Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 571
Filter
1.
Int. j. morphol ; 42(2)abr. 2024.
Article in English | LILACS | ID: biblio-1558139

ABSTRACT

SUMMARY: The response of the immune system to harmful stimuli leads to inflammation, and the adverse effects of the toxic hepatitis chemical, thioacetamide (TAA) on the human body are well documented. This article investigated the degree of protection provided by the combined pleotropic drug, metformin (Met) and the plant polyphenolic and the antiinflammatory compound, resveratrol (Res) on liver tissue exposed to TAA possibly via the inhibition of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) / mammalian target of rapamycin (mTOR) axis-mediated liver fibrosis, as well as amelioration of profibrotic gene and protein expression. Rats were either given TAA (200 mg/kg via intraperitoneal injection) for 8 weeks beginning at the third week (experimental group) or received during the first two weeks of the experiment combined doses of metformin (200 mg/kg) and resveratrol (20 mg/kg) and continued receiving these agents and TAA until experiment completion at week 10 (treated group). A considerable damage to hepatic tissue in the experimental rats was observed as revealed by tissue collagen deposition in the portal area of the liver and a substantial increase (p<0.0001) in hepatic levels of the inflammatory marker, tumor necrosis factor-α (TNF-α), as well as blood levels of hepatocellular injury biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). TAA also augmented hepatic tissue levels of the signalling molecule that promotes liver fibrosis (mTOR), and profibrogenic markers; alpha-smooth muscle actin (α-SMA) protein, tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA, and matrix metalloproteinase-9 (MMP-9) mRNA. All these parameters were protected (p≤0.0016) by Met+Res. In addition, a significant correlation was detected between liver fibrosis score and inflammation, liver injury enzymes, mTOR, and profibrogenesis markers. Thus, these findings suggest that Met+Res effectively protect the liver against damage induced by thioacetamide in association with the downregulation of the TNF-α/mTOR/fibrosis axis.


La respuesta del sistema inmunológico a estímulos dañinos conduce a la inflamación y los efectos adversos de la tioacetamida (TAA), una sustancia química tóxica para el hígado, están bien documentadas. Este artículo investigó el grado de protección proporcionado por el fármaco pleotrópico combinado metformina (Met), el polifenólico vegetal y el compuesto antiinflamatorio resveratrol (Res) en el tejido hepático expuesto a TAA, posiblemente a través de la inhibición de la citoquina inflamatoria, factor de necrosis tumoral α (TNF-α)/objetivo de la fibrosis hepática mediada por el eje de rapamicina (mTOR), así como mejora de la expresión de genes y proteínas profibróticas. Las ratas recibieron TAA (200 mg/kg mediante inyección intraperitoneal) durante 8 semanas a partir de la tercera semana (grupo experimental) o recibieron durante las dos primeras semanas del experimento dosis combinadas de metformina (200 mg/kg) y resveratrol (20 mg/kg) y continuaron recibiendo estos agentes y TAA hasta completar el experimento en la semana 10 (grupo tratado). Se observó un daño considerable al tejido hepático en las ratas experimentales, como lo revela el depósito de colágeno tisular en el área portal del hígado y un aumento sustancial (p<0,0001) en los niveles hepáticos del marcador inflamatorio, el factor de necrosis tumoral-α (TNF- α), así como los niveles sanguíneos de biomarcadores de lesión hepatocelular, alanina aminotransferasa (ALT) y aspartato aminotransferasa (AST). TAA también aumentó los niveles en el tejido hepático de la molécula de señalización que promueve la fibrosis hepática (mTOR) y marcadores profibrogénicos; proteína actina del músculo liso alfa (α- SMA), inhibidor tisular de las metaloproteinasas-1 (TIMP-1) mRNA y matriz metaloproteinasa-9 (MMP-9) mRNA. Todos estos parámetros fueron protegidos (p≤0.0016) por Met+Res. Además, se detectó una correlación significativa entre la puntuación de fibrosis hepática y la inflamación, las enzimas de lesión hepática, mTOR y los marcadores de profibrogénesis. Por lo tanto, estos hallazgos sugieren que Met+Res protege eficazmente el hígado contra el daño inducido por la tioacetamida en asociación con la regulación negativa del eje TNF-α/mTOR/fibrosis.


Subject(s)
Animals , Rats , Thioacetamide/toxicity , Resveratrol/pharmacology , Liver Cirrhosis/drug therapy , Metformin/pharmacology , Immunohistochemistry , Cytokines/antagonists & inhibitors , Tumor Necrosis Factor-alpha , Tissue Inhibitor of Metalloproteinase-1 , Sirolimus , TOR Serine-Threonine Kinases , Inflammation , Liver/drug effects , Liver Cirrhosis/chemically induced
2.
Article in Chinese | WPRIM | ID: wpr-1009477

ABSTRACT

In the tumor microenvironment, metabolic reprogramming can impact metabolic characteristics of T cells, thus inducing immunosuppression to promote tumor immune escape. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in regulating diverse functions of various immune cells. This review mainly focuses on the molecular mechanism of mTOR signaling in regulating cellular energy metabolism process, and the activation status of mTOR signaling under different nutritional environments. In addition, it also summarizes the role of the mTOR signaling in regulatory T cell (Tregs) metabolism and function in current studies, and evaluates the potential of mTOR as a clinical immunotherapeutic target and its current application challenges.


Subject(s)
Humans , Immunosuppression Therapy , Metabolic Reprogramming , Signal Transduction , Sirolimus , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases
3.
Neuroscience Bulletin ; (6): 35-49, 2024.
Article in English | WPRIM | ID: wpr-1010657

ABSTRACT

Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.


Subject(s)
Mice , Animals , Hypoxia , Oxidative Stress , Autophagy , Cognition , Sirolimus/therapeutic use
4.
Acta cir. bras ; Acta Cir. Bras. (Online);39: e397324, 2024. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1573652

ABSTRACT

Purpose: To compare the endothelial coverage of different stents in porcine carotid arteries. Research problem: How effective are polyurethane stents (PU) and PU + rapamycin (PU + RAPA) compared to bare-metal stents on endothelial coverage by neointima in pigs after 28 days? Methods: The methodology had two phases for an interventional, experimental, prospective study, with three Moura pigs, 12 weeks old and weighing between 19 and 22.5 kg. In phase I, eight stents were implanted in carotid arteries; three stents coated with PU, three coated with PU + RAPA, and two without coating. After 28 days, phase II was carried out, consisting of euthanasia, removal of the stents, to evaluate the exposed area of the stent struts, and the percentage of endothelialization through optical microscopy and scanning electron microscopy. Results: The eight stents implanted with ultrasound sizing and post-dilation with a larger diameter balloon were analyzed by Doppler ultrasound, intravascular ultrasound, and angiography after 28 days. Conclusions: This study showed complete endothelial coverage by the endoluminal neointima of the stent struts, good integration and coverage with the arterial wall, with no exposed struts showing the presence of intimal hyperplasia (whitish tissue).


Subject(s)
Animals , Polyurethanes , Swine , Carotid Arteries , Stents , Sirolimus
5.
Chinese Journal of Biotechnology ; (12): 4098-4107, 2023.
Article in Chinese | WPRIM | ID: wpr-1008014

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.


Subject(s)
Humans , Induced Pluripotent Stem Cells , Sirolimus/metabolism , Caspase 9/metabolism , RNA, Guide, CRISPR-Cas Systems , Pluripotent Stem Cells/metabolism , Cell Differentiation , Puromycin/metabolism
6.
Article in English | WPRIM | ID: wpr-1003651

ABSTRACT

@#Intraosseous hemangioma is a benign, rare neoplasm that accounts to 0.5 - 1% of all benign tumors of bones.1, 2 While most hemangiomas arise from soft tissues, it is uncommon for it to arise from bones.2 The most common sites of growth are in the vertebral body and the calvarium with frontal bone making up approximately 45% of calvarial cases.2,3 However, they are also encountered in the head and neck with sites such as the skull (53%), mandible (10.7%), nasal bones (9%), and cervical spine (6%).4 In the mandible, the body is mostly affected and 65% are found in the molar and premolar region.1 They are more common in adult females with peaks at the second and fifth decades of life.1-3 Hemangioma of the mandible is difficult to diagnose due to its nonspecific clinical presentation and radiographic features. It mimics various mass lesions in the mandible such as giant cell granuloma, fibrous dysplasia, multiple myeloma, osteosarcoma, ameloblastoma and keratocysts. Therefore, a comprehensive history taking and physical examination plus examination of the imaging studies available and tissue biopsy all play important roles in arriving at the final diagnosis.5 We present the case of an aggressive mandibular hemangioma in a young boy and our management involving a failed fibular free flap reconstruction.


Subject(s)
Sirolimus , Sirolimus
7.
Chin. med. j ; Chin. med. j;(24): 1848-1854, 2023.
Article in English | WPRIM | ID: wpr-1007585

ABSTRACT

BACKGROUND@#The HELIOS stent is a sirolimus-eluting stent with a biodegradable polymer and titanium oxide film as the tie-layer. The study aimed to evaluate the safety and efficacy of HELIOS stent in a real-world setting.@*METHODS@#The HELIOS registry is a prospective, multicenter, cohort study conducted at 38 centers across China between November 2018 and December 2019. A total of 3060 consecutive patients were enrolled after application of minimal inclusion and exclusion criteria. The primary endpoint was target lesion failure (TLF), defined as a composite of cardiac death, non-fatal target vessel myocardial infarction (MI), and clinically indicated target lesion revascularization (TLR) at 1-year follow-up. Kaplan-Meier methods were used to estimate the cumulative incidence of clinical events and construct survival curves.@*RESULTS@#A total of 2998 (98.0%) patients completed the 1-year follow-up. The 1-year incidence of TLF was 3.10% (94/2998, 95% closed interval: 2.54-3.78%). The rates of cardiac death, non-fatal target vessel MI and clinically indicated TLR were 2.33% (70/2998), 0.20% (6/2998), and 0.70% (21/2998), respectively. The rate of stent thrombosis was 0.33% (10/2998). Age ≥60 years, diabetes mellitus, family history of coronary artery disease, acute myocardial infarction at admission, and device success were independent predictors of TLF at 1 year.@*CONCLUSION@#The 1-year incidence rates of TLF and stent thrombosis were 3.10% and 0.33%, respectively, in patients treated with HELIOS stents. Our results provide clinical evidence for interventional cardiologists and policymakers to evaluate HELIOS stent.@*CLINICAL TRIAL REGISTRATION@#ClinicalTrials.gov, NCT03916432.


Subject(s)
Humans , Middle Aged , Sirolimus/therapeutic use , Drug-Eluting Stents/adverse effects , Prospective Studies , Cohort Studies , Treatment Outcome , Risk Factors , Time Factors , Percutaneous Coronary Intervention/adverse effects , Cardiovascular Agents/therapeutic use , Coronary Artery Disease/therapy , Myocardial Infarction/etiology , Thrombosis/complications , Polymers , Registries
8.
Journal of Experimental Hematology ; (6): 1629-1634, 2023.
Article in Chinese | WPRIM | ID: wpr-1010015

ABSTRACT

OBJECTIVE@#To investigate the effects of knocking down nucleostemin ( NS) combined with rapamycin (RAPA) on autophagy and apoptosis in HL-60 cells , and to explore its role in HL-60 cells .@*METHODS@#The expression of NS protein was detected using Western blot , after transfection of HL-60 cells was achieved by the recombinant lentviral vector NS -RNAi-GV248 . Flow cytometry was used to detect changes in cells apoptosis after NS silencing/ rapamycin for 24 , 48 hours , and the expressions of NS , LC3 , p62 , BCL-2 and Bax proteins in cells were detected by Western blot.@*RESULTS@#The expression of NS in HL-60 cells was successfully down-regulated by recombinant lentiviral vector. After treatment with rapamycin for 24 and 48 h , the apoptosis rate of cells in each group increased (P < 0.05) , and the apoptosis was more obvious at 48 hours . Compared with the NS silencing group or rapamycin group , after treated with NS down-regulation combined with rapamycin for 48 hours , the apoptosis of HL-60 cells was significantly increased ( P < 0.05 ) , LC3 -II/LC3 -I ratio was significantly increased ( P < 0.05 ) , p62 protein expression was significantly decreased (P < 0.05) , and BCL-2/Bax ratio was significantly decreased ( P < 0.05) .@*CONCLUSION@#NS down-regulation combined with rapamycin can enhance the apoptosis and autophagy of HL-60 cells , and the induction of apoptosis of HL-60 cells may be related to the expression of BCL-2 and Bax proteins .


Subject(s)
Humans , HL-60 Cells , Sirolimus/pharmacology , bcl-2-Associated X Protein , Autophagy , Apoptosis
9.
Chin. j. integr. med ; Chin. j. integr. med;(12): 801-808, 2023.
Article in English | WPRIM | ID: wpr-1010274

ABSTRACT

OBJECTIVE@#To investigate the effect of emodin on high glucose (HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy in podocytes (MPC5 cells) in vitro.@*METHODS@#MPC5 cells were treated with different concentrations of HG (2.5, 5, 10, 20, 40, 80 and 160 mmol/L), emodin (2, 4, 8 µ mol/L), or HG (40 mmol/L) and emodin (4 µ mol/L) with or without rapamycin (Rap, 100 nmol/L) and compound C (10 µ mol/L). The viability and apoptosis of MPC5 cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy marker light chain 3 (LC3) I/II, and AMPK/mTOR signaling pathway-related proteins were determined by Western blot. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.@*RESULTS@#HG at 20, 40, 80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells, whereas emodin (4 µ mol/L) significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage (P<0.01). Emodin (4 µ mol/L) significantly increased LC3-II protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells (P<0.01). Furthermore, the protective effects of emodin were mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 µ mol/L) reversed emodin-induced autophagy activation.@*CONCLUSION@#Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway, which might provide a potential therapeutic option for diabetic nephropathy.


Subject(s)
Emodin/pharmacology , AMP-Activated Protein Kinases/metabolism , Podocytes , Caspase 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Apoptosis , Sirolimus/pharmacology , Glucose/metabolism , Autophagy
10.
Zhongnan Daxue xuebao. Yixue ban ; (12): 1152-1162, 2023.
Article in English | WPRIM | ID: wpr-1010338

ABSTRACT

OBJECTIVES@#The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy.@*METHODS@#The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 μg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 μg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting.@*RESULTS@#After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 μg/mL group, the survival rates of macrophages in the 100, 200, and 400 μg/mL groups were significantly decreased, and the concentrations of TGF-β1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 μg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-β1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 μg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group.@*CONCLUSIONS@#Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta1/metabolism , Silicon Dioxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Matrix Metalloproteinase 1/metabolism , Tissue Inhibitor of Metalloproteinase-1 , Sirolimus , Beclin-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dust , TOR Serine-Threonine Kinases/metabolism , Lung/metabolism , Fibroblasts/metabolism , Silicosis/metabolism , Macrophages/metabolism , Autophagy
11.
Sheng Li Xue Bao ; (6): 339-350, 2023.
Article in Chinese | WPRIM | ID: wpr-981010

ABSTRACT

This paper aimed to investigate the role and potential mechanism of p53 on primordial follicle activation. Firstly, the p53 mRNA expression in the ovary of neonatal mice at 3, 5, 7 and 9 days post-partum (dpp) and the subcellular localization of p53 were detected to confirm the expression pattern of p53. Secondly, 2 dpp and 3 dpp ovaries were cultured with p53 inhibitor Pifithrin-μ (PFT-μ, 5 μmol/L) or equal volume of dimethyl sulfoxide for 3 days. The function of p53 in primordial follicle activation was determined by hematoxylin staining and whole ovary follicle counting. The proliferation of cell was detected by immunohistochemistry. The relative mRNA levels and protein levels of the key molecules involved in the classical pathways associated with the growing follicles were examined by immunofluorescence staining, Western blot and real-time PCR, respectively. Finally, rapamycin (RAP) was used to intervene the mTOR signaling pathway, and ovaries were divided into four groups: Control, RAP (1 μmol/L), PFT-μ (5 μmol/L), PFT-μ (5 μmol/L) + RAP (1 μmol/L) groups. The number of follicles in each group was determined by hematoxylin staining and whole ovary follicle counting. The results showed that the expression of p53 mRNA was decreased with the activation of primordial follicles in physiological condition. p53 was expressed in granulosa cells and oocyte cytoplasm of the primordial follicles and growing follicles, and the expression of p53 in the primordial follicles was higher than that in the growing follicles. Inhibition of p53 promoted follicle activation and reduced the primordial follicle reserve. Inhibition of p53 promoted the proliferation of the granulosa cells and oocytes. The mRNA and protein expression levels of key molecules in the PI3K/AKT signaling pathway including AKT, PTEN, and FOXO3a were not significantly changed after PFT-μ treatment, while the expression of RPS6/p-RPS6, the downstream effectors of the mTOR signaling pathway, was upregulated. Inhibition of both p53 and mTOR blocked p53 inhibition-induced primordial follicle activation. Collectively, these findings suggest that p53 may inhibit primordial follicle activation through the mTOR signaling pathway to maintain the primordial follicle reserve.


Subject(s)
Female , Animals , Mice , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hematoxylin , Signal Transduction/physiology , TOR Serine-Threonine Kinases , Sirolimus , RNA, Messenger
12.
Article in Chinese | WPRIM | ID: wpr-981874

ABSTRACT

Objective To explore the role of autophagy, apoptosis of neutrophils and neutrophils extracellular traps (NET) formation in systemic lupus erythematosus (SLE). Methods Thirty-six patients with SLE were recruited as research subjects, and 32 healthy controls matched accordingly were enrolled as control subjects. The expression levels of microtubule associated protein 1 light chain 3B (LC3B), autophagy-related gene5(ATG5), P62, B-cell lymphoma 2(Bcl2), Bcl2-related X protein (BAX) in neutrophils were detected by Western blot analysis. Flow cytometry was employed to analyze the expression of LC3B on neutrophils. The expression level of myeloperoxidase(MPO) in plasma was estimated by ELISA. Furthermore, neutrophils were cultured in vitro and stimulated by 100 nmol/L rapamycin and 10 μg/mL lipopolysaccharide (LPS) for 6 hours, respectively. And then, the expression levels of LC3B, ATG5, P62, Bcl2 and BAX in neutrophils were detected by Western blot analysis. The level of MPO in culture supernatant was detected by ELISA. The change of fluorescence intensity of NET in culture supernatant was assayed by SytoxTM Green staining combined with fluorescence spectrophotometry. Results Compared with healthy controls, the levels of autophagy and apoptosis of neutrophils and NET formation in SLE patients were increased. The level of apoptosis and NET formation was positively associated with neutrophil autophagy. The level of autophagy showed an increase but had no effect on apoptosis and NET formation for neutrophil stimulated by rapamycin. The levels of autophagy and NET formation also increased with no significant effect on apoptosis for neutrophil induced by LPS. Conclusion The autophagy, apoptosis and NET formation of neutrophils increase in SLE patients. The activation of autophagy and NET in neutrophils possibly result from the inflammatory internal environment in SLE patients.


Subject(s)
Humans , Neutrophils , Extracellular Traps/metabolism , Lipopolysaccharides/pharmacology , bcl-2-Associated X Protein/metabolism , Sirolimus/pharmacology , Lupus Erythematosus, Systemic , Autophagy
13.
Article in English | WPRIM | ID: wpr-982380

ABSTRACT

Mammalian target of rapamycin (mTOR) controls cellular anabolism, and mTOR signaling is hyperactive in most cancer cells. As a result, inhibition of mTOR signaling benefits cancer patients. Rapamycin is a US Food and Drug Administration (FDA)-approved drug, a specific mTOR complex 1 (mTORC1) inhibitor, for the treatment of several different types of cancer. However, rapamycin is reported to inhibit cancer growth rather than induce apoptosis. Pyruvate dehydrogenase complex (PDHc) is the gatekeeper for mitochondrial pyruvate oxidation. PDHc inactivation has been observed in a number of cancer cells, and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide (NAD+‍) exhaustion. In this paper, we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells. This inactivation reduces the sensitivity of cancer cells' response to rapamycin. As a result, rebooting PDHc activity with dichloroacetic acid (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, promotes cancer cells' susceptibility to rapamycin treatment in vitro and in vivo.


Subject(s)
Humans , Sirolimus/pharmacology , Dichloroacetic Acid/pharmacology , Pyruvate Dehydrogenase Complex , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 1 , Neoplasms/drug therapy
14.
Article in English | WPRIM | ID: wpr-984432

ABSTRACT

Introduction@#Cherry angiomas are a common type of acquired vascular proliferation of the skin which manifest as single or multiple bright red spots that usually appear on the trunk and arms. They are generally asymptomatic; patients may opt to remove the lesions for cosmetic reasons and prevention of bleeding. Conventionally, most cherry angiomas are treated with curettage, laser, and electrosurgery. Herein, we report a case of multiple cherry angiomas managed alternatively with oral sirolimus. @*Case@#A 47-year-old Filipino female presented with a 10-month history of gradually enlarging multiple bright-red papules and pedunculated nodules with a propensity to spontaneously bleed on gentle manipulation involving the scalp and forehead. Clinicopathological correlation suggests a diagnosis of eruptive cherry angiomas. The patient was started on oral sirolimus, a mammalian target of rapamycin (mTOR) inhibitor.@*Conclusion@#We present a case of a patient with eruptive cherry angiomas who experienced significant decrease in size and bleeding with treatment of oral sirolimus with minimal adverse effects. For patients with eruptive cherry angiomas, especially with contraindicated comorbidities, first-line therapeutic option treatments with oral sirolimus can be beneficial.


Subject(s)
Sirolimus , Vascular Malformations
15.
São Paulo; s.n; s.n; 2023. 75 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1437659

ABSTRACT

Envelhecer compreende um fenômeno complexo, natural e irreversível, que submete o organismo a inúmeras alterações nos processos biológicos, fisiológicos, ambientais, psicológicos, comportamentais e sociais. Esse processo é caracterizado por um declínio gradual dos mecanismos homeostáticos do organismo, intimamente relacionados com o estado senescente. A senescência, quando diz respeito ao sistema imunológico, é denominada de imunossenescência, que pode ser definida como uma parada estável do ciclo celular associada a mudanças, com uma resposta que limita a proliferação de células envelhecidas ou danificadas. A autofagia está diretamente relacionada com a manutenção do fenótipo senescente, em que a atividade autofágica exerce um papel essencial e ativo na influência da biossíntese de proteínas e organelas. Essa via é regulada naturalmente pela proteína mTOR e quimicamente pelo fármaco rapamicina. Assim, pretendemos investigar: (1) as alterações no perfil corporal e hematimêtrico dos animais ao longo do tratamento com rapamicina; (2) avaliar o perfil de citocinas; (3) observar as modificações histológicas em órgãos linfoides primários e secundário; (4) analisar as populações de células linfoides e mieloides; e (5) avaliar a capacidade proliferativa de linfócitos in vitro. Camundongos SAMP-8 e SAMR-1 foram tratados com rapamicina durante dois meses. A mensuração da massa corporal e análises hematológicas foram realizadas antes e durante o tratamento. Amostras de soro, medula óssea, timo e baço foram analisados em ensaios de ELISA, histologia, população e subpopulações de células. Alterações na massa corporal, parâmetros hematológicos e celularidade de células foram nítidas entre os dois modelos utilizados. Diferenças também foram percebidas na detecção de citocinas IL-1ß. IL-6 e TNF-α, com resultados significantes nas amostras de baço, timo e medula óssea. As citocinas IL-7 e IL-15 apresentaram diferenças de secreção entre os grupos, sendo a primeira maior detectada em camundongos com senescência acelerada tratados com rapamicina. Em nossa análise histológica observamos que os camundongos SAM-P8 apresentaram involução tímica. E nas subpopulações de linfócitos T do baço, células TCD4+ e TCD8+ estavam, respectivamente, em maior e menor quantidade nos camundongos SAM-P8 tratados com rapamicina. Dessa forma, o camundongo da linhagem SAM-P8 é um excelente modelo para se estudar as alterações da senescência, em que o mesmo apresenta características fisiológicas distintas dos camundongos utilizados como controle (SAM-R1). Além disso, verificamos que a dose de rapamicina empregada não desencadeou alterações que pudessem comprometer a resposta imunológica desses camundongos, bem como na possibilidade de atuar na resposta contra os efeitos complexos do envelhecimento


Aging comprises a complex, natural, and irreversible phenomenon, which subjects the organism to countless alterations in biological, physiological, environmental, psychological, behavioral, and social processes. This process is characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to senescence effects. Senescence, when it concerns the immune system, is called immunosenescence, which can be defined as a stable cell cycle arrest associated with changes and is a response that limits the proliferation of aged or damaged cells. Autophagy is a genetically regulated, conserved cellular process and a metabolic pathway essential for maintaining cellular homeostasis, which plays a constitutive and active role in controlling the biosynthesis of proteins and organelles. This pathway is regulated naturally by mTOR or chemically by the drug rapamycin, having a direct relationship with cellular homeostasis and maintenance of the senescent phenotype. Thus, we intend to investigate: (1) the changes in the body and hematimetic profile of the animals throughout the rapamycin treatment; (2) evaluate the cytokine profile; (3) observe histological changes in primary and secondary lymphoid organs; (4) analyze lymphoid and myeloid cell populations; and (5) evaluate the proliferative capacity of lymphocytes in vitro. SAMP-8 and SAMR-1 mice were treated with rapamycin for two months. Body mass measurement and hematological analyses were performed before and during treatment. Serum, bone marrow, thymus and spleen samples were analyzed in ELISA assays, histology, cell population and subpopulations. Changes in body mass, hematological parameters, and cellularity were clear between the two models used. Differences were also noticed in the detection of cytokines IL-1ß. IL-6 and TNF-α, with significant results in the spleen, thymus and bone marrow samples. The cytokines IL-7 and IL-15 showed differences in secretion between groups, the former being higher detected in mice with accelerated senescence treated with rapamycin. In our histological analysis we observed that SAM-P8 mice showed thymic involution. And in the spleen T-lymphocyte subpopulations, TCD4+ and TCD8+ cells were, respectively, in higher and lower quantities in SAM-P8 mice treated with rapamycin. Thus, the SAM-P8 mouse is an excellent model to study the changes of senescence, since it presents physiological characteristics different from the control mice (SAM-R1). Furthermore, we verified that the dose of rapamycin used did not trigger changes that could compromise the immune response of these mice, as well as the possibility of acting in the modulatory response against the complex effects of aging


Subject(s)
Animals , Male , Mice , Aging , Sirolimus/adverse effects , Immunosenescence , Autophagy/immunology , In Vitro Techniques/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Pharmaceutical Preparations/administration & dosage , T-Lymphocyte Subsets/classification , Homeostasis
16.
Cienc. Salud (St. Domingo) ; 6(1): [81-85], ene.-abr. 2022.
Article in English | LILACS | ID: biblio-1366938

ABSTRACT

Las malformaciones linfáticas y su manejo no han sido bien descritas en República Dominicana. Es por ello, que el objetivo de este artículo es la presentación de tres casos, con diferentes patrones y necesidades de tratamiento, de modo que sirva como referencia para trabajadores de la salud en países en vías de desarrollo.


Lymphatic malformations and its management are not well described in the Dominican Republic. That is why this article's objective is to present 3 cases, with different patterns and treatment needs, so it will work as a reference for healthcare workers in developing countries.


Subject(s)
Humans , Male , Female , Child , Lymphangioma, Cystic , Sclerotherapy , Sirolimus
17.
Zhonghua zhong liu za zhi ; (12): 673-692, 2022.
Article in Chinese | WPRIM | ID: wpr-939499

ABSTRACT

Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway (PAM pathway) plays an important role in the development of breast cancer and are closely associated with the resistance to endocrine therapy in advanced breast cancer. Therefore, anti-cancer treatment targeting key molecules in this signaling pathway has become research hot-spot in recent years. Randomized clinical trials have demonstrated that PI3K/AKT/mTOR inhibitors bring significant clinical benefit to patients with advanced breast cancer, especially to those with hormone receptor (HR)-positive, human epidermal growth factor receptor (HER) 2-negative advanced breast cancer. Alpelisib, a PI3K inhibitor, and everolimus, an mTOR inhibitor, have been approved by Food and Drug Administration. Based on their high efficacy and relatively good safety profile, expanded indication of everolimus in breast cancer have been approved by National Medical Products Administration. Alpelisib is expected to be approved in China in the near future. The members of the consensus expert panel reached this consensus to comprehensively define the role of PI3K/AKT/mTOR signaling pathway in breast cancer, efficacy and clinical applications of PI3K/AKT/mTOR inhibitors, management of adverse reactions, and PIK3CA mutation detection, in order to promote the understanding of PI3K/AKT/mTOR inhibitors for Chinese oncologists, improve clinical decision-making, and prolong the survival of target patient population.


Subject(s)
Female , Humans , Breast Neoplasms/metabolism , Consensus , Everolimus/therapeutic use , MTOR Inhibitors , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism
18.
Frontiers of Medicine ; (4): 467-482, 2022.
Article in English | WPRIM | ID: wpr-939878

ABSTRACT

Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.


Subject(s)
Animals , Humans , Anilides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Endothelial Cells/metabolism , Liver Neoplasms/drug therapy , Pyridines/pharmacology , Sirolimus/pharmacology , Xenograft Model Antitumor Assays
19.
Article in Chinese | WPRIM | ID: wpr-941006

ABSTRACT

OBJECTIVE@#To explore the mechanism by which inositol-requiring enzyme-1α (IRE1α) regulates autophagy function of chondrocytes through calcium homeostasis endoplasmic reticulum protein (CHERP).@*METHODS@#Cultured human chondrocytes (C28/I2 cells) were treated with tunicamycin, 4μ8c, rapamycin, or both 4μ8c and rapamycin, and the expressions of endoplasmic reticulum (ER) stress- and autophagy-related proteins were detected with Western blotting. Primary chondrocytes from ERN1 knockout (ERN1 CKO) mice and wild-type mice were examined for ATG5 and ATG7 mRNA expressions, IRE1α and p-IRE1α protein expressions, and intracellular calcium ion content using qPCR, Western blotting and flow cytometry. The effect of bafilomycin A1 treatment on LC3 Ⅱ/LC3 Ⅰ ratio in the isolated chondrocytes was assessed with Western blotting. Changes in autophagic flux of the chondrocytes in response to rapamycin treatment were detected using autophagy dual fluorescent virus. The changes in autophagy level in C28/I2 cells overexpressing CHERP and IRE1α were detected using immunofluorescence assay.@*RESULTS@#Tunicamycin treatment significantly up-regulated ER stress-related proteins and LC3 Ⅱ/LC3 Ⅰ ratio and down-regulated the expression of p62 in C28/I2 cells (P < 0.05). Rapamycin obviously up-regulated LC3 Ⅱ/LC3 Ⅰ ratio (P < 0.001) in C28/I2 cells, but this effect was significantly attenuated by co-treatment with 4μ8c (P < 0.05). Compared with the cells from the wild-type mice, the primary chondrocytes from ERN1 knockout mice showed significantly down-regulated mRNA levels of ERN1 (P < 0.01), ATG5 (P < 0.001) and ATG7 (P < 0.001), lowered or even lost expressions of IRE1α and p-IRE1α proteins (PP < 0.01), and increased expression of CHERP (P < 0.05) and intracellular calcium ion content (P < 0.001). Bafilomycin A1 treatment obviously increased LC3 Ⅱ/ LC3 Ⅰ ratio in the chondrocytes from both wild-type and ERN1 knockout mice (P < 0.01 or 0.05), but the increment was more obvious in the wild-type chondrocytes (P < 0.05). Treatment with autophagy dual-fluorescence virus resulted in a significantly greater fluorescence intensity of LC3-GFP in rapamycin-treated ERN1 CKO chondrocytes than in wild-type chondrocytes (P < 0.05). In C28/I2 cells, overexpression of CHERP obviously decreased the fluorescence intensity of LC3, and overexpression of IRE1α enhanced the fluorescence intensity and partially rescued the fluorescence reduction of LC3 caused by CHERP.@*CONCLUSION@#IRE1α deficiency impairs autophagy in chondrocytes by upregulating CHERP and increasing intracellular calcium ion content.


Subject(s)
Animals , Mice , Autophagy , Calcium/metabolism , Chondrocytes , Endoplasmic Reticulum/metabolism , Endoribonucleases/pharmacology , Homeostasis , Inositol , Mice, Knockout , Protein Serine-Threonine Kinases , RNA, Messenger/metabolism , Sirolimus/pharmacology , Tunicamycin/pharmacology
20.
Chinese Journal of Burns ; (6): 462-470, 2022.
Article in Chinese | WPRIM | ID: wpr-936033

ABSTRACT

Objective: To investigate the role and mechanism of Vγ4 T cells in impaired wound healing of rapamycin-induced full-thickness skin defects in mice. Methods: The experimental research methods were applied. Eighty-six C57BL/6J male mice (hereinafter briefly referred to as wild-type mice) aged 8-12 weeks were selected for the following experiments. Vγ4 T cells were isolated from axillary lymph nodes of five wild-type mice for the following experiments. Intraperitoneal injection of rapamycin for 42 mice was performed to establish rapamycin-treated mice model for the following experiments. Eighteen wild-type mice were divided into normal control group without any treatment, trauma only group, and trauma+CC chemokine ligand 20 (CCL20) inhibitor group according to the random number table (the same grouping method below), with 6 mice in each group. The full-thickness skin defect wound was made on the back of mice in the latter two groups (the same wound model below), and mice in trauma+CCL20 inhibitor group were continuously injected subcutaneously with CCL20 inhibitor at the wound edge for 3 days after injury. Another 6 rapamycin-treated mice were used to establish wound model as rapamycin+trauma group. On post injury day (PID) 3, the epidermal cells of the skin tissue around the wound of each trauma mice were extracted by enzyme digestion, and the percentage of Vγ4 T cells in the epidermal cells was detected by flow cytometry. In normal control group, the epidermal cells of the normal skin tissue in the back of mice were taken at the appropriate time point for detection as above. Five wild-type mice were used to establish wound models. On PID 3, the epidermal cells were extracted from the skin tissue around the wound. The cell populations were divided into Vγ4 T cells, Vγ3 T cells, and γδ negative cells by fluorescence-activated cell sorter, which were set as Vγ4 T cell group, Vγ3 T cell group, and γδ negative cell group (with cells in each group being mixed with B16 mouse melanoma cells), respectively. B16 mouse melanoma cells were used as melanoma cell control group. The expression of interleukin-22 (IL-22) mRNA in cells of each group was detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR), with the number of samples being 6. Thirty rapamycin-treated mice were used to establish wound models, which were divided into Vγ4 T cell only group and Vγ4 T cell+IL-22 inhibitor group performed with corresponding injections and rapamycin control group injected with phosphate buffer solution (PBS) immediately after injury, with 10 mice in each group. Another 10 wild-type mice were taken to establish wound models and injected with PBS as wild-type control group. Mice in each group were injected continuously for 6 days. The percentage of wound area of mice in the four groups was calculated on PID 1, 2, 3, 4, 5, and 6 after injection on the same day. Six wild-type mice and 6 rapamycin-treated mice were taken respectively to establish wound models as wild-type group and rapamycin group. On PID 3, the mRNA and protein expressions of IL-22 and CCL20 in the peri-wound epidermis tissue of mice in the two groups were detected by real-time fluorescence quantitative RT-PCR and Western blotting, respectively. The Vγ4 T cells were divided into normal control group without any treatment and rapamycin-treated rapamycin group. After being cultured for 24 hours, the mRNA and protein expressions of IL-22 of cells in the two groups were detected by real-time fluorescence quantitative RT-PCR and Western blotting, respectively, with the number of samples being 6. Data were statistically analyzed with independent sample t test, analysis of variance for repeated measurement, one-way analysis of variance, Bonferroni method, Kruskal-Wallis H test, and Wilcoxon rank sum test. Results: The percentage of Vγ4 T cells in the epidermal cells of the skin tissue around the wound of mice in trauma only group on PID 3 was 0.66% (0.52%, 0.81%), which was significantly higher than 0.09% (0.04%, 0.14%) in the epidermal cells of the normal skin tissue of mice in normal control group (Z=4.31, P<0.01). The percentages of Vγ4 T cells in the epidermal cells of the skin tissue around the wound of mice in rapamycin+trauma group and trauma+CCL20 inhibitor group on PID 3 were 0.25% (0.16%, 0.37%) and 0.24% (0.17%, 0.35%), respectively, which were significantly lower than that in trauma only group (with Z values of 2.27 and 2.25, respectively, P<0.05). The mRNA expression level of IL-22 of cells in Vγ4 T cell group was significantly higher than that in Vγ3 T cell group, γδ negative cell group, and melanoma cell control group (with Z values of 2.96, 2.45, and 3.41, respectively, P<0.05 or P<0.01). Compared with that in wild-type control group, the percentage of wound area of mice in rapamycin control group increased significantly on PID 1-6 (P<0.01), the percentage of wound area of mice in Vγ4 T cell+IL-22 inhibitor group increased significantly on PID 1 and PID 3-6 (P<0.05 or P<0.01). Compared with that in rapamycin control group, the percentage of wound area of mice in Vγ4 T cell only group decreased significantly on PID 1-6 (P<0.05 or P<0.01). Compared with that in Vγ4 T cell only group, the percentage of wound area of mice in Vγ4 T cell+IL-22 inhibitor group increased significantly on PID 3-6 (P<0.05 or P<0.01). On PID 3, compared with those in wild-type group, the expression levels of IL-22 protein and mRNA (with t values of -7.82 and -5.04, respectively, P<0.01) and CCL20 protein and mRNA (with t values of -7.12 and -5.73, respectively, P<0.01) were decreased significantly in the peri-wound epidermis tissue of mice in rapamycin group. After being cultured for 24 hours, the expression levels of IL-22 protein and mRNA in Vγ4 T cells in rapamycin group were significantly lower than those in normal control group (with t values of -7.75 and -6.04, respectively, P<0.01). Conclusions: In mice with full-thickness skin defects, rapamycin may impair the CCL20 chemotactic system by inhibiting the expression of CCL20, leading to a decrease in the recruitment of Vγ4 T cells to the epidermis, and at the same time inhibit the secretion of IL-22 by Vγ4 T cells, thereby slowing the wound healing rate.


Subject(s)
Animals , Male , Mice , Melanoma , Mice, Inbred C57BL , RNA, Messenger , Sirolimus/pharmacology , T-Lymphocytes , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL