Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 667
Filter
1.
Rev. Assoc. Med. Bras. (1992) ; 68(2): 227-233, Feb. 2022. tab, graf
Article in English | LILACS | ID: biblio-1365336

ABSTRACT

SUMMARY OBJECTIVE: The stroma surrounding the tumor cells is important in tumor progression and treatment resistance, besides the properties of tumor cells. Studies on the tumor stroma characteristics will contribute to the knowledge for new treatment approaches. METHODS: A total of 363 breast cancer patients were evaluated for the tumor-stroma ratio. The percentage of stroma was visually assessed on hematoxylin-eosin stained slides. The cases of tumor-stroma ratio more than 50% were categorized as tumor-stroma ratio high, and those less than 50% and below were categorized as tumor-stroma ratio low. RESULTS: Tumor-stroma ratio-high tumors had shorter overall survival (p=0.002). Disease-free survival tended to be shorter in tumor-stroma ratio-high tumors (p=0.082) compared with tumor-stroma ratio-low tumors. Tumor-stroma ratio was an independent prognostic parameter for the total group of patients (p=0.003) and also axillary lymph node metastasis and tumor-stroma ratio was statistically associated (p=0.004). Also, tumor-stroma ratio was an independent prognostic parameter in node-positive Luminal A and B subgroups for overall survival (p<0.001). CONCLUSION: Tumor-stroma ratio is an independent prognostic parameter that can be evaluated quite easily in all molecular subtypes of all breast cancers and does not require extra cost and time to evaluate.


Subject(s)
Humans , Female , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/pathology , Prognosis , Stromal Cells/pathology , Receptor, ErbB-2 , Disease-Free Survival , Lymphatic Metastasis/pathology
2.
Article in Chinese | WPRIM | ID: wpr-878875

ABSTRACT

Mechanism study was performed to explore how Shouhui Tongbian Capsules promotes energy metabolism of gastrointestinal stromal cells. In this study, gastrointestinal stromal cells line GIST-882 was used as the model to explore energy metabolism regulation effects of Shouhui Tongbian Capsules extract(10, 20, 50 and 100 μg·mL~(-1)) by measuring the cell proliferation, ATP level, mitochondrial membrane potential, and mitochondrial isocitrate dehydrogenase activity. Meanwhile, Western blot was used to detect the proteins expression of SCF/c-Kit and CDK2/cyclin A signaling pathways. Our results showed that Shouhui Tongbian Capsules promoted cell proliferation and increased ATP level of gastrointestinal stromal cells. In addition, Shouhui Tongbian Capsules obviously improved mitochondrial structural integrity, and increased mitochondrial membrane potential in GIST-882 cells. Mechanism study revealed that Shouhui Tongbian Capsules increased mitochondrial isocitrate dehydrogenase activity and up-regulated the proteins expression of SCF/c-Kit and CDK2/cyclin A signaling pathways. Collectively, our study indicated that Shouhui Tongbian Capsules promoted the energy metabolism for gastrointestinal stromal cells proliferation by activating mitochondrial isocitrate dehydrogenase to induce ATP production, as well as activating SCF/c-Kit and CDK2/cyclin A signaling pathways.


Subject(s)
Capsules , Cell Line, Tumor , Energy Metabolism , Gastrointestinal Stromal Tumors , Humans , Proto-Oncogene Proteins c-kit/metabolism , Stromal Cells/metabolism
3.
Acta Physiologica Sinica ; (6): 175-180, 2021.
Article in English | WPRIM | ID: wpr-878246

ABSTRACT

The great omentum is an intraperitoneal organ and plays an important role in protecting the environment of the peritoneal cavity. Several specialized innate immune cells including B1 cells and resident macrophages are found in the omentum, which may be attributed to the unique niche and its special stromal cells. However, it is not clear how these omental innate immune cells contribute to the peritoneal immunity. This review attempts to summarize the latest research on the omental innate immunity and discuss its involvement in the immune response of the peritoneal cavity.


Subject(s)
Immunity, Innate , Macrophages , Omentum , Peritoneal Cavity , Stromal Cells
4.
Rev. colomb. reumatol ; 27(supl.1): 126-134, Oct.-Dec. 2020. tab, graf
Article in English | LILACS | ID: biblio-1341328

ABSTRACT

ABSTRACT The mesenchymal stromal cells (MSCs) are hematopoietic stem cells with high capacity of differentiation to other cellular lineages, depending on the microenvironment in which they live as well as on the interaction and signaling pathways they establish with the extracellular matrix. Several properties have been described in these cells: proangiogenic, antifibrotic and immunomodulatory. These properties are being studied as a therapeutic approach for autoimmune diseases such as cutaneous systemic sclerosis (SSc). SSc is a systemic chronic disease, with an approximate prevalence of 35.6 cases per 100,000 inhabitants in North America and of 0.02% in Colombia in 2018. There are two different clinical variants, diffuse and localized. In both variants an important skin involvement and a rapidly deterioration of organs is present, which can overshadow the clinical prognosis and increase the mortality. Options for the treatment of advanced diffuse SSc are scarce mainly targeting symptomatic control with little impact on the progression and mortality. Therefore, there is an increasing interest in new therapies like advanced cellular therapy with hematopoietic stem cells and stromal mesenchymal cells. This article reviews the information related to the use of stromal mesenchymal cells in patients with this disease.


RESUMEN Las células mesenquimales estromales son células madre no hematopoyéticas pluripotenciales con alta capacidad de derivación a diferentes linajes celulares, dependiendo tanto del microambiente en el que se encuentren, como de la interacción y señalización que establezcan con la matriz extracelular del entorno, esto ha permitido describir un potencial proangiogénico, antifibrótico e inmunomodulador, que ha sido blanco de investigación en enfermedades autoinmunes como la esclerosis sistêmica cutánea. Considerando que la esclerosis sistêmica cutánea es una enfermedad inflamatoria crónica, con una prevalencia estimada de 35,6 casos por cada 100.000 habitantes en Norte América y de 0,02% en nuestro país para el 2018, se caracteriza por presentar dos variables clínicas principalmente; una variante limitada y una variante difusa, presentando en ambas un compromiso extenso de piel y órganos que puede ser rápidamente progresivo y deteriorar el pronóstico de los pacientes que la padecen aumentando su mortalidad. Debido a que las opciones terapéuticas en esta entidad son limitadas y buscan únicamente el control de síntomas, pero con poco impacto en progresión y mortalidad, terapias celulares avanzadas han surgido como nuevas opciones terapéuticas incluyendo el trasplante de células madre hematopoyéticas y las células mesenquimales estromales. A continuación, se revisará acerca de la utilidad y evidencia de células mesenquimales estromales en pacientes con esta enfermedad.


Subject(s)
Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Therapeutics , Stromal Cells , Patients , Scleroderma, Systemic , Autoimmune Diseases
5.
Acta cir. bras ; 34(10): e201901005, Oct. 2019. tab, graf
Article in English | LILACS | ID: biblio-1054671

ABSTRACT

Abstract Purpose: To quantify and compare the expression of stromal elements in prostate adenocarcinoma of different Gleason scores with non-tumor area (control). Methods: We obtained 132 specimens from samples of prostate peripheral and transition zone. We analyzed the following elements of the extracellular matrix: collagen fibers, elastic system, smooth muscle fibers and blood vessels. The tumor area and non-tumor area (control) of the TMA (tissue microarray) were photographed and analyzed using the ImageJ software. Results: The comparison between the tumor area and the non-tumor area showed significant differences between stromal prostate elements. There was an increase of collagen fibers in the tumor area, mainly in Gleason 7. Elastic system fibers showed similar result, also from the Gleason 7. Blood vessels showed a significant increase occurred in all analyzed groups. The muscle fibers exhibited a different behavior, with a decrease in relation to the tumor area. Conclusions: There is a significant difference between the extracellular matrix in prostate cancer compared to the non-tumor area (control) especially in Gleason 7. Important modifications of the prostatic stromal elements strongly correlate with different Gleason scores and can contribute to predict the pathological staging of prostate cancer.


Subject(s)
Humans , Male , Middle Aged , Aged , Aged, 80 and over , Prostatic Neoplasms/pathology , Adenocarcinoma/pathology , Stromal Cells/pathology , Reference Values , Blood Vessels/pathology , Retrospective Studies , Collagen/analysis , Tissue Array Analysis , Elastic Tissue/anatomy & histology , Neoplasm Grading , Muscle, Smooth/pathology
6.
Journal of Liver Cancer ; : 97-107, 2019.
Article in English | WPRIM | ID: wpr-765720

ABSTRACT

The pathogenesis of hepatocellular carcinoma (HCC) is a complex process. During the last decade, advances in genomic technologies enabled delineation of the genomic landscape of HCC, resulting in the identification of the common underlying molecular alterations. The tumor microenvironment, regulated by inflammatory cells, including cancer cells, stromal tissues, and the surrounding extracellular matrix, has been extensively studied using molecular data. The integration of molecular, immunological, histopathological, and clinical findings has provided clues to uncover predictive biomarkers to enhance responses to novel therapies. Herein, we provide an overview of the current HCC genomic landscape, previously identified gene signatures that are used routinely to predict prognosis, and an immune-specific class of HCC. Since biomarker-driven treatment is still an unmet need in HCC management, translation of these discoveries into clinical practice will lead to personalized therapies and improve patient care, especially in the era of targeted and immunotherapies.


Subject(s)
Biomarkers , Carcinoma, Hepatocellular , Extracellular Matrix , Humans , Immunotherapy , Pancreatic Pseudocyst , Pancreatitis , Patient Care , Prognosis , Stromal Cells , Tumor Microenvironment
7.
Article in Chinese | WPRIM | ID: wpr-774330

ABSTRACT

OBJECTIVE@#To explore the effect of damage of bone marrow stroma cells induced by chemotherapeutic drug on the function of normal hematopoitic cells.@*METHODS@#Senescence cells were detected by flow cytometry after SA-β-gal staining; real-time PCR was used to detect the expression of a serial molecules in bone marrow stromal cell line OP9 cells; the expression of γ-H2AX was determined by flow cytometry after histone γ-H2AX staining; the colony forming ability of hematopoietic cells was tested by colony formation assay.@*RESULTS@#The percentage of senescence cells in OP9 cells after DNR treatment was 2.24 times as much as that in untreated OP9 cells (P<0.05). Compared with normal OP9 cells, the expression levels of IL-6 and TNF-alpha in DNR-treated OP9 cells increased by 2.73 times (P<0.01) and 0.56 times (P<0.01), and the expression levels of N-cadherin, alpha smooth muscle actin (alpha-SMA), angiopoietin1 (Angpt1) and osteopontin (OPN) decreased by 69.54%(P<0.01),63.90%(P<0.01),87.41%(P<0.01)and 42.78%(P<0.01)respectively. After the co-culture with DNR-treated OP9 cells, the colony formation of normal hematopoietic cells decreased by 47.10% than that co-cultured with untreated OP9 cells (P< 0.05), meanwhile, the percentage of γ-H2AX+ cells in normal hematopoietic cells increased by 2.19 times (P<0.05).@*CONCLUSION@#After treatment with DNR, the senescence cell number of OP9 cells sgnificantly increases; the expression of TNF-α and IL-6 is up-regulated, while the expression of α-SMA, Angpt-1 and OPN is down-regulated as compared with normal OP9 cells. In addition, after co-culture of DNR-treated OP9 cells with normal hematopoietic cells, the colony formation ability of hematopoietic cells decreases and the genome instability of hematopoietic cells increases as compared with normal hematopoietic cells.


Subject(s)
Animals , Bone Marrow , Bone Marrow Cells , Cells, Cultured , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Mesenchymal Stem Cells , Mice , Stromal Cells
8.
Article in Chinese | WPRIM | ID: wpr-772625

ABSTRACT

OBJECTIVE@#This study aims to compare the osteogenic differentiation capability of stem cells derived from human inflammatory periodontal ligament tissues (iPDLSCs) with those of stem cells derived from healthy periodontal ligament tissues (hPDLSCs). Both types of tissues were induced by stromal cell derived factor (SDF-1) in vitro.@*METHODS@#iPDLSCs and hPDLSCs were primarily cultured by tissue digestion method and purified by limited dilution cloning. The cells were passaged and identified by stem cell surface marker expression through flow cytometry. Then, we used thiazolyl blue tetrazolium bromide to detect and compare the proliferation capabilities of the iPDLSCs and hPDLSCs. Express of bone volumes were detected by alizarin red staining after SDF-1 was added to the cells. Using alkaline phosphatase, we evaluated the osteogenic differentiation capability of the cells induced by SDF-1. The expression levels of the osteogenesis-related genes of the cells induced by SDF-1 were determined by reverse transcription-polymerase chain reaction.@*RESULTS@#After purification, both iPDLSCs and hPDLSCs expressed stem cell markers. hPDLCSs had a higher proliferation capability than iPDLSCs. Osteogenesis-related genes had higher expression levels in the cells induced by SDF-1 than in those without induction (P<0.05). SDF-1 at 50 and 200 ng·mL⁻¹ concentration greatly affected the differen-tiation capabilities of iPDLSCs and hPDLSCs respectively.@*CONCLUSIONS@#iPDLSCs and hPDLSCs had osteogenic differentia-tion capability. The level of osteogenic differentiation in normal and inflamed periodontal ligament stem cells increases after SDF-1 induction.


Subject(s)
Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Osteogenesis , Periodontal Ligament , Stem Cells , Stromal Cells
9.
Article in English | WPRIM | ID: wpr-761897

ABSTRACT

BACKGROUND: Provision of optimal endometrial stromal cells is essential in uterine tissue engineering. Culture of these cells is significantly influenced by gonadotropin hormones. This investigation attempted to define the proliferation profiles of murine uterine endometrial stromal cells during in vitro culture with recombinant follicle stimulating hormone (rFSH), urinary follicle stimulating hormone (uFSH), and human chorionic gonadotropin (hCG). METHODS: Murine uterine endometrial stromal cells were collected from 8-week-old mice and cultured in vitro up to 72 h, with rFSH, uFSH, or hCG. Cell cycles were analyzed by BrdU assay, and cyclin D1 expression was evaluated according to dose and duration of gonadotropin treatment. RESULTS: BrdU assay showed a further inhibitory effect on murine uterine endometrial stromal cell proliferation when cultured with rFSH compared to uFSH, and a similar inhibitory proliferation profile when cultured with hCG at a specific range of concentrations. The expression of cyclin D1 of murine uterine endometrial stromal cells was down-regulated when cultured with rFSH, uFSH, or hCG, compared to control. CONCLUSIONS: FSH may inhibit the proliferation of murine uterine endometrial stromal cells during in vitro culture. rFSH may have more significant inhibitory effects on the proliferation of endometrial stromal cells than uFSH. Establishing an optimal endocrine milieu is necessary using more advanced combination of female hormones for in vitro culture of this type of cells.


Subject(s)
Animals , Bromodeoxyuridine , Cell Cycle , Chorionic Gonadotropin , Cyclin D1 , Female , Follicle Stimulating Hormone , Gonadotropins , Humans , In Vitro Techniques , Mice , Stromal Cells , Tissue Engineering , Uterus
10.
Article in English | WPRIM | ID: wpr-742384

ABSTRACT

BACKGROUND: This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. METHODS: GM-CSF was administered subcutaneously to rats at 50 µg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. RESULTS: Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. CONCLUSION: These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.


Subject(s)
Animals , Hypoxia , Body Weight , Bone Marrow , Cell Movement , Granulocyte Colony-Stimulating Factor , Granulocyte-Macrophage Colony-Stimulating Factor , In Vitro Techniques , Mesenchymal Stem Cells , Rats , RNA, Small Interfering , Stromal Cells
11.
Article in English | WPRIM | ID: wpr-739650

ABSTRACT

Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.


Subject(s)
Cell Proliferation , Glucose , Glycolysis , Humans , Metabolism , Paint , Plastics , Population Characteristics , Stromal Cells , Tumor Microenvironment
12.
Blood Research ; : 61-70, 2018.
Article in English | WPRIM | ID: wpr-713627

ABSTRACT

BACKGROUND: Cell adhesion molecules (CAMs) expressed on hematopoietic progenitor cells (HPCs), endothelial cells, and stromal cells play a pivotal role in the mobilization of CD34+ cells. Herein, we conducted a non-randomized peripheral blood stem cell (PBSC) mobilization study aimed to compare the potential differences in the expressions of several CAMs and chemokines on CD34+ cells obtained from bone marrow aspirate before and after HPC mobilization from patients with hematologic malignancies and healthy donors. METHODS: Three-color cytofluorometric analysis was used to compare the expressions of CAMs and chemokines in the bone marrow before and after mobilization. RESULTS: For all studied groups, CAM expression among those with good and poor yields of CD34+ cells was significantly correlated with VCAM-1 (P=0.007), CD44 (P=0.027), and VLA-4 (P=0.014) expressions. VCAM-1 (P=0.001), FLT-3 (P=0.001), CD44 (P=0.011), VLA-4 (P=0.001), and LFA-1 (P=0.001) expressions were higher before HPC mobilization than after HPC mobilization. By contrast, the expression of CXCR4 significantly varied before and after mobilization only among those with successful PBSC mobilization (P=0.002). CONCLUSION: We attempted to identify particular aspects of CAMs involved in CD34+ cell mobilization, which is a highly complex mechanism that involves adhesion molecules and matrix metalloproteases. The mechanism by which CD34+ cell mobilization is activated through proteolytic enzymes is not fully understood. We believe that CXCR4, VLA-4, CD44, and VCAM-1 are the most important molecules implicated in HPC mobilization, particularly because they show a correlation with the yield of CD34+ cells collected via large volume leukapheresis.


Subject(s)
Bone Marrow , Cell Adhesion Molecules , Chemokines , Endothelial Cells , Hematologic Neoplasms , Hematopoietic Stem Cells , Humans , Integrin alpha4beta1 , Leukapheresis , Lymphocyte Function-Associated Antigen-1 , Lymphoma, Non-Hodgkin , Metalloproteases , Multiple Myeloma , Peptide Hydrolases , Stem Cells , Stromal Cells , Tissue Donors , Vascular Cell Adhesion Molecule-1
13.
Immune Network ; : e13-2018.
Article in English | WPRIM | ID: wpr-740199

ABSTRACT

IL-15 is a cytokine of the common γ-chain family that is critical for natural killer (NK), invariant natural killer T (iNKT), and CD8 memory T cell development and homeostasis. The role of IL-15 in regulating effector T cell subsets, however, remains incompletely understood. IL-15 is mostly expressed by stromal cells, myeloid cells, and dendritic cells (DCs). Whether T cells themselves can express IL-15, and if so, whether such T cell-derived IL-15 could play an autocrine role in T cells are interesting questions that were previously addressed but answered with mixed results. Recently, three independent studies described the generation of IL-15 reporter mice which facilitated the identification of IL-15-producing cells and helped to clarify the role of IL-15 both in vitro and in vivo. Here, we review the findings of these studies and place them in context of recent reports that examined T cell-intrinsic IL-15 expression during CD4 effector T cell differentiation.


Subject(s)
Animals , Cell Differentiation , Dendritic Cells , Homeostasis , Humans , In Vitro Techniques , Inflammation , Interleukin-15 , Memory , Mice , Myeloid Cells , Receptors, Cytokine , Stromal Cells , T-Lymphocyte Subsets , T-Lymphocytes , Th17 Cells
14.
Article in English | WPRIM | ID: wpr-739931

ABSTRACT

Although previous and ongoing clinical studies have used stromal cells during renal ischemia-reperfusion injury (IRI), there is little consensus regarding the optimal protocol. We aimed to optimize the protocol for hypoxic preconditioned human bone marrow-derived mesenchymal stromal cell (HP-hBMSC) therapy in a rat model of renal IRI. We determined the optimal injection route (renal arterial, renal parenchymal, and tail venous injection), dose (low-dose: 1×10⁶, moderate-dose: 2×10⁶, and high-dose: 4×10⁶), and injection period (pre-, concurrent-, and post-IRI). During optimal injection route study, renal arterial injections significantly reduced the decreasing glomerular filtration rate (GFR), as compared to GFRs for the IRI control group, 2 and 4 days after IRI. Therapeutic effects and histological recoveries were the greatest in the group receiving renal arterial injections. During the dose finding study, high-dose injections significantly reduced the decreasing GFR, as compared to GFRs for the IRI control group, 3 days after IRI. Therapeutic effects and histological recoveries were the greatest in the high-dose injection group. While determining the optimal injection timing study, concurrent-IRI injection reduced elevated serum creatinine levels, as compared to those of the IRI control group, 1 day after IRI. Pre-IRI injection significantly reduced the decreasing GFR, as compared with GFRs for the IRI control group, 1 day after IRI. Therapeutic effects and histological recoveries were the greatest in the concurrent-IRI group. In conclusion, the concurrent-IRI administration of a high dose of HP-hBMSC via the renal artery leads to an optimal recovery of renal function after renal IRI.


Subject(s)
Acute Kidney Injury , Animals , Cell- and Tissue-Based Therapy , Consensus , Creatinine , Glomerular Filtration Rate , Humans , Mesenchymal Stem Cells , Models, Animal , Rats , Renal Artery , Reperfusion Injury , Stromal Cells , Tail , Therapeutic Uses
15.
Article in English | WPRIM | ID: wpr-739928

ABSTRACT

Improved approaches for promoting umbilical cord blood (CB) hematopoietic stem cell (HSC) homing are clinically important to enhance engraftment of CB-HSCs. Clinical transplantation of CB-HSCs is used to treat a wide range of disorders. However, an improved understanding of HSC chemotaxis is needed for facilitation of the engraftment process. We found that ectopic overexpression of miR-9 and antisense-miR-9 respectively down- and up-regulated C-X-C chemokine receptor type 4 (CXCR4) expression in CB-CD34⁺ cells as well as in 293T and TF-1 cell lines. Since CXCR4 is a specific receptor for the stromal cell derived factor-1 (SDF-1) chemotactic factor, we investigated whether sense miR-9 and antisense miR-9 influenced CXCR4-mediated chemotactic mobility of primary CB CD34⁺ cells and TF-1 cells. Ectopic overexpression of sense miR-9 and antisense miR-9 respectively down- and up-regulated SDF-1-mediated chemotactic cell mobility. To our knowledge, this study is the first to report that miR-9 may play a role in regulating CXCR4 expression and SDF-1-mediated chemotactic activity of CB CD34⁺ cells.


Subject(s)
Cell Line , Cell Movement , Chemotaxis , Fetal Blood , Hematopoietic Stem Cells , MicroRNAs , Stromal Cells
16.
Int. braz. j. urol ; 43(2): 230-238, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-840830

ABSTRACT

ABSTRACT Background Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the “prostatocrit”. Objective Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new “prostatocrit” model could offer more accurate nomograms for biopsy. Materials and Methods 674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a “clinic” model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone. Outcome and results Prediction of all grades of prostate cancer: significant variables revealed four significant “prostatocrit” parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density (“prostatocrit”) was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005). Conclusion There is renewed use for ratio and “prostatocrit” density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements.


Subject(s)
Humans , Male , Aged , Prostate/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Prostate-Specific Antigen/blood , Acinar Cells/pathology , Reference Standards , Biopsy , Logistic Models , Predictive Value of Tests , Reproducibility of Results , ROC Curve , Stromal Cells , Neoplasm Grading , Middle Aged
17.
Appl. cancer res ; 37: 1-6, 2017. ilus
Article in English | LILACS, Inca | ID: biblio-911499

ABSTRACT

Background: Gastrointestinal stromal tumors (GISTs) originate as precursor cells of the interstitial cells of Cajal in the myenteric plexus and generally have a mutation in the tyrosine kinase receptor, C-KIT (CD117). The objective is to evaluate the clinical, epidemiological, and therapeutic profiles of GIST cases available from a hospital specializing in cancer treatment. Methods: A retrospective, longitudinal study of 85 GIST cases in a Cancer Center (São Paulo, Brazil) was conducted. Results: The cases identified involved 40 men and 45 women and the average age at diagnosis was 55.7 ± 14. 8 years (median, 57). The symptoms present at diagnosis depended on the location and dimensions of each lesion. In 49 cases (57.6%), the tumors had a gastric location and the mean dimensions were 7.2 ± 2.3 cm (median, 3.4 cm). Recurrent metastatic disease presented in 27 cases (with the liver mainly affected). Locoregional recurrence was detected in 16 cases. C-KIT was positive in 79/81 (97.5%) of the cases examined. Most of the tumors were initially treated with surgery, while clinical treatment was applied to the recurrent cases. The overall survival rate was 76.4% 162 months after diagnosis. Conclusions: The GISTs examined most commonly originated in the stomach, while the liver was the main site affected by metastatic lesions. Most of the lesions appeared to be slow-growing neoplasms that were positive for C-KIT (CD117). Complications, as well as death, mostly affected the elderly patients that had comorbidities or more aggressive forms of the disease (AU)


Subject(s)
Humans , Stromal Cells , Receptor Protein-Tyrosine Kinases , Gastrointestinal Stromal Tumors/therapy
18.
Article in English | WPRIM | ID: wpr-646603

ABSTRACT

Tissue stroma is responsible for extracellular matrix (ECM) formation and secretion of factors that coordinate the behaviour of the surrounding cells through the microenvironment created. It's inability to spontaneously regenerate makes it a good candidate for research studies such as testing various tissue engineered products capable of replacing the stroma in order to assure normal tissue regeneration and function. In this study, a bioactive stroma was obtained considering two main components: 1) the artificial ECM formed using atelocollagen-oxidized polysaccharides hydrogels in which the polysaccharide compound (oxidised gellan or pullulan) has the role of crosslinker and 2) encapsulated stromal cells (dermal fibroblasts, ovarian theca-interstitial and granulosa cells). The cell-hosting ability of the hydrogels is demonstrated by a good diffusion of globular proteins (albumin) while the fibrillar morphology proves to be optimal for cell adhesion. These structural properties and cytocompatibility of the components maintain good cell viability and cell encapsulation for more than 12 days. Nevertheless, the results indicate some differences favouring the gellan crosslinked hydrogels. Ovarian stromal cells functionality was maintained as indicated by hormone secretion, confirming cell-cell signalling in encapsulated and co-culture conditions. In vivo implantation shows the regenerative potential of the cell-populated hydrogels as they are integrated into the natural tissue. The possibility of cryopreserving the hydrogel-cell system, while maintaining both cell viability and hydrogel structural integrity underlines the potential of these ready-to-use hydrogels as bioactive stroma for multipurpose tissue regeneration.


Subject(s)
Cell Adhesion , Cell Survival , Coculture Techniques , Diffusion , Extracellular Matrix , Fibroblasts , Hydrogels , Hydrogels , Polysaccharides , Regeneration , Stromal Cells
19.
Article in English | WPRIM | ID: wpr-648102

ABSTRACT

Adipose-derived stromal cells (ASCs) have been investigated as a cell source for tissue regeneration. The purpose of this study was first to confirm if medial meniscectomy induces osteoarthritis (OA) in goats within a relative short period of time, and more importantly, to investigate if systemic treatment with immunosuppressive drugs is necessary in intra-articular ASC xenotransplantation for successful regeneration of articular cartilage and prevention of joint inflammation. Eight Korean native black goats 1–2 years of age underwent medial meniscectomy. To evaluate the gross and histological appearance of articular cartilage, knee joints were re-exposed by a medial parapatellar incision at 8 weeks. After macroscopic scoring of gross appearance, cartilage biopsy specimens 6 mm in diameter were obtained from the femoral condyle in four goats. The goats were injected with single intra-articular dose of 7×10₆ human ASCs (hASCs) 7 days after the second arthrotomy. Four animals were treated with daily injections of cyclosporin A 10 mg/kg for 7 days, followed by a reduced dose of 5 mg/kg for another 7 days, while other 4 animals did not receive immunosuppressive therapy. All animals were sacrificed for analysis 8 weeks after injection of hASCs. OA was successfully induced 8 weeks after medial meniscectomy. Eight weeks after injection of hASCs, various signs of articular cartilage regeneration were observed. There were no significant macroscopic and histological differences between goats treated with cyclosporine and untreated goats. Interleukin-1β and tumor necrosis factor-α level from synovial fluid did not differ between cyclosporine-treated and untreated goats. The results indicate that immunosuppressive therapy did not influence the result of ASC xenotransplantation to treat OA.


Subject(s)
Animals , Biopsy , Cartilage , Cartilage, Articular , Cyclosporine , Goats , Humans , Inflammation , Joints , Knee Joint , Necrosis , Osteoarthritis , Regeneration , Stromal Cells , Synovial Fluid , Transplantation, Heterologous
20.
Article in English | WPRIM | ID: wpr-158430

ABSTRACT

B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220⁺ cell population from Lineage⁻ (Lin⁻) Sca-1⁺ c-Kit⁺ hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220⁺ IgM⁺ cell populations (6.7±0.6–13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5–6.4±0.6%) and OP9 cells (1.8±0.6–3.9±0.5%). In addition, the production of B220⁺ IgM⁺ IgD⁺ cell populations was significantly enhanced by OBN4 cells (15.4±1.1–18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6–14.6±1.6%) and OP9 cells (9.1±0.5–10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin⁻ Sca-1⁺ c-Kit⁺ HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.


Subject(s)
B-Lymphocytes , Biomimetics , Cell Adhesion Molecules , Cell Line , Chemokines , Coculture Techniques , Cytokines , Hematopoietic Stem Cells , In Vitro Techniques , Lymphopoiesis , Osteoblasts , Stem Cells , Stromal Cells
SELECTION OF CITATIONS
SEARCH DETAIL