Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 18(3): 215-220, May 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-750650

ABSTRACT

Background The objective of this study was to compare the level differences of mRNA transcription and protein expression of PPARγ, FAS and HSL in different parts of the carcass in different tail-type sheep. Six Tan sheep and six Shaanbei fine-wool sheep aged 9 months were slaughtered and samples were collected from the tail adipose, subcutaneous adipose, and longissimus dorsi muscle. The levels of mRNA transcription and protein expression of the target genes in these tissues were determined by real-time quantitative PCR and western blot analyses. Results The results showed that PPARγ, FAS, and HSL were expressed with spatial differences in tail adipose, subcutaneous adipose and longissimus dorsi muscle of Tan sheep and Shaanbei fine-wool sheep. Differences were also observed between the two breeds. The mRNA transcription levels of these genes were somewhat consistent with their protein expression levels. Conclusion The present results indicated that PPARγ, FAS and HSL are correlated with fat deposition, especially for the regulating of adipose deposition in intramuscular fat, and that the mRNA expression patterns are similar to the protein expression patterns. The mechanism requires clarification in further studies.


Subject(s)
Animals , Sheep , Sterol Esterase/genetics , PPAR gamma/genetics , Fatty Acid Synthases/genetics , Tail , Transcription, Genetic , RNA, Messenger , Blotting, Western , Sterol Esterase/metabolism , PPAR gamma/metabolism , Fatty Acid Synthases/metabolism , Real-Time Polymerase Chain Reaction
2.
Electron. j. biotechnol ; 18(2): 122-127, Mar. 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-745580

ABSTRACT

Background The objective of this study was to investigate proliferator-activated receptor (PPARγ), fatty acid synthase (FAS) and hormone-sensitive lipase (HSL) mRNA and protein expression in fat tails of Tan sheep. Rams from different developmental stages (aged 3, 6, 9, 12, 15 and 18 months) were selected, and their tail measurements including length (L), width (W) and girth (G) were recorded. The mRNA and protein expressions of PPARγ, FAS and HSL were examined by quantitative real-time polymerase chain reaction (PCR) and Western blot. Results The tail measurements increased with age. We observed no significant differences (P > 0.05) of PPARγ mRNA expression between ages 9 and 15 months, and between 12 and 15 months; FAS mRNA expression levels at each developmental stage were observed significantly in Tan sheep (P < 0.05); HSL mRNA expression with no significant differences were only observed between 6 and 15 months (P > 0.05). Significant differences (P < 0.05) of PPARγ, FAS and HSL protein expressions at each developmental stage were observed in Tan sheep. Conclusion We observed that the mRNA expression patterns of PPARγ and FAS decreased first before they increased again and then this process repeated. Conversely, the mRNA expression patterns of HSL increased first before they decreased and then this process repeated. The protein expression patterns of PPARγ and FAS decreased first before they increased again and then this process repeated. Conversely, the protein expression pattern of HSL increased first before it decreased again and then increased again.


Subject(s)
Animals , Sheep/growth & development , Sheep/genetics , Proteins/metabolism , Sterol Esterase/metabolism , PPAR gamma/metabolism , Fatty Acid Synthases/metabolism , Transcription Factors , RNA, Messenger , Blotting, Western , Sterol Esterase/genetics , PPAR gamma/genetics , Fatty Acid Synthases/genetics , Real-Time Polymerase Chain Reaction
3.
Article in English | WPRIM | ID: wpr-14962

ABSTRACT

Higher levels of body fat are associated with an increased risk for development numerous adverse health conditions. FTY720 is an immune modulator and a synthetic analogue of sphingosine 1-phosphate (S1P), activated S1P receptors and is effective in experimental models of transplantation and autoimmunity. Whereas immune modulation by FTY720 has been extensively studied, other actions of FTY720 are not well understood. Here we describe a novel role of FTY720 in the prevention of obesity, involving the regulation of adipogenesis and lipolysis in vivo and in vitro. Male C57B/6J mice were fed a standard diet or a high fat diet (HFD) without or with FTY720 (0.04 mg/kg, twice a week) for 6 weeks. The HFD induced an accumulation of large adipocytes, down-regulation of phosphorylated AMP-activated protein kinase alpha (p-AMPKalpha) and Akt (p-Akt); down-regulation of hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL) and perilipin mRNA as well as up-regulation of phosphorylated HSL (p-HSL, Ser563) and glycogen synthase kinase 3 alpha/beta (p-GSK3alpha/beta). All these effects were blunted by FTY720 treatment, which inhibited adipogenesis and promoted lipolysis. Also, FTY720 significantly decreased lipid accumulation in maturing preadipocytes. FTY720 down-regulated the transcriptional levels of the PPARgamma, C/EBPalpha and adiponectin, which are markers of adipogenic differentiation. FTY720 significantly increased the release of glycerol and the expression of the HSL, ATGL and perilipin, which are regulators of lipolysis. These results show that FTY720 prevented obesity by modulating adipogenesis and lipolysis, and suggest that FTY720 is used for the treatment of obesity.


Subject(s)
3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Anti-Obesity Agents/pharmacology , Antigens, Differentiation/genetics , Carrier Proteins/genetics , Cell Size , Diet, High-Fat/adverse effects , Disease Models, Animal , Enzyme Activation , Gene Expression Regulation, Enzymologic/drug effects , Glycogen Synthase Kinase 3/genetics , Lipase/genetics , Lipolysis/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Phosphoproteins/genetics , Phosphorylation , Propylene Glycols/pharmacology , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Sphingosine/analogs & derivatives , Sterol Esterase/metabolism
4.
Article in English | IMSEAR | ID: sea-26156

ABSTRACT

The effect of aspirin on isoproterenol induced changes in lipid metabolism in rats was studied. Aspirin (1.2 mg/100 g/day) was administered orally for a period of 60 days along with/without isoproterenol (20 mg/100g sc twice at a time interval of 24 h for 2 days). Isoproterenol treated rats showed an increase in the levels of heart cholesterol, triglycerides and free fatty acids. The activity of cholesterol ester synthetase CES was increased significantly with concomitant increase in heart lipid peroxide levels in isoproterenol treatment. Aspirin treatment could restore the enzyme activity to near normal and also reduce the level of lipid peroxides. The lipid changes were minimum in rats treated with aspirin and isoproterenol.


Subject(s)
Administration, Oral , Animals , Aspirin/administration & dosage , Cholesterol/metabolism , Fatty Acids, Nonesterified/metabolism , Heart/drug effects , Isoproterenol/administration & dosage , Lipid Metabolism , Male , Myocardium/enzymology , Rats , Rats, Wistar , Sterol Esterase/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL