Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 721
Filter
1.
Int. j. morphol ; 41(1): 286-296, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430539

ABSTRACT

SUMMARY: Cancer is the second leading cause of death in the world and colorectal cancer is the only cancer that has shown a sustained increase in mortality in the last decade. In the search for new chemotherapeutic agents against cancer, extremophilic microorganisms have shown to be a potential source to obtain molecules of natural origin and with selective cytotoxic action towards cancer cells. In this work we analyzed the ability of a collection of Antarctic soil bacteria, isolated on Collins Glacier from the rhizosphere of Deschampsia antarctica Desv plant, to secrete molecules capable of inhibiting cell proliferation of a colorectal cancer tumor line. Our results demonstrated that culture supernatants from the Antarctic bacteria K2I17 and MI12 decreased the viability of LoVo cells, a colorectal adenocarcinoma cell line. Phenotypic and genotypic characterization of the Antarctic bacteria showed that they were taxonomically related and nucleotide identity analysis based on the 16S rRNA gene sequence identified the bacterium K2I17 as a species belonging to the genus Bacillus.


El cáncer es la segunda causa de muerte en el mundo y el cáncer colorrectal es el único que presenta un aumento sostenido de la mortalidad en la última década. En la búsqueda de nuevos agentes quimioterapeúticos contra el cáncer, se ha propuesto a los microorganismos extremófilos como una fuente potencial para obtener moléculas de origen natural y con acción citotóxica selectiva hacia las células cancerígenas. En este trabajo analizamos la capacidad de una colección de bacterias de suelo antártico, aisladas en el glaciar Collins desde rizosfera de la planta de Deschampsia antarctica Desv, de secretar moléculas capaces de inhibir la proliferación celular de una línea tumoral de cáncer colorrectal. Nuestros resultados demostraron que los sobrenadantes de cultivo de las bacterias antárticas K2I17 y MI12 disminuyeron la viabilidad de la línea celular de adenocarcinoma colorrectal LoVo, en un ensayo de reducción metabólica de MTT. La caracterización fenotípica y genotípica de las bacterias antárticas, demostró que estaban relacionadas taxonómicamente y el análisis de la identidad nucleotídica en base a la secuencia del gen ARNr 16S identificó a la bacteria K2I17 como una especie perteneciente al género Bacillus.


Subject(s)
Humans , Soil Microbiology , Bacillus/physiology , Colorectal Neoplasms/drug therapy , Cell Proliferation/drug effects , Phenotype , Bacillus/isolation & purification , Bacillus/genetics , In Vitro Techniques , RNA, Ribosomal, 16S , Adenocarcinoma/drug therapy , Cell Survival/drug effects , Polymerase Chain Reaction , Cell Line, Tumor/drug effects , Genotype , Antarctic Regions
2.
Braz. j. biol ; 83: e240015, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1285624

ABSTRACT

Abstract Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


Resumo O zinco é um micronutriente essencial necessário para o crescimento ideal das plantas. Ele está presente no solo em formas insolúveis. A solubilização bacteriana da forma indisponível de Zn no solo para a forma disponível é uma abordagem emergente para aliviar a deficiência de Zn em plantas e seres humanos. Bactérias solubilizadoras de zinco (ZSB) podem ser um substituto para fertilizantes químicos de Zn. O presente estudo teve como objetivo isolar e caracterizar espécies bacterianas de solo contaminado e avaliar seu potencial de solubilização de Zn. Bactérias resistentes ao Zn foram isoladas e avaliadas quanto ao seu MIC contra o Zn. Entre as 13 cepas bacterianas isoladas, ZSB13 apresentou valor máximo de MIC de até 30 mM/L. A cepa bacteriana com maior resistência ao Zn foi selecionada para análise posterior. A caracterização molecular de ZSB13 foi realizada por amplificação do gene 16S rRNA que o confirmou como Pseudomonas oleovorans. A solubilização do Zn foi determinada através de ensaio em placa e meio caldo. Quatro sais insolúveis (óxido de zinco (ZnO), carbonato de zinco (ZnCO3), sulfito de zinco (ZnS) e fosfato de zinco (Zn3 (PO4) 2) foram usados ​​para o ensaio de solubilização. Nossos resultados mostram uma zona de halo clara de 11 mm em placas de ágar corrigidas com ZnO. Da mesma forma, ZSB13 mostrou liberação significativa de Zn em caldo alterado com ZnCO3 (17 e 16,8 ppm) e ZnO (18,2 ppm). Além disso, os genes de resistência ao Zn czcD também foram enriquecidos em ZSB13. Em nosso estudo, a cepa bacteriana compreendendo potencial de solubilização de Zn foi isolada e poderia ser usada posteriormente para o aumento do crescimento de safras.


Subject(s)
Humans , Soil Pollutants , Pseudomonas oleovorans , Soil , Soil Microbiology , Zinc , RNA, Ribosomal, 16S/genetics
3.
Braz. j. biol ; 83: e242830, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278540

ABSTRACT

Abstract Pesticide residues that contaminate the environment circulate within the hydrological cycle can accumulate within the food chain and cause problems to both environmental and human health. Microbes, however, are well known for their metabolic versatility and the ability to degrade chemically stable substances, including recalcitrant xenobiotics. The current study focused on bio-prospecting within Amazonian rainforest soils to find novel strains fungi capable of efficiently degrading the agriculturally and environmentally ubiquitous herbicide, glyphosate. Of 50 fungal strains isolated (using culture media supplemented with glyphosate as the sole carbon-substrate), the majority were Penicillium strains (60%) and the others were Aspergillus and Trichoderma strains (26 and 8%, respectively). All 50 fungal isolates could use glyphosate as a phosphorous source. Eight of these isolates grew better on glyphosate-supplemented media than on regular Czapek Dox medium. LC-MS revealed that glyphosate degradation by Penicillium 4A21 resulted in sarcosine and aminomethylphosphonic acid.


Resumo Resíduos de agrotóxicos que contaminam o meio ambiente circulam no ciclo hidrológico, podendo se acumular na cadeia alimentar e causar problemas tanto à saúde ambiental quanto humana. Por sua vez, microrganismos são bem conhecidos por sua versatilidade metabólica e capacidade de degradar substâncias quimicamente estáveis, incluindo xenobióticos recalcitrantes. O estudo atual se concentrou na bioprospecção nos solos da floresta amazônica para encontrar novas linhagens de fungos capazes de degradar com eficiência o herbicida onipresente na agricultura e no meio ambiente, o glifosato. Entre os 50 fungos isolados (usando meio de cultura suplementado com glifosato como única fonte de carbono), a maioria eram isolados do gênero Penicillium (60%) e os outros eram isolados de Aspergillus e Trichoderma (26 e 8%, respectivamente). Todos os 50 isolados de fungos foram capazes de usar glifosato como fonte de fósforo. Oito desses isolados cresceram melhor em meio suplementado com glifosato do que em meio Czapek Dox regular. LC-MS revelou que a degradação do glifosato por Penicillium 4A21 resultou nos metabólitos sarcosina e ácido aminometilfosfônico.


Subject(s)
Humans , Penicillium , Trichoderma , Herbicides/toxicity , Aspergillus , Soil , Soil Microbiology , Biodegradation, Environmental , Organophosphonates , Fungi , Glycine/analogs & derivatives
4.
Braz. j. biol ; 83: e242676, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278552

ABSTRACT

Abstract Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Resumo As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.


Subject(s)
Soil Pollutants , Mycorrhizae/chemistry , Herbicides , Soil , Soil Microbiology , Trees , Brazil , Plant Roots/chemistry , Seedlings , Rhizosphere
5.
Journal of Zhejiang University. Science. B ; (12): 336-344, 2023.
Article in English | WPRIM | ID: wpr-982372

ABSTRACT

Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.


Subject(s)
Animals , Rumen/metabolism , Agriculture/methods , Soil/chemistry , Microbiota , Bacteria/metabolism , Oryza/metabolism , Soil Microbiology , Cellulose
6.
China Journal of Chinese Materia Medica ; (24): 1498-1509, 2023.
Article in Chinese | WPRIM | ID: wpr-970621

ABSTRACT

To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.


Subject(s)
Rhizosphere , Rheum , Droughts , Soil , Catechin , Emodin , Bacteria/metabolism , Water/metabolism , Firmicutes , Soil Microbiology
7.
China Journal of Chinese Materia Medica ; (24): 6030-6038, 2023.
Article in Chinese | WPRIM | ID: wpr-1008801

ABSTRACT

This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of β,β'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.


Subject(s)
Rhizosphere , Soil Microbiology , Bacteria/genetics , Phosphorus , Soil , Boraginaceae
8.
Braz. j. biol ; 83: 1-7, 2023. graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468810

ABSTRACT

Pesticide residues that contaminate the environment circulate within the hydrological cycle can accumulate within the food chain and cause problems to both environmental and human health. Microbes, however, are well known for their metabolic versatility and the ability to degrade chemically stable substances, including recalcitrant xenobiotics. The current study focused on bio-prospecting within Amazonian rainforest soils to find novel strains fungi capable of efficiently degrading the agriculturally and environmentally ubiquitous herbicide, glyphosate. Of 50 fungal strains isolated (using culture media supplemented with glyphosate as the sole carbon-substrate), the majority were Penicillium strains (60%) and the others were Aspergillus and Trichoderma strains (26 and 8%, respectively). All 50 fungal isolates could use glyphosate as a phosphorous source. Eight of these isolates grew better on glyphosate-supplemented media than on regular Czapek Dox medium. LC-MS revealed that glyphosate degradation by Penicillium 4A21 resulted in sarcosine and aminomethylphosphonic acid.


Resíduos de agrotóxicos que contaminam o meio ambiente circulam no ciclo hidrológico, podendo se acumular na cadeia alimentar e causar problemas tanto à saúde ambiental quanto humana. Por sua vez, microrganismos são bem conhecidos por sua versatilidade metabólica e capacidade de degradar substâncias quimicamente estáveis, incluindo xenobióticos recalcitrantes. O estudo atual se concentrou na bioprospecção nos solos da floresta amazônica para encontrar novas linhagens de fungos capazes de degradar com eficiência o herbicida onipresente na agricultura e no meio ambiente, o glifosato. Entre os 50 fungos isolados (usando meio de cultura suplementado com glifosato como única fonte de carbono), a maioria eram isolados do gênero Penicillium (60%) e os outros eram isolados de Aspergillus e Trichoderma (26 e 8%, respectivamente). Todos os 50 isolados de fungos foram capazes de usar glifosato como fonte de fósforo. Oito desses isolados cresceram melhor em meio suplementado com glifosato do que em meio Czapek Dox regular. LC-MS revelou que a degradação do glifosato por Penicillium 4A21 resultou nos metabólitos sarcosina e ácido aminometilfosfônico.


Subject(s)
Animals , Aspergillus , Herbicides/toxicity , Soil Microbiology , Penicillium , Trichoderma
9.
China Journal of Chinese Materia Medica ; (24): 2296-2303, 2022.
Article in Chinese | WPRIM | ID: wpr-928107

ABSTRACT

The continuous cropping obstacle of Gastrodia elata is outstanding, but its mechanism is still unclear. In this study, microbial changes in soils after G. elata planting were investigated to explore the mechanism correlated with continuous cropping obstacle. The changes of species and abundance of fungi and bacteria in soils planted with G. elata after 1, 2, and 3 years were compared. The pathogenic fungi that might cause continuous cropping diseases of G. elata were isolated. Finally, the prevention and control measures of soil-borne fungal diseases of G. elata were investigated with the rotation planting pattern of "G. elata-Phallus impudicus". The results showed that G. elata planting resulted in the decrease in bacterial and fungal community stability and the increase in harmful fungus species and abundance in soils. This change was most obvious in the second year after G. elata planting, and the soil microbial community structure could not return to the normal level even if it was left idle for another two years. After G. elata planting in soils, the most significant change was observed in Ilyonectria cyclaminicola. The richness of the Ilyonectria fungus in soils was significantly positively correlated with the incidence of G. elata diseases. When I. cyclaminicola was inoculated in the sterile soil, the rot rate of G. elata was also significantly increased. After planting one crop of G. elata and one to three crops of P. impudicus, the fungus community structure in soils gradually recovered, and the abundance of I. cyclaminicola decreased year by year. Furthermore, the disease rate of G. elata decreased. The results showed that the cultivation of G. elata made the Ilyonectria fungi the dominant flora in soils, and I. cyclaminicola served as the main pathogen of continuous cropping diseases of G. elata, which could be reduced by rotation planting with P. impudicus.


Subject(s)
Bacteria , Fungi , Gastrodia/microbiology , Mycobiome , Soil , Soil Microbiology
10.
Arq. Inst. Biol. (Online) ; 89: e00272021, 2022. tab
Article in English | LILACS, VETINDEX | ID: biblio-1416817

ABSTRACT

Petri disease is a problem for vineyard caused mainly by the fungus Phaeomoniella chlamydospora. Contaminated seedlings are source of inoculum for the disease. Treatment to disinfect vine rootstock cuttings for seedling production is hot water treatment (HWT) by 50 °C for 30 min, but the efficiency is contested. To improve its efficacy, the study aimed to assess the combination of the following methods and the reason for the control: i) exposition of the fungus to five different temperatures in HWT bath for 30 min; ii and iii) exposition of the fungus and also plants infected with P. chlamydospora to different disinfection treatments (biofumigation = soil + cabbage at 40 °C; temperatures of 40 and 23 °C, all in microcosm), in different periods (7, 14 and 21 days), with and without additional HWT (51 °C for 30 min). The results showed that HWT with high temperatures (55­70 °C) for 30 min inactivated the fungus. Biofumigation technique at 40 °C and the temperature solely of 40 °C applied for up to 21 days and combined with HWT (51 °C for 30 min) inhibited mycelial growth and inactivated the fungus in vine plant tissues without compromising the rooting.


Subject(s)
Ascomycota , Vitis/microbiology , Fungicides, Industrial/therapeutic use , Soil Microbiology
11.
Braz. j. biol ; 82: e240184, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278492

ABSTRACT

Soil quality is usually determined by its physical-chemical characteristics without taking into account the bacterial communities that play a fundamental role in the chemical decomposition of plant nutrients. In this context, the objective of the study was to evaluate bacterial diversity in high Andean grassland soils disturbed with Lepidium meyenii cultivation under different gradients of use (first, second and third use) and crop development (pre-sowing, hypocotyl development and post-harvest). The sampling was carried out in the Bombón plateau in the central Andes of Peru, during the rainy and low water seasons, by the systematic method based on a specific pattern assigned in a geometric rectangular shape at a depth of 0 - 20 cm. The characterization of the bacterial communities was carried out through the metagenomic sequencing of the 16S rRNA. 376 families of bacteria were reported, of which it was determined that there was a significant change in bacterial composition and distribution in relation to use pressure. There were no major changes due to the development of Lepidium meyenii. The families most sensitive to use pressure and soil poverty indicators were Verrucomicrobiaceae, Acidobacteraceae and Aakkermansiaceae.


A qualidade do solo é normalmente determinada pelas suas características físico-químicas sem ter em conta as comunidades bacterianas que desempenham um papel fundamental na decomposição química dos nutrientes das plantas. Neste contexto, o objetivo do estudo foi avaliar a diversidade bacteriana em solos de prados andinos elevados perturbados pelo cultivo de Lepidium meyenii sob diferentes gradientes de utilização (primeira, segunda e terceira utilizações) e desenvolvimento das culturas (pré-semeadura, desenvolvimento do hipocótilo e póscolheita). A amostragem foi realizada no planalto de Bombón, nos Andes centrais do Peru, durante as estações das chuvas e das águas baixas, pelo método sistemático baseado num padrão específico atribuído em forma geométrica retangular a uma profundidade de 0 - 20 cm. A caracterização das comunidades bacterianas foi realizada através da sequenciação metagenômica do rRNA 16S. Foram relatadas 376 famílias de bactérias, das quais se verificou uma alteração significativa na composição e distribuição bacteriana em relação à pressão de utilização. Não se registaram grandes alterações devido ao desenvolvimento do Lepidium meyenii. As famílias mais sensíveis à utilização de indicadores de pressão e pobreza do solo foram as Verrucomicrobiaceae, Acidobacteraceae e Aakkermansiaceae.


Subject(s)
Lepidium/genetics , Peru , Soil , Soil Microbiology , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Grassland , Metagenomics
12.
Malaysian Journal of Microbiology ; : 424-431, 2022.
Article in English | WPRIM | ID: wpr-979372

ABSTRACT

Aims@#Meloidogyne incognita adversely affects numerous crop plants worldwide. Therefore, the modern world has been moving towards biocontrol methods to prevent nematode attacks. This study was aimed to (i) investigate the potential use of Trichoderma harzianum NFCF160 and T. virens Isf-77 in managing M. incognita in soil and (ii) identify trapping mechanisms employed by both Trichoderma strains to suppress M. incognita.@*Methodology and results@#Three weeks old, Basella alba L. plants were subjected to five different treatments. The above and below ground growth parameters and the galling indices of these plants were measured every four weeks for three sampling times. Trapping mechanisms employed by Trichoderma strains were examined following plate assays. Plants treated with T. harzianum NFCF160 and T. virens Isf-77 had significantly higher values for the total number of leaves (34 ± 2.84) and (27 ± 2.61), fresh weight of the shoot (81 ± 9.51 g) and (91 ± 9.70 g), dry weight of the shoot (71 ± 5.24 g) and (62 ± 5.81 g), respectively eight weeks after inoculation of M. incognita. Significantly low galling indices (2 and 2) were recorded in B. alba treated with Trichoderma strains. Both Trichoderma strains exhibited various nematode-trapping mechanisms, such as non-constricting rings and adhesive spores.@*Conclusion, significance and impact of study@#This investigation highlighted the potential of both Trichoderma strains as biocontrol agents to control M. incognita effect in sustainable agriculture.


Subject(s)
Tylenchoidea , Trichoderma , Soil Microbiology
13.
Malaysian Journal of Microbiology ; : 354-369, 2022.
Article in English | WPRIM | ID: wpr-979320

ABSTRACT

Aims@#This study was aimed to screen and isolate soil and endophytic fungi with the ability to biosynthesize stable silver nanoparticles (SNPs) with antimicrobial and antiproliferative activities.@*Methodology and results@#A total of 60 fungal isolates isolated from soil and plant samples were screened for their ability to biosynthesize SNPs. Among which, 21 isolates have supported the biosynthesis of SNPs. Furthermore, the endophytic isolate PRR2.1 synthesized highly thermostable SNPs with long shelf life. The PRR2.1 isolate was identified as Albifimbria verrucaria by morphological and molecular means. The synthesis of SNPs was initially monitored by UV-Vis spectroscopy. Further characterization by transmission electron microscopy, X-ray diffraction and dynamic light scattering revealed well-dispersed spherical crystalline in nature SNPs with a mean size of 14 nm and zeta potential of –24.47 mV. Fourier transform infrared spectroscopy showed the presence of biomolecules adsorbed on the surface of biosynthesized SNPs responsible for their synthesis and stability. The mycosynthesized SNPs exhibited stronger antifungal activity against pathogenic strains of Aspergillus niger, A. flavus, A. fumigatus and Candida albicans with respect to its antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus and Klebsiella pneumoniae compared to standard antifungal itraconazole and antibiotic cefadroxil with mostly consistent minimum inhibitory concentration of 5.31 μg/mL. The biosynthesized SNPs demonstrated dose-dependent in vitro antiproliferative activity against cancerous HeLa cell line with IC50 value of 2.52 μg/mL and less cytotoxic activity against WI-38 (normal human lung fibroblasts) cell line with CC50 value of 10.2 μg/mL.@*Conclusion, significance and impact of study@#These results show the potential of endophytic fungi biosynthesized SNPs as possible biofriendly, safe and efficient antimicrobial agents with promising antiproliferative activity and low cytotoxicity, which can be furtherly implemented in various biomedical and biotechnological applications.


Subject(s)
Silver , Nanoparticles , Soil Microbiology , Endophytes , Anti-Infective Agents
14.
Malaysian Journal of Microbiology ; : 235-241, 2022.
Article in English | WPRIM | ID: wpr-977653

ABSTRACT

Aims@#Intercropping system in oil palm plantation is recognized as one of a nature-based solution as well as a promising sustainable practice. This study aimed to observe the advantages of existing intercropping system in one of North Sumatra’s oil palm plantation. It is achieved by analyzing the population of soil bacteria and fungi in oil palm intercropping fields with sorghum and cassava, compared with the non-intercropping field that using Mucuna bracteata (MB) as a common legume cover crop in oil palm plantations.@*Methodology and results@#Soil samples were collected from the weeded circle and windrow area (the area between palms within the row). The results showed that the highest and the lowest soil bacteria populations were in sorghum (1.7 ± 1.4 × 108 CFU/g) and MB (1.7 ± 0.4 × 107 CFU/g), while the highest and the lowest soil fungi populations were in sorghum (4.3 ± 2.9 × 106 CFU/g) and cassava (2.1 ± 0.8 × 106 CFU/g).@*Conclusion, significance and impact of study@#The intercropping system in this study showed a significant difference in the bacteria population, while the fungi population had no difference compared to the non-intercropping system. The bacterial and fungi population results also indicate that the intercropping system potentially enhances the soil's biological activity as an indicator of improved soil health. It is also followed by a slightly higher soil organic carbon value in intercropping system. This research suggests that further studies should be done to identify specific soil functional microbes (nutrients fixers and solubilizers). The future research will be used as a reference for promising biofertilizer agents in supporting sustainable crop production.


Subject(s)
Palm Oil , Soil Microbiology
15.
Braz. j. biol ; 82: 1-9, 2022. tab
Article in English | LILACS, VETINDEX | ID: biblio-1468445

ABSTRACT

Infection caused by geo-helminth parasites are called geohelminthiasis are one of the global health problems. Vegetables eaten raw is the principal source of transmission of geo-helminth parasites. Pakistani people believe that eating raw vegetables are a significant source to get important vitamins and minerals. Based on the high incidence of pathogenic parasites and cultivating different vegetable types in the study areas, we conducted this study to evaluate the geo-helminth contamination of raw vegetables in northwest Khyber Pakhtunkhwa, Pakistan. This is a descriptive study comprised, 1942 samples of 25 various types of vegetables. The samples were examined in physiological saline solution using sedimentation and centrifugation methods. The findings were analyzed by Graph-Pad version 5. P value less than 0.05 (95% CI) was considered significant. Results showed that 16.5% (n=322) of all vegetables were contaminated with one or more type of geo-helminth parasites. Garlic was the highest (35%) and cauliflower the lowest (4%) contaminated samples respectively. Ascaris lumbricoides was the most common geo helminth found followed by hook worm species while Trichuris trichura was the least in all the vegetable samples. Leafy vegetables were highly contaminated 25.3% than vegetables with root parts 21.2% and fruity 9.09%. More than half of the contaminated vegetables were contaminated with single species of geo-helminth (P0.05) species of geo-helminth parasites. Education level of vendors and means of display were not significantly associated while types of vegetable used were significantly associated with the prevalence of parasites. The findings of this study provide evidence that consumption of raw [...].


As infecções causadas por parasitas geo-helmínticos são chamados de geohelmintíases e são um dos problemas de saúde globais. Os vegetais comidos crus são a principal fonte de transmissão dos parasitas geo-helmínticos. O povo paquistanês acredita que comer vegetais crus é uma fonte significativa para obter vitaminas e minerais importantes. Com base na alta incidência de parasitas patogênicos e no cultivo de diferentes tipos de vegetais nas áreas de estudo, conduzimos este estudo para avaliar a contaminação por geo-helmintos de vegetais crus no noroeste de Khyber Pakhtunkhwa, Paquistão. Trata-se de um estudo descritivo composto por 1942 amostras de 25 tipos diversos de vegetais. As amostras foram examinadas em solução salina fisiológica utilizando métodos de sedimentação e centrifugação. Os achados foram analisados pelo Graph-Pad versão 5. O valor de P menor que 0,05 (IC 95%) foi considerado significativo. Os resultados mostraram que 16,5% (n = 322) de todas as hortaliças estavam contaminadas com um ou mais tipos de parasitas geo-helmínticos. O alho foi a amostra mais contaminada (35%) e a couve-flor a menos (4%), respectivamente. Ascaris lumbricoides foi o geo-helmíntico mais comum encontrado, seguido por espécies de verme-anzol, enquanto Trichuris trichura foi o menos encontrado em todas as amostras de vegetais. Os vegetais folhosos foram altamente contaminados 25,3% do que os vegetais com partes de raiz 21,2% e frutados 9,09%. Mais da metade dos vegetais contaminados estavam contaminados com uma única espécie de geo-helmintos (P 0,05) espécies de parasitas geo-helmínticos. O nível de escolaridade dos vendedores e os meios de exibição não [...].


Subject(s)
Ascaris , Helminthiasis/epidemiology , Helminthiasis/transmission , Soil Microbiology , Plants/parasitology , Environmental Pollution , Sanitation/standards , Trichuris
16.
Braz. j. biol ; 82: 1-12, 2022. map, ilus, graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468535

ABSTRACT

Soil quality is usually determined by its physical-chemical characteristics without taking into account the bacterial communities that play a fundamental role in the chemical decomposition of plant nutrients. In this context, the objective of the study was to evaluate bacterial diversity in high Andean grassland soils disturbed with Lepidium meyenii cultivation under different gradients of use (first, second and third use) and crop development (pre-sowing, hypocotyl development and post-harvest). The sampling was carried out in the Bombón plateau in the central Andes of Peru, during the rainy and low water seasons, by the systematic method based on a specific pattern assigned in a geometric rectangular shape at a depth of 0 - 20 cm. The characterization of the bacterial communities was carried out through the metagenomic sequencing of the 16S rRNA. 376 families of bacteria were reported, of which it was determined that there was a significant change in bacterial composition and distribution in relation to use pressure. There were no major changes due to the development of Lepidium meyenii. The families most sensitive to use pressure and soil poverty indicators were Verrucomicrobiaceae, Acidobacteraceae and Aakkermansiaceae.


A qualidade do solo é normalmente determinada pelas suas características físico-químicas sem ter em conta as comunidades bacterianas que desempenham um papel fundamental na decomposição química dos nutrientes das plantas. Neste contexto, o objetivo do estudo foi avaliar a diversidade bacteriana em solos de prados andinos elevados perturbados pelo cultivo de Lepidium meyenii sob diferentes gradientes de utilização (primeira, segunda e terceira utilizações) e desenvolvimento das culturas (pré-semeadura, desenvolvimento do hipocótilo e pós colheita). A amostragem foi realizada no planalto de Bombón, nos Andes centrais do Peru, durante as estações das chuvas e das águas baixas, pelo método sistemático baseado num padrão específico atribuído em forma geométrica retangular a uma profundidade de 0 - 20 cm. A caracterização das comunidades bacterianas foi realizada através da sequenciação metagenômica do rRNA 16S. Foram relatadas 376 famílias de bactérias, das quais se verificou uma alteração significativa na composição e distribuição bacteriana em relação à pressão de utilização. Não se registaram grandes alterações devido ao desenvolvimento do Lepidium meyenii. As famílias mais sensíveis à utilização de indicadores de pressão e pobreza do solo foram as Verrucomicrobiaceae, Acidobacteraceae e Aakkermansiaceae.


Subject(s)
Animals , Genes, Reporter , Lepidium , Soil Microbiology , Promoter Regions, Genetic
17.
Rev. argent. microbiol ; 53(4): 11-20, Dec. 2021. graf
Article in English | LILACS | ID: biblio-1376417

ABSTRACT

ABSTRACT The driving forces behind many soil processes are microorganisms and they are able to respond immediately to environmental changes. The soil microbial community impacts on many soil properties. More than one-third of the terrestrial ecosystems are semiarid. However, a limited number of studies have been conducted to characterize soil fungal communities in semiarid grasslands, in particular those of agricultural fields. The aim of this study was to explore changes in the diversity and structure of soil fungal communities in semiarid grasslands, after different doses of glyphosate were applied under field conditions. Changes in soil fungal communities were examined using different approaches including culturing, calcofluor white stain and denaturing gradient gel electrophoresis (DGGE). The different approaches complement each other, revealing different aspects of the effect of glyphosate on soil fungal communities. We demonstrated a negative effect of glyphosate on soil fungal biomass at high doses and an early and transitory stimulatory effect on soil fungal biomass. We also found a negative effect of glyphosate on the species richness of cultivable fungi and changes in the molecular structure of soil fungal communities after double doses or long-term glyphosate application. In summary, our findings demonstrate an overall negative effect of glyphosate on soil fungal communities.


RESUMEN Los microorganismos del suelo son los responsables de llevar a cabo la mayoría de los procesos biológicos que ocurren en el suelo, y son capaces de reaccionar ante el estrés ambiental. Más de un tercio de los ecosistemas terrestres son semiáridos. Sin embargo, son escasos los estudios realizados para caracterizar las comunidades fúngicas en suelos agrícolas en ecosistemas semiáridos. El objetivo del presente trabajo fue estudiar los cambios que se producen en la biomasa, la diversidad y la estructura de las comunidades fúngicas del suelo, luego de la aplicación de distintas dosis de glifosato en condiciones de campo. Se emplearon diferentes técnicas incluidas el cultivo, la tinción directa con blanco de calcoflúor y PCR acoplada a electroforesis en geles de gradiente desnaturalizante (DGGE). Las distintas metodologías empleadas se complementan entre sí al detectar cada una distintos aspectos del efecto del glifosato en las comunidades fúngicas del suelo. Se encontró que el glifosato produce un efecto negativo sobre la biomasa fúngica, también se encontró un efecto transitorio estimulante inmediatamente posterior a la aplicación del herbicida. Además, se vio un efecto negativo sobre la riqueza de hongos cultivables, así como también cambios en la estructura molecular de las comunidades luego de aplicaciones repetidas. En conclusión, se demostró un efecto negativo generalizado sobre las comunidades fúngicas del suelo.


Subject(s)
Microbiota , Mycobiome , Soil , Soil Microbiology , Fungi , Glycine/analogs & derivatives
18.
Arq. bras. med. vet. zootec. (Online) ; 73(5): 1225-1236, Sept.-Oct. 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1345275

ABSTRACT

As an essential trace element for animals, copper significantly contributes to the growth and health of animals. Compared to inorganic trace elements, organic trace elements are better supplements; notably, they are acquired through microbial transformation. Therefore, we screened for copper-enriched microorganisms from high copper content soil to obtain organic copper. Sodium diethyldithio carbamate trihydrate was applied as a chromogenic agent for determining micro amounts of intracellular copper through spectrophotometry. In total, 50 fungi were isolated after the successful application of the screening platform for copper-rich microbes. Following morphological and molecular biology analyses, the N-2 strain, identified as Aspergillus niger sp. demonstrated showed better copper enrichment potential than others. Notably, the strain tolerance to copper was nearly thrice that of Saccharomyces cerevisiae, up to 1600mg/L. The content of the organic bound copper was 22.84mg Cu/g dry cell. Using the Central Composite Design (CCD) response surface method, we optimized the fermentation condition (inoculation amount, 13%; temperature, 28(C; pH, 5.0). Compared to the original strain results under the single factor fermentation condition, we reported an increase by 24.18% under the optimized conditions. Collectively, these findings provide a reference for uncovering new and low-cost organic copper additives.(AU)


Como elemento traço essencial para os animais, o cobre contribui significativamente para o crescimento e saúde dos animais. Comparado aos oligoelementos inorgânicos, os oligoelementos orgânicos são melhores suplementos; notavelmente, eles são adquiridos através de transformação microbiana. Portanto, nós selecionamos microorganismos enriquecidos com cobre de solos com alto teor de cobre para obter cobre orgânico. O carbamato de sódio diethyldithio trihidratado foi aplicado como agente cromogênico para a determinação de micro quantidades de cobre intracelular através da espectrofotometria. No total, 50 fungos foram isolados após a aplicação bem sucedida da plataforma de triagem para micróbios ricos em cobre. Após análises morfológicas e de biologia molecular, a cepa N-2, identificada como Aspergillus niger sp. demonstrou um melhor potencial de enriquecimento de cobre do que outras. Notavelmente, a tolerância da estirpe ao cobre foi quase três vezes maior que a da Saccharomyces cerevisiae, até 1600mg/L. O conteúdo de cobre ligado orgânico era de 22,84mg Cu/g de célula seca. Usando o método de superfície de resposta Central Composite Design (CCD), nós otimizamos a condição de fermentação (quantidade de inoculação, 13%; temperatura, 28C; pH, 5,0). Em comparação com os resultados da deformação original sob a condição de fermentação de fator único, relatamos um aumento de 24,18% sob as condições otimizadas. Coletivamente, estas descobertas fornecem uma referência para descobrir novos aditivos de cobre orgânico de baixo custo.(AU)


Subject(s)
Animals , Soil Analysis , Copper , Food Additives , Aspergillus , Soil Microbiology , Soil Treatment , Sus scrofa
19.
China Journal of Chinese Materia Medica ; (24): 582-590, 2021.
Article in Chinese | WPRIM | ID: wpr-878882

ABSTRACT

The natural forest and artificial shed are the main cropping modes of Coptis chinensis. This study is aimed to reveal the rhizosphere soil bacterial community structure difference between under tow C. chinensis cropping modes-natural forest and artificial shed, and to assist us to completely understand soil quality condition,and provide theoretical guidance for soil improvement and C. chinensis planting. The rhizosphere soil samples of 1-5-year-old C. chinensis under tow cropping modes-natural forest and artificial shed were collected. Illumina high-throughput sequencing technology was used to analyze the alpha diversity, community composition, community structure of soil bacteria under the tow cropping modes,and the effects of soil nutriment indices on soil bacterial community structure. Through the analysis of species number, Shannon, Chao1 index and ACE index of bacterial community, it was found that the bacterial diversity of 1-year-old C. chinensis soil under natural forest cropping mode was significantly lower than that under artificial shed cropping mode, and the diversity of bacterial communities in soil of 2-5-years old C. chinensis were not significant different between two cropping modes. A total of 53 phyla,60 classes,140 orders and 266 families were detected in the rhizosphere soil of C. chinensis under the cropping modes of natural forest, respectively. The rhizosphere soil of C. chinensis under the cropping modes of artificial shed included 54 phyla,65 classes,140 orders and 264 families, respectively. Under the two cropping modes, the top 10 dominant species of bacterial community abundance are the same, they are Proteobacteria, Acidobacteria, Actinobacteria,Bacteroidetes, Planctomycetes, Chloroflexi, Verrucomicrobia, Gemmatimonadetes, Firmicutes and Cyanobacteria, but there are differences in the abundance sequence. The top 10 dominant species of bacterial community abundance accounted for 74.36% to 74.30% of the total bacteria, and 3.15% to 3.92% of the bacteria are unclassified. The results of Metastat analysis showed that the abundance of Gemmatimonadetes in the rhizosphere soil of C. chinensis under the cropping modes the artificial shed was significantly higher than that under the natural forest cropping mode(P<0.05). MRPP analysis of community structure differences showed that under tow cropping modes, there were significant differences in the bacterial community structure of 1-4-year-old soil bacteria, among which the difference between 1-year-old soil samples was the largest. With the increase of cropping years, the difference gradually decreases, and there is no significant difference in the bacterial community structure between 5-year-old soil samples. RDA analysis and correlation analysis of bacterial community structure and soil physical and chemical properties showed that the order of environmental factors on the rhizosphere soil bacteria of Coptis chinensis was: pH>available P> total P> total K>bulk density>total N>available N>organic matter. The results are helpful to understand the soil health of C. chinensis and provide scientific basis and theoretical guidance for soil improvement and C. chinensis planting.


Subject(s)
Child, Preschool , Humans , Infant , Coptis , Forests , Rhizosphere , Soil , Soil Microbiology
20.
Journal of Forensic Medicine ; (6): 366-371, 2021.
Article in English | WPRIM | ID: wpr-985226

ABSTRACT

Objective To preliminarily discuss the feasibility of geolocation inference of forensic individual origin by soil metagenomic analysis. Methods The 33 soil samples from Heilongjiang, Qinghai and Tibet were collected, total bacterial DNA in the samples were extracted, and universal primers were used to amplify the V3 and V4 hypervariable region of bacterial 16S rDNA. The region was sequenced by high-throughput sequencing (HTS) with the MiSeq sequencer. Bioinformatics analysis such as species composition and sample comparison was performed on sequencing data. The richness index and diversity index were calculated based on operational taxonomic unit (OTU) results. Results A total of 2 720 149 sequences were generated by sequencing. Those sequences were clustered into 114 848 OTUs. The Chao1 indexes of soil microorganisms in Heilongjiang, Qinghai, and Tibet were 797.45, 745.11 and 535.98, respectively, and Shannon indexes were 6.46, 6.36 and 6.25, respectively. The number of bacterial species and the community diversity in the soil from high to low were Heilongjiang > Qinghai > Tibet. The composition of soil bacteria in three provinces at various classification levels were obtained, the dominant genuses in Heilongjiang were Chthoniobacteraceae DA101 and an unannotated genus of Thermogemmatisporaceae; the dominant genuses in Qinghai were an unannotated genus of Cytophagaceae and an unannotated genus of Nocardioidaceae; the dominant genuses in Tibet were an unannotated genus of Comamonadaceae and Verrucomicrobiaceae Luteolibacter. The results of principal co-ordinates analysis demonstrated that, according to the weighted UniFrac analysis, the three principle components represented 56.36% of the total variable, and according to the unweighted UniFrac analysis, the three principle components represented 34.81% of the total variable. The samples from the same province could be clustered together, and the species and content of soil microorganisms from different provinces were significantly different. Conclusion Based on the metagenomic analysis method, soil samples from different regions can be effectively distinguished, which has potential application value in geolocation inference of forensic individual origin in the future.


Subject(s)
Bacteria/genetics , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL