Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. bras. cir. cardiovasc ; 36(1): 71-77, Jan.-Feb. 2021. tab, graf
Article in English | LILACS | ID: biblio-1155790

ABSTRACT

Abstract Introduction: Atrial fibrillation (AF) is the most common sustained arrhythmia. Sorting nexin 10 (SNX10) has been reported to be an important regulator in embryonic development and human diseases, however, little is known about its role in cardiac disease. The aim of this study was to investigate the clinical significance of SNX10 expression in AF. Methods: Nineteen valvular heart disease patients with AF and nine valvular heart disease patients with sinus rhythm (SR) were enrolled. Atrial tissue samples from patients undergoing open heart surgery were examined. Atrial tissues of normal hearts were obtained from two cases' autopsies. The SNX10 expression and its associations with the degree of fibrosis were analyzed by immunohistochemistry and Masson's trichrome staining. Results: SNX10 expression was detected in the cytoplasm of cardiac cells in human myocardial tissue. The SNX10 expression level was higher in the SR group than in the AF group (P=0.023). SNX10 expression was negatively associated with the degree of fibrosis (P=0.017, Spearman rho=-0.447), the New York Heart Association degree (P=0.003, Spearman rho=-0.545), left atrial diameter (P=0.038, Spearman rho=-0.393), right atrial diameter (P=0.043, Spearman rho=-0.386), and the brain natriuretic peptide (BNP) level 24 hours after surgery (P=0.030, Spearman rho=-0.426), but not the BNP level before surgery and 72 hours after surgery. No statistical significance was observed between SNX10 and the level of troponin T and C-reactive protein. Conclusion: Decreased SNX10 might serve as a potential risk factor in AF of the valvular heart disease.


Subject(s)
Humans , Atrial Fibrillation/etiology , Atrial Appendage , Heart Valve Diseases/surgery , Case-Control Studies , Risk Factors , Sorting Nexins , Heart Atria
2.
Article in English | WPRIM | ID: wpr-880630

ABSTRACT

A case of SNX10 gene mutation in a patient with infantile malignant osteopetrosis (IMO) was admitted to Department of Pediatrics, Third Xiangya Hospital, Central South University. The patient had the symptom of anemia, hepatosplenomegaly and growth retardation. The X-ray examination suggested extensive increase of bone density throughout the body, which was clinically diagnosed as IMO. The homozygous mutation of SNX10 gene c.61C>T was found via gene sequencing. We reviewed the relevant literatures and found that anemia, visual and hearing impairment, hepatosplenomegaly are the main clinical symptoms of IMO, SNX10 gene mutation is a rare cause of IMO, and hematopoietic stem cell transplantation is an effective treatment.


Subject(s)
Bone Density , Child , Hematopoietic Stem Cell Transplantation , Humans , Mutation , Osteopetrosis/genetics , Sorting Nexins/genetics
3.
Chinese Journal of Biotechnology ; (12): 1436-1445, 2014.
Article in Chinese | WPRIM | ID: wpr-345581

ABSTRACT

Sorting nexins (SNXs) are a large group of proteins that contain Phox (PX) domain and involve in regulating endocytosis and endosome sorting. SNX7, a member of SNXs family, contains a PX domain and a BAR domain. In zebrafish, SNX7 is a liver-enriched anti-apoptotic protein and indispensible for the liver development. A fragment of SNX7 cDNA ((px-bar)snx7), encoding the PX domain and the BAR domain, was inserted into the expressing vector p28a, transformed into E. coli Rosseta 2 (DE3), and then induced by isopropyl β-D-1-Thiogalactopyranoside (IPTG). After affinity, ion exchange and gel filtration purification, the purity of (PX-BAR)SNX7 reached over 95%. Dynamic light scattering (DLS) experiment indicated that (PX-BAR)SNX7 was homogeneous in solution. Lipid overlay assay showed that (PX-BAR)SNX7 can bind to PtdIns(5)P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3.


Subject(s)
Escherichia coli , Metabolism , Genetic Vectors , Humans , Phosphatidylinositols , Metabolism , Recombinant Proteins , Sorting Nexins , Substrate Specificity
4.
Article in English | WPRIM | ID: wpr-728387

ABSTRACT

KIF1B beta is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors that are involved in various intracellular organellar transport processes. KIF1B beta is not restricted to neuronal systems, however, is widely expressed in other tissues, even though the function of KIF1B beta is still unclear. To elucidate the KIF1B beta-binding proteins in non-neuronal cells, we used the yeast two-hybrid system, and found a specific interaction of KIF1B beta and the sorting nexin (SNX) 17. The C-terminal region of SNX17 is required for the binding with KIF1B beta. SNX17 protein bound to the specific region of KIF1B beta (813-916. aa), but not to other kinesin family members. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SNX17 specifically co-immunoprecipitated KIF1B beta associated with SNX17 from mouse brain extracts. These results suggest that SNX17 might be involved in the KIF1B beta-mediated transport as a KIF1B beta adaptor protein.


Subject(s)
Animals , Brain , Glutathione Transferase , Humans , Kinesin , Mice , Microtubules , Neurons , Proteins , Sorting Nexins , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL