Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
J. Health Biol. Sci. (Online) ; 10(1): 1-5, 01/jan./2022.
Article in English | LILACS | ID: biblio-1411471

ABSTRACT

Objectives: the aim of this study was to evaluate the effects of the association of dry extracts of Astragalus membranaceus, Peumus boldus and Curcuma longa in rats with induced diabetes. Methods: After the induction of type 2 diabetes by intraperitoneal streptozotocin, male Wistar rats were randomly assigned to groups (n=6) and treated for 20 days. The extracts were suspended in water and administered through orogastric gavage once daily as described: Group I: healthy control (saline); group II: received Astragalus membranaceus, Peumus boldus and Curcuma longa (400 mg/kg/day of each dry extract); group III: received Astragalus membranaceus, Peumus boldus, Curcuma longa (400 mg/kg/day of each dry extract) and glibenclamide (15 mg/kg/day). Fasting glucose, glucose tolerance, alanine aminotransferase, aspartate aminotransferase and fructosamine were evaluated. Results: Fasting blood glucose and glucose tolerance for groups II and III were influenced by treatments (p<0.05). The extracts did not significantly influence the efficacy of glibenclamide. Conclusion: The results found in this study allow us to consider that it is not possible to conclude that the compounds evaluated are not effective in DM in rats, due to variables such as total treatment period, doses, size of pancreatic injury caused by streptozotocin, and diet profile may have influenced the results. The studied compounds have potential for application in diabetes and further studies should be carried out to adjust the treatment.


Objetivos: avaliar os efeitos da associação de extratos secos de Astragalus membranaceus, Peumus boldus e Curcuma longa em ratos com diabetes induzida. Métodos: Após a indução de diabetes tipo 2 (DM) por estreptozotocina intraperitoneal, ratos Wistar machos foram distribuídos aleatoriamente em grupos (n=6) e tratados por 20 dias. Os extratos foram suspensos em água e administrados por gavagem orogástrica uma vez ao dia conforme descrito: Grupo I: controle saudável (solução salina); grupo II: recebeu Astragalus membranaceus, Peumus boldus e Curcuma longa (400 mg/kg/dia de cada extrato seco); grupo III: receberam Astragalus membranaceus, Peumus boldus, Curcuma longa (400 mg/kg/dia de cada extrato seco) e glibenclamida (15 mg/kg/dia). A glicemia de jejum, tolerância à glicose, alanina aminotransferase, aspartato aminotransferase e frutosamina foram avaliados. Resultados: A glicemia de jejum e a tolerância à glicose para os grupos II e III foram influenciadas pelos tratamentos (p<0,05). Os extratos não influenciaram significativamente na eficácia da glibenclamida. Conclusão: Os resultados encontrados neste estudo permitem considerar que não é possível concluir que os compostos avaliados não são eficazes no DM em ratos, devido às variáveis como tempo total de tratamento, doses e tamanho da lesão pancreática causada por estreptozotocina, além do perfil da dieta, que podem ter influenciado os resultados. Os compostos estudados têm potencial para aplicação em diabetes e mais estudos devem ser realizados para adequar o tratamento.


Subject(s)
Astragalus propinquus , Blood Glucose , Streptozocin , Fructosamine , Curcuma , Peumus , Diabetes Mellitus , Alanine Transaminase
2.
Article in Chinese | WPRIM | ID: wpr-936338

ABSTRACT

OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.


Subject(s)
Animals , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells , Flavanones , Glucose/pharmacology , Glucosides , Inflammation/metabolism , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , Rats , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Streptozocin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
3.
Article in Chinese | WPRIM | ID: wpr-928133

ABSTRACT

Neuropathic pain is one of the common complications of diabetes. Tetrahydropalmatine(THP) is a main active component of Corydalis Rhizoma with excellent anti-inflammatory and pain-alleviating properties. This study aims to investigate the therapeutic effect of THP on diabetic neuropathic pain(DNP) and the underlying mechanism. High-fat and high-sugar diet(4 weeks) and streptozotocin(STZ, 35 mg·kg~(-1), single intraperitoneal injection) were employed to induce type-2 DNP in rats. Moreover, lipopolysaccharide(LPS) was used to induce the activation of BV2 microglia in vitro to establish an inflammatory cellular model. Fasting blood glucose(FBG) was measured by a blood glucose meter. Mechanical withdrawal threshold(MWT) was assessed with von Frey filaments, and thermal withdrawal latency(TWL) with hot plate apparatus. The protein expression levels of OX42, inducible nitric oxide synthase(iNOS), CD206, p38, and p-p38 were determined by Western blot, the fluorescence expression levels of OX42 and p-p38 in the dorsal horn of the rat spinal cord by immunofluorescence, the mRNA content of p38 and OX42 in rat spinal cord tissue by qRT-PCR, and levels of nitric oxide(NO), interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and serum fasting insulin(FINS) by enzyme-linked immunosorbent assay(ELISA). RESULTS:: showed that the mo-del group demonstrated significant decrease in MWT and TWL, with pain symptoms. THP significantly improved the MWT and TWL of DNP rats, inhibited the activation of microglia and p38 MAPK signaling pathway in rat spinal cord, and ameliorated its inflammatory response. Meanwhile, THP promoted the change of LPS-induced BV2 microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the activation of the p38 MAPK signaling pathway, decreased the expression levels of inflammatory factors NO, IL-1β, IL-6, and TNF-α, and increased the expression level of anti-inflammatory factor IL-10. The findings suggested that THP can significantly ameliorate the pain symptoms of DNP rats possibly by inhibiting the inflammatory response caused by M1 polarization of microglia via the p38 MAPK pathway.


Subject(s)
Animals , Berberine Alkaloids , Blood Glucose/metabolism , Diabetes Mellitus , Diabetic Neuropathies/genetics , Interleukin-10 , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Microglia , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/metabolism , Streptozocin/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Bol. latinoam. Caribe plantas med. aromát ; 20(3): 303-314, may. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1343478

ABSTRACT

In this study, against streptozotocin (STZ) induced diapetic nephropathy (DN); it is aimed to investigate the use of thymoquinone (TQ) and ß-aminoisobutyric acid (BAIBA) and to compare the effects of these agents. With random selection of 35 male rats, five groups (seven rats in each group) were constituted as follows: Control, STZ, STZ + TQ, STZ + BAIBA, STZ + TQ + BAIBA. In the STZ group; body weight, glutathione (GSH) and insulin levels decreased, relative kidney weight, malondialdehyde (MDA), glucose, blood urea nitrogen (BUN) and creatinine (Cr) levels were increased. Also, in kidney tissue; histopathological changes (such as thickening of the capsular, glomerular and tubular basement membranes, increased mesangial matrix amount, increased cytoplasmic vacuolization in some of the tubular epithelial cells, increased tumor necrosis factor-alpha (TNF-α) expression, and inflammatory cell infiltrations in interstitial tissue) were detected. It was observed that these changes occurring after diabetes mellitus (DM) reversed significantly in TQ, BAIBA and TQ + BAIBA groups.


En este estudio, contra la nefropatía diapética (ND) inducida por estreptozotocina (STZ); tiene como objetivo investigar el uso de timoquinona (TQ) y ácido ß-aminoisobutírico (BAIBA) y comparar los efectos de estos agentes. Con la selección aleatoria de 35 ratas macho, se constituyeron cinco grupos (siete ratas en cada grupo) como sigue: Control, STZ, STZ + TQ, STZ + BAIBA, STZ + TQ + BAIBA. En el grupo STZ; el peso corporal, los niveles de glutatión (GSH) y de insulina disminuyeron, el peso relativo de los riñones, el malondialdehído (MDA), la glucosa, el nitrógeno ureico en sangre (BUN) y los niveles de creatinina (Cr) aumentaron. Además, en tejido renal; se detectaron cambios histopatológicos (como engrosamiento de las membranas basales capsular, glomerular y tubular, aumento de la cantidad de matriz mesangial, aumento de la vacuolización citoplasmática en algunas de las células epiteliales tubulares, aumento de la expresión del factor de necrosis tumoral alfa (TNF-α) e infiltraciones de células inflamatorias en tejido intersticial). Se observó que estos cambios que ocurren después de la diabetes mellitus (DM) se revirtieron significativamente en los grupos TQ, BAIBA y TQ + BAIBA.


Subject(s)
Animals , Male , Rats , Benzoquinones/administration & dosage , Diabetic Nephropathies/drug therapy , Aminoisobutyric Acids/administration & dosage , Blood Urea Nitrogen , Body Weight , Immunohistochemistry , Rats, Sprague-Dawley , Streptozocin , Oxidative Stress , Creatinine/analysis , Disease Models, Animal , Glucose/analysis , Glutathione/analysis , Kidney/drug effects
5.
Article in English | WPRIM | ID: wpr-880354

ABSTRACT

BACKGROUND@#Periploca aphylla is used by local population and indigenous medicine practitioners as stomachic, tonic, antitumor, antiulcer, and for treatment of inflammatory disorders. The aim of this study was to evaluate antidiabetic effect of the extract of P. aphylla and to investigate antioxidant and hypolipidemic activity in streptozotocin (STZ)-induced diabetic rats.@*METHODS@#The present research was conducted to evaluate the antihyperglycemic potential of methanol extract of P. aphylla (PAM) and subfractions n-hexane (PAH), chloroform (PAC), ethyl acetate (PAE), n-butanol (PAB), and aqueous (PAA) in glucose-overloaded hyperglycemic Sprague-Dawley rats. Based on the efficacy, PAB (200 mg/kg and 400 mg/kg) was tested for its antidiabetic activity in STZ-induced diabetic rats. Diabetes was induced via intraperitoneal injection of STZ (55 mg/kg) in rat. Blood glucose values were taken weekly. HPLC-DAD analysis of PAB was carried out for the presence of various polyphenols.@*RESULTS@#HPLC-DAD analysis of PAB recorded the presence of rutin, catechin, caffeic acid, and myricetin. Oral administration of PAB at doses of 200 and 400 mg/kg for 21 days significantly restored (P < 0.01) body weight (%) and relative liver and relative kidney weight of diabetic rats. Diabetic control rats showed significant elevation (P < 0.01) of AST, ALT, ALP, LDH, total cholesterol, triglycerides, LDL, creatinine, total bilirubin, and BUN while reduced (P < 0.01) level of glucose, total protein, albumin, insulin, and HDL in serum. Count of blood cells and hematological parameters were altered in diabetic rats. Further, glutathione peroxidase, catalase, superoxide dismutase, glutathione reductase, and total soluble protein concentration decreased while concentration of thiobarbituric acid reactive substances and percent DNA damages increased (P < 0.01) in liver and renal tissues of diabetic rats. Histopathological damage scores increased in liver and kidney tissues of diabetic rats. Intake of PAB (400 mg/kg) resulted in significant improvement (P < 0.01) of above parameters, and results were comparable to that of standard drug glibenclamide.@*CONCLUSION@#The result suggests the antihyperglycemic, antioxidant, and anti-inflammatory activities of PAB treatment in STZ-compelled diabetic rat. PAB might be used as new therapeutic agent in diabetic patients to manage diabetes and decrease the complications.


Subject(s)
1-Butanol/chemistry , Administration, Oral , Animals , Diabetes Mellitus, Experimental/drug therapy , Dose-Response Relationship, Drug , Hypoglycemic Agents/chemistry , Male , Periploca/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Streptozocin/adverse effects
6.
Article in Chinese | WPRIM | ID: wpr-921747

ABSTRACT

This study investigated the differential mechanisms of Rehmanniae Radix and Rehmanniae Radix Praeparata in improving diabetes in mice through AMPK-mediated NF-κB/NLRP3 signaling pathway. The diabetic mouse model was established with high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days), after which the mice were randomly divided into model group, low-dose(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-dose(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, catalpol group(250 mg·kg~(-1)), 5-hydroxymethylfurfural(5-HMF) group(250 mg·kg~(-1)), metformin group(250 mg·kg~(-1)), with the normal group also set. The organ indexes of heart,liver, spleen, lung, kidney and pancreas were calculated after four weeks of administration. The pathological changes and fibrosis of pancreas, kidney and liver in mice were observed by hematoxylin-eosin(HE) staining and Masson staining. Western blot was used to determine the expression levels of Toll-like receptor-4(TLR4), nuclear factor-κB(NF-κB), Nod-like receptor protein 3(NLRP3),interleukin-1β(IL-1β), adenosine monophosphate-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK) in the pancreas, kidney and liver of mice. Compared with the model group, the administration groups witnessed significant decrease in the liver,spleen, kidney, pancreas and fat indexes of diabetic mice, and there was no significant difference in heart and lung indexes. The pathological states and fibrosis of pancreatic, kidney and liver tissues were significantly improved after administration. Additionally, the expression levels of TLR4, NF-κB and NLRP3 in pancreas, kidney and liver of diabetic mice were significantly lowered. The expression levels of p-AMPK/AMPK were enhanced significantly in kidney and liver of mice in Rehmanniae Radix group while in pancreas, kidney and liver in Rehmanniae Radix Praeparata group. This suggests that Rehmanniae Radix and Rehmanniae Radix Praeparata differ in the mechanism of regulating energy metabolism of multiple organs and thereby exerting anti-inflammatory effects to alleviate symptoms of diabetic mice.


Subject(s)
AMP-Activated Protein Kinases/genetics , Animals , Diabetes Mellitus, Experimental/drug therapy , Diet, High-Fat/adverse effects , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Plant Extracts , Rehmannia , Signal Transduction , Streptozocin
7.
Braz. j. med. biol. res ; 54(11): e11352, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339450

ABSTRACT

Diabetes mellitus is associated with neural and micro- and macrovascular complications. Therapeutic options for these complications are limited and the delivery of mesenchymal stem cells into lesions have been reported to improve the healing process. In this work, the effects of the administration of a lineage of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase (hBMSC-TERT) as a potential therapeutic tool for wound healing in diabetic rats were investigated. This is the first description of the use of these cells in diabetic wounds. Dorsal cutaneous lesions were made in streptozotocin-induced diabetic rats and hBMSC-TERT were subcutaneously administered around the lesions. The healing process was evaluated macroscopically, histologically, and by birefringence analysis. Diabetic wounded rats infused with hBMSC-TERT (DM-TERT group) and the non-diabetic wounded rats not infused with hBMSC-TERT (CW group) had very similar patterns of fibroblastic response and collagen proliferation indicating improvement of wound healing. The result obtained by birefringence analysis was in accordance with that obtained by the histological analysis. The results indicated that local administration of hBMSC-TERT in diabetic wounds improved the wound healing process and may become a therapeutic option for wounds in individuals with diabetes.


Subject(s)
Humans , Animals , Rats , Telomerase , Diabetes Mellitus, Experimental , Mesenchymal Stem Cells , Wound Healing , Streptozocin
8.
Bol. latinoam. Caribe plantas med. aromát ; 20(2): 132-146, 2021. ilus, tab
Article in English | LILACS | ID: biblio-1342208

ABSTRACT

We investigated the effects of dichloromethane extract (DME) from Myrcia splendenson alterations caused by type 2 diabetes in the blood and kidney of rats, in order to reduce side effects caused by synthetic drugs. Rats received streptozotocin (60 mg/kg),15 minutes after nicotinamide (120 mg/kg) or water. After 72 hours, the glycemic levels were evaluated to confirm diabetes and the animals received (15 days) DME (25, 50, 100 or 150 mg/Kg) or water. DME partially reversed hyperglycemia and (100 and 150 mg/kg) reversed hypertriglyceridemia. Histopathological findings elucidated that DME reduced damage to pancreatic islets. DME 150 mg/kgreversed the increases in TBA-RS, the reduction in the sulfhydryl content, 100 and 150 mg/kg increased CAT, reversed the decrease in GSH-Px and increased it activity in the blood. DME 150 mg/kg reversed CAT and GSH-Px reductions in the kidney. We believe that DME effects might be dependent on the presence of phenolic compounds.


Investigamos los efectos del extracto de diclorometano (DME)de Myrcia splendens sobre las alteraciones causadas por la diabetes tipo 2 en la sangre y los riñones de las ratas, para reducir los efectos secundarios causados por las drogas sintéticas. Las ratas recibieron estreptozotocina (60 mg/kg), 15 minutos después de la nicotinamida (120 mg/kg) o agua. Después de 72 horas, se confirmo la diabetes y los animales recibieron (15 días) DME (25, 50, 100 o 150 mg/Kg) o agua. DME revierte parcialmente la hiperglucemia y revierte la hipertrigliceridemia. DME redujo el daño a los islotes pancreáticos. DME revirtió los aumentos en TBA-RS, la reducción en el contenido de sulfhidrilo, aumentó la CAT, revirtió la disminución en GSH-Px y aumentó su actividad en la sangre. Además, DME revirtió las reducciones de CAT y GSH-Px en el riñón. Creemos que los efectos provocados por DME pueden depender de la presencia de compuestos fenólicos.


Subject(s)
Animals , Male , Rats , Plant Extracts/administration & dosage , Myrtaceae/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/administration & dosage , Methylene Chloride/administration & dosage , Blood Glucose/drug effects , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Rats, Wistar , Streptozocin , Oxidative Stress/drug effects , Spectrometry, Mass, Electrospray Ionization , Phenolic Compounds/analysis , Hypolipidemic Agents/administration & dosage , Antioxidants/administration & dosage
9.
Clinics ; 76: e3002, 2021. tab, graf
Article in English | LILACS | ID: biblio-1345816

ABSTRACT

OBJECTIVES: Contrast-induced acute kidney injury (CI-AKI) is an important clinical problem that can be aggravated by diabetes mellitus, a major risk factor. However, heme oxygenase-1 (HO-1), a promising therapeutic target, can exert antioxidant effects against CI-AKI. Thus, we investigated the role of HO-1 in CI-AKI in the presence of diabetes mellitus. METHODS: Twenty-eight male Wistar rats weighing 250-300g were subjected to left uninephrectomy, and concomitantly, diabetes induced by streptozotocin (65 mg/kg). After 12 weeks, iodinated contrast (meglumine ioxithalamate, 6 mL/kg) and hemin (HO-1 inducer-10 mg/k) were administered 60 min before iodinated contrast treatment. The rats were randomly divided into four groups: control, diabetes mellitus (DM), DM iodinated contrast (DMIC), and DMIC hemin (DMICH). Kidney function, albuminuria, oxidative profile, and histology were assessed. All experimental data were subjected to statistical analyses. RESULTS: CI-AKI in preclinical diabetic models decreased creatinine clearance and increased urinary neutrophil gelatinase-associated lipocalin (NGAL) levels and the degree of albuminuria. Additionally, the levels of oxidative and nitrosative stress metabolites (urinary peroxides, thiobarbituric acid-reactive substances, and NO) were elevated, while thiol levels in kidney tissue were reduced. Kidney histology showed tubular cell vacuolization and edema. HO-1 inducer treatment improved kidney function and reduced urinary the NGAL levels. The oxidative profile showed an increase in the endogenous thiol-based antioxidant levels. Additionally, the tubular injury score was reduced following HO-1 treatment. CONCLUSIONS: Our findings highlight the renoprotective effects of HO-1 in CI-AKI and preclinical diabetic models. Therefore, HO-1 ameliorates kidney dysfunction, reduces oxidative stress, and prevents cell necrosis.


Subject(s)
Animals , Male , Rats , Diabetes Mellitus , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Rats, Wistar , Streptozocin/metabolism , Oxidative Stress , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Kidney/metabolism
10.
Acta cir. bras ; 36(7): e360702, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1284915

ABSTRACT

ABSTRACT Purpose To develop a model of induction of type-2 diabetes (DM2) by combining low doses of streptozotocin (STZ) and a cafeteria diet. Methods Forty male Wistar rats (200 g) were allocated into four groups: control (non-diabetic, n = 10); STZ 30 mg/kg (diabetic, n = 10); STZ 35 mg/kg (diabetic,n = 10); and STZ 40 mg/kg (diabetic, n = 10). DM2 was induced with a single intraperitoneal injection of STZ after four weeks of cafeteria diet in the three diabetic groups. All animals were evaluated as for anthropometric, and biochemical analyses, as well as liver, kidney and pancreas histological analyses. Results Lower weight gain, higher water intake, higher Lee index, hyperglycemia and modified total protein, urea, alpha-amylase, as well as insulin resistance, hepatic steatosis, pancreas, and kidney injury were observed in animals treated with 35 and 40 mg/kg of STZ. Conclusions The results show that the experimental model using cafeteria diet associated with 35 mg/kg of STZ is a low-cost model and efficient in order to develop DM2, confirmed by the presence of polydipsia, hyperglycemia, altered biochemical tests, insulin resistance and damages to the liver, pancreas and kidney, which is similar to the disease found in humans.


Subject(s)
Animals , Male , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/etiology , Rats, Wistar , Streptozocin , Diet
11.
Braz. j. med. biol. res ; 53(7): e9628, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132530

ABSTRACT

Ophiopogonin D (OP-D) is the principal pharmacologically active ingredient from Ophiopogon japonicas, which has been demonstrated to have numerous pharmacological activities. However, its protective effect against renal damage in streptozotocin (STZ)-induced diabetic nephropathy (DN) rats remains unclear. The present study was performed to investigate the protective effect of OP-D in the STZ-induced DN rat model. DN rats showed renal dysfunction, as evidenced by decreased serum albumin and creatinine clearance, along with increases in serum creatinine, blood urea nitrogen, TGF-β1, and kidney hypertrophy, and these were reversed by OP-D. In addition, STZ induced oxidative damage and inflammatory response in diabetic kidney tissue. These abnormalities were reversed by OP-D treatment. The findings obtained in the present study indicated that OP-D might possess the potential to be a therapeutic agent against DN via inhibiting renal inflammation and oxidative stress.


Subject(s)
Animals , Male , Rats , Saponins/therapeutic use , Oxidative Stress/drug effects , Ophiopogon/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Inflammation/prevention & control , Spirostans/therapeutic use , Rats, Sprague-Dawley , Streptozocin
12.
Braz. J. Pharm. Sci. (Online) ; 56: e18782, 2020. graf
Article in English | LILACS | ID: biblio-1249151

ABSTRACT

Cnidoscolus chayamansa is a native plant of the Mayan region, which is also cultivated in other places like northern Mexico, Tunisia and India. Many properties are attributed to Mayan Chaya, such as aid in the control of glycemia in diabetics. Thus this study aimed to evaluate the hypoglycemic effects of chaya aqueous extracts in a model of streptozotisin-induced diabetic Wistar rats. Chaya aqueous extracts were collected from plants cultivated in Quinta Roo (Mayan region) and Durango (northern Mexico), and in this study we compare their effect with metformin (as a control). Additionally, we compared the extracts mass profiles from both regions by high-resolution liquid chromatography coupled to a triple quadrupole tandem mass detector (HPLC-MS/MS QQQ). Finally, a study of the pancreatic tissue was carried out to evaluate the effects of the extracts on the Langerhans islets. Both extracts showed a good hypoglycemic effect after two weeks of treatment, and the Langerhans islets showed a partial recovery due to the effect of the treatment. Although the plants were cultivated at a distance of 2,350 km and under different weather, the compounds found in both did not show significant differences.


Subject(s)
Animals , Female , Rats , Plant Extracts/adverse effects , Streptozocin/administration & dosage , Euphorbiaceae/classification , Diabetes Mellitus/chemically induced , Hyperglycemia , Hypoglycemic Agents/adverse effects , Plants , Chromatography, High Pressure Liquid/methods , Islets of Langerhans
13.
Article in English | LILACS, BBO | ID: biblio-1135564

ABSTRACT

Abstract Objective: To investigate the differences of receptor activator of nuclear factor-κB ligand (RANKL) and Osteoprotegerin (OPG) expressions between normoglycemic and hyperglycemic Wistar rats (Rattus Novergicus) during Orthodontic Tooth Movement (OTM). Material and Methods: This study was true experimental with post-test group only. Thirty-two healthy male Wistar rats, weighted around 200-250 grams, 12-20 weeks old, were used as OTM animal study. They were divided into 2 groups (n=16), normoglycemic rats (normal blood glucose 80-120 mg/dl) and hyperglycemic rats (>250 mg/dl) induced by Streptozotocin with a dose of 30 mg in PBS injection intraperitoneally. A NiTi closed coil spring was mounted between maxillary first molar and incisors with the light force 10gf/mm2 in both groups to induce OTM. The studied animals were then terminated on days 1, 3, 6, and 9, respectively, and premaxilla was extracted. RANKL and OPG expression were examined utilizing immunohistochemistry (IHC) analysis. One-way ANOVA and Tukey HSD (p<0.05) were utilized to analyze the differences in the expression of RANKL and OPG between groups. Results: The hyperglycemic group on day 1, 9 rats showed a significant increase in the expression of RANKL, whereas OPG expression decreased significantly on days 1, 3, and 9. Conclusion: There was a significant increase of RANKL expression and a decrease of OPG expression in hyperglycemic rats as documented immunohistochemically.


Subject(s)
Animals , Rats , Tooth Movement Techniques , Rats, Wistar , Streptozocin , Diabetes Mellitus , RANK Ligand , Hyperglycemia , Immunohistochemistry , Intervention Studies , Analysis of Variance , Investigative Techniques , Osteoprotegerin , Molar
14.
Int. j. high dilution res ; 19(3): 2-17, 2020.
Article in English | LILACS, HomeoIndex | ID: biblio-1146520

ABSTRACT

IntroductionDiabetes Mellitusis an emerging endocrine and metabolic disorder which has affected millions of people globally. Homeopathic system of medicine uses ultra-molecular doses for treatment of Diabetes Mellitus. Homeopathic medicines are prepared from plant, mineral, sarcodes,nosodes and animal parts. Insulinum 6 CH, Pancreatinum 6CH and Uranium nitricum 6 CHareused in homeopathy for treatment of Diabetes Mellitus. However,no preclinical studies have been investigated for the anti-diabetic effect and its safety.MethodsHomeopathic medicines Insulinum 6CH, Pancreatinum 6CHandUranium nitricum6CH(1012)dilution factor were used to examine antihyperglycemic effects in streptozotocin induced diabetic rats. After 28 daysoftreatment,bodyweight, Hematology, Biochemistry (serum glucose, urea, creatinine, SGPT, SGOT, ALP, Triglyceride and HDL-cholesterol), Oral Glucose Tolerance Test, HbA1C with histopathologyof (Liver, Kidney, Pancreas) weremeasured.ResultsAfter Streptozotocin induction, the animals have shown significant increase in the fasting blood glucose level (p<0.01) as compared to normal control animals. Treatment with homeopathic medicine Insulinum 6CH, Pancreatinum 6CHandUranium nitricum6CHpotency showed significant decrease in levels of Glucose (p<0.05), OGTT, Total protein (P<0.001), ALP (P<0.05), Cholesterol (P<0.001), SGPT (P<0.001), SGOT (p<0.01), Urea, HbA1C as compared to diabetic animal.ConclusionsIn the present study homeopathic medicine Insulinum 6CH, Pancreatinum 6CH andUranium nitricum6CHpotency exhibitantihyperglycemic effects in streptozotocin induced diabetic rats.(AU)


Subject(s)
Insulinum/therapeutic use , Pancreatinum/therapeutic use , Sarcodes , Uranium/therapeutic use , Streptozocin , Diabetes Mellitus/therapy , Homeopathy , Hypoglycemic Agents
15.
Braz. J. Pharm. Sci. (Online) ; 56: e18772, 2020. tab, graf
Article in English | LILACS | ID: biblio-1285509

ABSTRACT

There is emerging evidence for a dysregulation of insulin signaling in the brains of patients with Alzheimer's disease (AD) with overlapping molecular features to Type 2 Diabetes Mellitus (T2DM). In addition, T2DM is a known risk factor of AD. The goal of this study was to investigate the neurogenic and neuroprotective potential of rosmarinic acid (RA) in a streptozotocin (STZ)-induced combined with high fat diet (HFD) mouse model of diabetes. Animals were divided into four experimental groups (control, diabetic, diabetic + RA, RA only). Behavioral analysis was performed to assess spatial learning and anxiety levels of animals, whereas quantitative real time PCR was carried out to assess the gene expression levels of neuronal markers of neurogenesis (Ki67, DCX and NeuN). A significant decrease in memory and spatial learning was observed in the diabetic mice, which was substantially improved by RA treatment. RA also increased the gene expression of NeuN, DCX and Ki67, which were dysregulated in the diabetic model. This study proposes RA as a potential therapeutic agent to mitigate neuronal dysfunction associated with T2DM by promoting adult hippocampal neurogenesis.


Subject(s)
Animals , Male , Mice , Diabetes Mellitus, Type 2/diagnosis , Alzheimer Disease/diagnosis , Risk Factors , Streptozocin/pharmacokinetics , Neurogenesis/genetics , Real-Time Polymerase Chain Reaction/methods
16.
Article in English | WPRIM | ID: wpr-811139

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is required for renal fibrosis, which is a characteristic of diabetic nephropathy (DN). Our previous study demonstrated that fibroblast growth factor 21 (FGF21) prevented DN associated with the suppressing renal connective tissue growth factor expression, a key marker of renal fibrosis. Therefore, the effects of FGF21 on renal fibrosis in a DN mouse model and the underlying mechanisms were investigated in this study.METHODS: Type 1 diabetes mellitus was induced in C57BL/6J mice by intraperitoneal injections of multiple low doses of streptozotocin. Then, diabetic and non-diabetic mice were treated with or without FGF21 in the presence of pifithrin-α (p53 inhibitor) or 10-[4′-(N,N-Diethylamino)butyl]-2-chlorophenoxazine hydrochloride (10-DEBC) hydrochloride (Akt inhibitor) for 4 months.RESULTS: DN was diagnosed by renal dysfunction, hypertrophy, tubulointerstitial lesions, and glomerulosclerosis associated with severe fibrosis, all of which were prevented by FGF21. FGF21 also suppressed the diabetes-induced renal EMT in DN mice by negatively regulating transforming growth factor beta (TGF-β)-induced nuclear translocation of Smad2/3, which is required for the transcription of multiple fibrotic genes. The mechanistic studies showed that FGF21 attenuated nuclear translocation of Smad2/3 by inhibiting renal activity of its conjugated protein p53, which carries Smad2/3 into the nucleus. Moreover pifithrin-α inhibited the FGF21-induced preventive effects on the renal EMT and subsequent renal fibrosis in DN mice. In addition, 10-DEBC also blocked FGF21-induced inhibition of renal p53 activity by phosphorylation of mouse double minute-2 homolog (MDM2).CONCLUSION: FGF21 prevents renal fibrosis via negative regulation of the TGF-β/Smad2/3-mediated EMT process by activation of the Akt/MDM2/p53 signaling pathway.


Subject(s)
Animals , Connective Tissue Growth Factor , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Fibroblast Growth Factors , Fibroblasts , Fibrosis , Hypertrophy , Injections, Intraperitoneal , Kidney , Mice , Phosphorylation , Streptozocin , Transforming Growth Factor beta , Tumor Suppressor Protein p53
17.
Article in English | WPRIM | ID: wpr-811138

ABSTRACT

BACKGROUND: Recent studies have shown that microRNAs (miRNAs) are involved in the process of cardiomyocyte apoptosis. We have previously reported that granulocyte-colony stimulating factor (G-CSF) ameliorated diastolic dysfunction and attenuated cardiomyocyte apoptosis in a rat model of diabetic cardiomyopathy. In this study, we hypothesized a regulatory role of cardiac miRNAs in the mechanism of the anti-apoptotic effect of G-CSF in a diabetic cardiomyopathy rat model.METHODS: Rats were given a high-fat diet and low-dose streptozotocin injection and then randomly allocated to receive treatment with either G-CSF or saline. H9c2 rat cardiomyocytes were cultured under a high glucose (HG) condition to induce diabetic cardiomyopathy in vitro. We examined the extent of apoptosis, miRNA expression, and miRNA target genes in the myocardium and H9c2 cells.RESULTS: G-CSF treatment significantly decreased apoptosis and reduced miR-34a expression in diabetic myocardium and H9c2 cells under the HG condition. G-CSF treatment also significantly increased B-cell lymphoma 2 (Bcl-2) protein expression as a target for miR-34a. In addition, transfection with an miR-34a mimic significantly increased apoptosis and decreased Bcl-2 luciferase activity in H9c2 cells.CONCLUSION: Our results indicate that G-CSF might have an anti-apoptotic effect through down-regulation of miR-34a in a diabetic cardiomyopathy rat model.


Subject(s)
Animals , Apoptosis , Diabetic Cardiomyopathies , Diet, High-Fat , Down-Regulation , Glucose , Granulocyte Colony-Stimulating Factor , In Vitro Techniques , Luciferases , Lymphoma, B-Cell , MicroRNAs , Models, Animal , Myocardium , Myocytes, Cardiac , Rats , Streptozocin , Transfection
18.
Acta cir. bras ; 35(1): e202000106, 2020. graf
Article in English | LILACS | ID: biblio-1088526

ABSTRACT

Abstract Purpose To explore the role of all-trans retinoic acid (ATRA) in renal ischemia/reperfusion injury of diabetic rats. Methods Sixty adult male rats were randomly divided into 6 groups, including sham group (S group), ischemia-reperfusion group (I/R group), ischemia-reperfusion+ATRA group (A group), diabetic group (D group), diabetic ischemia-reperfusion group (DI/R group), diabetic ischemia-reperfusion +ATRA group (DA group). The levels of creatinine (Cr), cystatin C (Cys-C) and β2-microglobulin (β2-MG) were measured. Morphology of renal tissue was observed under light microscope. Results DJ-1, Nrf2, HO-1 and caspase-3 were detected by western blot. DJ-1, Nrf2, HO-1 and caspase-3 in I/R group, D group and DI/R group was higher than that in S group. Compared with I/R group, Nrf2 and HO-1 in A group was decreased, but caspase-3 was increased. However, Nrf2 in DA group was higher than that in DI/R group, HO-1 and caspase-3 in DA group were lower than that in DI/R group. Compared with group S, Cr, Cys-C and β2-MG in I/R group, A group, D group, and DI/R group were higher. Whereas the levels of Cr, Cys-C, β2-MG and renal injury score in DA group were lower than those in DI/R group. Conclusion ATRA has a protective effect on renal ischemia-reperfusion injury in diabetic rats, maybe relating to DJ/Nrf2 pathway.


Subject(s)
Animals , Male , Rats , Tretinoin/therapeutic use , Reperfusion Injury/prevention & control , Diabetes Mellitus, Experimental/chemically induced , NF-E2-Related Factor 2/therapeutic use , Kidney/drug effects , Tretinoin/pharmacology , Reperfusion Injury/pathology , Streptozocin , Disease Models, Animal , Drug Evaluation, Preclinical , NF-E2-Related Factor 2/pharmacology , Kidney/pathology
19.
Acta cir. bras ; 34(11): e201901106, Nov. 2019. tab, graf
Article in English | LILACS | ID: biblio-1054683

ABSTRACT

Abstract Purpose: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. Methods: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11 pretreatment. Cardiac function, myocardial infarct size, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) 15-F2tisoprostane, autophagosome, LC3II/I ratio and Belcin-1 level were determined to reflect myocardial injury, oxidative stress and autophagy, respectively. In in vitro study, H9c2 cells cultured in high glucose (HG, 30mM) suffered hypoxia reoxygenation (HR) with/without GDF11, hydrogen peroxide (H2O2) and autophagy inhibitor 3-methyladenine (3-MA) treatment, cell injury; oxidative stress and autophagy were assessed. Results: Pretreatment with GDF11 significantly improved cardiac morphology and function in diabetes, concomitant with decreased arrhythmia severity, infarct size, CK-MB, LDH and 15-F2tisoprostane release, increased SOD activity and autophagy level. In addition, GDF11 notably reduced HR injury in H9c2 cells with HG exposure, accompanied by oxidative stress reduction and autophagy up-regulation. However, those effects were completely reversed by H2O2 and 3-MA. Conclusion: GDF11 can provide protection against MIR injury in diabetic rats, and is implicated in antioxidant stress and autophagy up-regulation.


Subject(s)
Animals , Male , Autophagy/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Oxidative Stress/drug effects , Diabetes Mellitus, Type 1/metabolism , Growth Differentiation Factors/pharmacology , Reference Values , Superoxide Dismutase/analysis , Cardiotonic Agents/pharmacology , Myocardial Reperfusion Injury/pathology , Up-Regulation/drug effects , Cell Line , Blotting, Western , Reproducibility of Results , Rats, Sprague-Dawley , Streptozocin , Microscopy, Electron, Transmission , Diabetes Mellitus, Experimental/metabolism , Hemodynamics/drug effects , Antioxidants/pharmacology
20.
J. bras. nefrol ; 41(3): 315-322, July-Sept. 2019. tab, graf
Article in English | LILACS | ID: biblio-1040245

ABSTRACT

Abstract Introduction: It is hypothesized that increased macrophage migration inhibitory factor (MIF) expression may contribute to diabetic nephropathy (DN) pathogenesis. The aim of the present study was to investigate the renal effects of MIF inhibition in a diabetic experimental model. Methods: Eighteen male Wistar rats (230 ± 20 g) were divided into three groups: 1) control, 2) diabetic (STZ, 50 mg/kg, dissolved in saline, ip), 3) diabetic + MIF antagonist (p425, 1 mg/kg per day, ip, on the 21th day, for 21 consecutive days). The treatment started since we founwd a significant increase in urine albumin excretion (UAE) rate in the diabetic rats in comparison with the control rats. The rats were kept individually in metabolic cages (8 AM-2 PM) and urine samples were collected in the 21 and 42th day. At the end, blood and tissue samples were collected for biochemical (BS, UPE, urine GAG, BUN, Cr, Na, and K) and histological analyses. Results: The results of this study showed that MIF antagonist (p425) significantly decreased urine protein and GAG excretion, urine protein/creatinine ratio, and serum BUN and Cr in the streptozotocin-induced DN in the rats. Pathological changes were significantly alleviated in the MIF antagonist (p425)-administered DN rats. Conclusion: Collectively, these data suggested that MIF antagonist (p425) was able to protect against functional and histopathological injury in the DN.


Resumo Introdução: Supõe-se que elevações da expressão do fator de inibição da migração de macrófagos (MIF) possam contribuir para a patogênese da nefropatia diabética (ND). O objetivo do presente estudo foi investigar os efeitos renais da inibição do MIF em um modelo experimental diabético. Métodos: Dezoito ratos Wistar machos (230 ± 20g) foram divididos em três grupos: 1) controle, 2) diabético (STZ 50 mg/kg dissolvida em soro fisiológico, IP), 3) diabético + antagonista do MIF (p425 1 mg/kg por dia IP no 21o dia por 21 dias consecutivos). O tratamento começou após a identificação de aumento significativo na albuminúria nos ratos diabéticos em relação aos controles. Os ratos foram mantidos individualmente em gaiolas metabólicas (8h-14h) e amostras de urina foram colhidas no 21o e no 42o dia. Ao final do estudo, amostras de sangue e tecido foram colhidas para análises bioquímicas (BS, excreção urinária de proteína, excreção urinária de GAGs, BUN, Cr, Na e K) e histológicas. Resultados: O presente estudo demonstrou que o antagonista do MIF (p425) diminuiu significativamente proteinúria, excreção urinária de GAGs , relação proteína/creatinina na urina, BUN e Cr no grupo com ND induzida por estreptozotocina. As alterações patológicas foram significativamente abrandadas nos ratos com ND que receberam antagonista do MIF (p425). Conclusão: Coletivamente, os dados sugerem que o antagonista do MIF (p425) teve efeito protetor contra lesões funcionais e histopatológicas da ND.


Subject(s)
Animals , Male , Rats , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Intramolecular Oxidoreductases/antagonists & inhibitors , Protective Agents/therapeutic use , Protective Agents/pharmacology , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/therapy , Blood Glucose , Rats, Wistar , Streptozocin/pharmacology , Creatinine/urine , Creatinine/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/urine , Diabetes Mellitus, Experimental/blood , Diabetic Nephropathies/urine , Diabetic Nephropathies/pathology , Diabetic Nephropathies/blood , Albuminuria/drug therapy , Disease Models, Animal , Glycosaminoglycans/urine , Kidney/pathology , Macrophage Activation
SELECTION OF CITATIONS
SEARCH DETAIL