Ca2+]i increase and regular oscillatory calcium signal on CCK-8 stimulation. Amylase release was also concentration-dependent. However, diabetic acini showed significantly less [Ca2+]i increase, prolonged time to peak [Ca2+]i, decreased calcium spikes number, and decreased amylase release compared with normal acini. The decreased [Ca2+]i in diabetic acini was restored significantly by insulin treatment. CONCLUSIONS: Relatively decreased amylase release in diabetic pancreatic acini in response to CCK, appears to be associated with altered calcium signal due to insulin deficiency.
Subject(s)
Animals , Rats , Amylases/metabolism , Calcium Signaling/drug effects , Diabetes Mellitus, Experimental/physiopathology , Pancreas/cytology , Rats, Sprague-Dawley , Sincalide/pharmacologyABSTRACT
BACKGROUND: There has been considerable interest in gall bladder motility in recent years. We compared the effects of cholecystokinin (CCK) and erythromycin on bile chemistry and gallstone formation in aged guinea pigs. METHODS: Two groups of guinea pigs (1-mo and 3-y old; n=40 each) were studied. Each group was divided into four subgroups of 10 animals each; one subgroup received lithogenic diet, one each received CCK or erythromycin daily in addition to lithogenic diet for 4 weeks, and one received normal diet. After 4 weeks, the presence of gallstones or sludge was recorded and bile composition including concentrations of bile acid, cholesterol, lecithin and protein concentrations was studied. RESULTS: No gallstones were observed in the 1-mo-old animals. In the 3-year-old animals, 9 of 10 guinea pigs on lithogenic diet and 4 of 10 in each treatment subgroup and the normal diet subgroup developed gallstones. CCK and erythromycin had similar effects on bile chemistry and stone formation. CONCLUSIONS: Aging increases the formation of gallstones in guinea pigs. Erythromycin is as effective as CCK in reducing gallstone formation by improving gall bladder motility.
Subject(s)
Aging/physiology , Animals , Bile/chemistry , Bile Acids and Salts/analysis , Cholelithiasis/etiology , Cholesterol/analysis , Cholesterol, Dietary/administration & dosage , Erythromycin/analogs & derivatives , Gallbladder Emptying/drug effects , Guinea Pigs , Male , Phosphatidylcholines/analysis , Sincalide/pharmacologyABSTRACT
Cholecystokinin (CCK-8) coexists with dopamine in some neurons and modulates dopaminergic neurotransmission. In the present study we determined the effect of CCK-8 on stereotyped behavior in supersensitive dopaminergic system. Adult male Wistar rats, weighing 200-250 g, were used. Dopaminergic supersensitivity was induced by long-term haloperidol (HAL) treatment (30 days: 1.0 mg/kg twice a day). Seventy-two hours after HAL withdrawal animals received CCK-8 (14.5 nmol/5 µl) or saline intracerebroventricularly (icv) before being tested for apomorphine (APO, 0.6 mg/kg, sc)-induced stereotyped behavior. experimental groups were: long-term HAL-treated rats that received saline (HSAL, N = 9) or CCK-8 (HCCK, N = 11) icvand long-term saline-treated rats that received CCK-8(SCCK,N = 9) or saline (SSAL, N = 8) icv. As expected, HSAL rats showed statistically significant higher stereotypy scores than SSAL rats (42 + or - 1.7 vs 31 + or - 1.6; P<0.05) and CCK-8 icv reduces stereotypy in dopaminergic-supersensitive rats, and suggest that the dopamine supersensitivity phenomenon can be modulated by CCK-8