Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Journal of Southern Medical University ; (12): 199-205, 2023.
Article in Chinese | WPRIM | ID: wpr-971515

ABSTRACT

OBJECTIVE@#To study the protective effect of forsythiaside B (FB) against cerebral oxidative stress injury induced by cerebral ischemia/reperfusion (I/R) in mice and explore the underlying mechanism.@*METHODS@#Ninety C57BL/6 mice were randomized into sham-operated group, middle cerebral artery occlusion (MCAO) model group, and low-, medium and highdose (10, 20, and 40 mg/kg, respectively) FB groups. The expression levels of MDA, ROS, PCO, 8-OHdG, SOD, GSTα4, CAT and GPx in the brain tissue of the mice were detected using commercial kits, and those of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 were detected with Western blotting. Compound C (CC), an AMPK inhibitor, was used to verify the role of the AMPK pathway in mediating the therapeutic effect of FB. In another 36 C57BL/6 mice randomized into 4 sham-operated group, MCAO model group, FB (40 mg/kg) treatment group, FB+CC (10 mg/kg) treatment group, TTC staining was used to examine the volume of cerebral infarcts, and the levels of ROS and SOD in the brain were detected; the changes in the protein expressions of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 in the brain tissue were detected using Western blotting.@*RESULTS@#In mice with cerebral IR injury, treatment with FB significantly reduced the levels of ROS, MDA, PCO and 8-OHdG, increased the activities of antioxidant enzymes SOD, GSTα4, CAT and GPx, and enhanced phosphorylation of AMPK and FOXO3 and DAF-16 protein expression in the brain tissue (P < 0.01). Compared with FB treatment alone, the combined treatment with FB and CC significantly reduced phosphorylation of AMPK and FOXO3, lowered expression of DAF-16 and SOD activity, and increased cerebral infarction volume and ROS level in the brain tissue of the mice (P < 0.01).@*CONCLUSION@#FB inhibits oxidative stress injury caused by cerebral I/R in mice possibly by enhancing AMPK phosphorylation, promoting the downstream DAF-16 protein expression and FOXO3 phosphorylation, increasing the expression of antioxidant enzymes, and reducing ROS level in the brain tissue.


Subject(s)
Mice , Animals , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Reactive Oxygen Species , Mice, Inbred C57BL , Brain Ischemia , Oxidative Stress , Infarction, Middle Cerebral Artery , Reperfusion Injury , Reperfusion , Superoxide Dismutase/metabolism
2.
Journal of Southern Medical University ; (12): 577-584, 2023.
Article in Chinese | WPRIM | ID: wpr-986964

ABSTRACT

OBJECTIVE@#To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.@*METHODS@#Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.@*RESULTS@#Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).@*CONCLUSION@#Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.


Subject(s)
Rats , Male , Animals , Testis , Quercetin/pharmacology , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Testosterone/pharmacology , Superoxide Dismutase/metabolism , Follicle Stimulating Hormone , Luteinizing Hormone
3.
China Journal of Chinese Materia Medica ; (24): 1927-1935, 2023.
Article in Chinese | WPRIM | ID: wpr-981412

ABSTRACT

This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.


Subject(s)
Animals , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Oxidative Stress , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Parkinson Disease/genetics , bcl-2-Associated X Protein/metabolism , Neuroprotective Agents/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Drosophila/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Superoxide Dismutase/metabolism , Adenosine Triphosphate/pharmacology
4.
China Journal of Chinese Materia Medica ; (24): 2184-2192, 2023.
Article in Chinese | WPRIM | ID: wpr-981349

ABSTRACT

To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.


Subject(s)
Rats , Male , Animals , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Nerve Growth Factor/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Serotonin/metabolism , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Hippocampus/metabolism , Superoxide Dismutase/metabolism , Sugars/pharmacology , Depression/genetics , Stress, Psychological/metabolism
5.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 161-167, 2023.
Article in Chinese | WPRIM | ID: wpr-970732

ABSTRACT

Objective: To investigate the role of Keap1/Nrf2/HO-1 signaling pathway in liver injury induced by neodymium oxide (Nd(2)O(3)) in mice. Methods: In March 2021, forty-eight SPF grade healthy male C57BL/6J mice were randomly divided into control group (0.9% NaCl), low dose group (62.5 mg/ml Nd(2)O(3)), medium dose group (125.0 mg/ml Nd(2)O(3)), and high dose group (250.0 mg/ml Nd(2)O(3)), each group consisted of 12 animals. The infected groups were treated with Nd(2)O(3) suspension by non-exposed tracheal drip and were killed 35 days after dust exposure. The liver weight of each group was weighed and the organ coefficient was calculated. The content of Nd(3+) in liver tissue was detected by inductively coupled plasma mass spectrometry (ICP-MS). HE staining and immunofluorescence was used to observe the changes of inflammation and nuclear entry. The mRNA expression levels of Keap1, Nrf2 and HO-1 in mice liver tissue were detected by qRT-PCR. Western blotting was used to detect the protein expression levels of Keap1 and HO-1. The contents of catalase (CAT), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) were detected by colorimetric method. The contents of interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determined by ELISA. The data was expressed in Mean±SD. Two-independent sample t-test was used for inter-group comparison, and one-way analysis of variance was used for multi-group comparison. Results: Compared with the control group, the liver organ coefficient of mice in medium and high dose groups were increased, and the Nd(3+) accumulation in liver of mice in all dose groups were significantly increased (P<0.05). Pathology showed that the structure of liver lobules in the high dose group was slightly disordered, the liver cells showed balloon-like lesions, the arrangement of liver cell cords was disordered, and the inflammatory exudation was obvious. Compared with the control group, the levels of IL-1β and IL-6 in liver tissue of mice in all dose groups were increased, and the levels of TNF-α in liver tissue of mice in high dose group were increased (P<0.05). Compared with the control group, the mRNA and protein expression levels of Keap1 in high dose group were significantly decreased, while the mRNA expression level of Nrf2, the mRNA and protein expression levels of HO-1 were significantly increased (P<0.05), and Nrf2 was successfully activated into the nucleus. Compared with the control group, the activities of CAT, GSH-Px and T-SOD in high dose group were significantly decreased (P<0.05) . Conclusion: A large amount of Nd(2)O(3) accumulates in the liver of male mice, which may lead to oxidative stress and inflammatory response through activation of Keap1/Nrf2/HO-1 signal pathway. It is suggested that Keap1/Nrf2/HO-1 signal pathway may be one of the mechanisms of Nd(2)O(3) expose-induced liver injury in mice.


Subject(s)
Mice , Male , Animals , NF-E2-Related Factor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Oxidative Stress , Liver/metabolism , Metals, Rare Earth , Signal Transduction , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism
6.
China Journal of Chinese Materia Medica ; (24): 1319-1329, 2023.
Article in Chinese | WPRIM | ID: wpr-970603

ABSTRACT

This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.


Subject(s)
Mice , Male , Animals , Ginsenosides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Panax/genetics , Lipopolysaccharides/adverse effects , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Acute Lung Injury/genetics , Lung/metabolism , Superoxide Dismutase/metabolism , Plant Leaves/metabolism , RNA, Messenger
7.
Chinese Journal of Biotechnology ; (12): 695-712, 2023.
Article in Chinese | WPRIM | ID: wpr-970401

ABSTRACT

Phytoremediation plays an important role in the treatment of heavy metal pollution in soil. In order to elucidate the mechanism of salicylic acid (SA) on copper absorption, seedlings from Xuzhou (with strong Cu-tolerance) and Weifang Helianthus tuberosus cultivars (with weak Cu-tolerance) were selected for pot culture experiments. 1 mmol/L SA was sprayed upon 300 mg/kg soil copper stress, and the photosynthesis, leaf antioxidant system, several essential mineral nutrients and the changes of root upon copper stress were analyzed to explore the mechanism of copper resistance. The results showed that Pn, Tr, Gs and Ci upon copper stress decreased significantly compared to the control group. Meanwhile, chlorophyll a, chlorophyll b and carotenoid decreased with significant increase in initial fluorescence (F0), maximum photochemical quantum yield of PSⅡ (Fv/Fm), electron transfer rate (ETR) and photochemical quenching coefficient (qP) content all decreased. The ascorbic acid (AsA) content was decreased, the glutathione (GSH) value was increased, the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity in the leaves were decreased, and the peroxidase (POD) activity was significantly increased. SA increased the Cu content in the ground and root system, and weakened the nutrient uptake capacity of K, Ca, Mg, and Zn in the root stem and leaves. Spray of exogenous SA can maintain the opening of leaf stomata, improve the adverse effect of copper on photosynthetic pigment and PSⅡ reaction center. Mediating the SOD and APX activity started the AsA-GSH cycle process, effectively regulated the antioxidant enzyme system in chrysanthemum taro, significantly reduced the copper content of all parts of the plant, and improved the ion exchange capacity in the body. External SA increased the content of the negative electric group on the root by changing the proportion of components in the root, promoted the absorption of mineral nutrient elements and the accumulation of osmoregulatory substances, strengthened the fixation effect of the root on metal copper, and avoided its massive accumulation in the H. tuberosus body, so as to alleviate the inhibitory effect of copper on plant growth. The study revealed the physiological regulation of SA upon copper stress, and provided a theoretical basis for planting H. tuberosus to repair soil copper pollution.


Subject(s)
Antioxidants , Copper , Helianthus/metabolism , Salicylic Acid/pharmacology , Chlorophyll A/pharmacology , Spectroscopy, Fourier Transform Infrared , Chlorophyll/pharmacology , Ascorbic Acid , Superoxide Dismutase/metabolism , Photosynthesis , Glutathione , Plant Leaves , Stress, Physiological , Seedlings
8.
Chinese Critical Care Medicine ; (12): 741-745, 2023.
Article in Chinese | WPRIM | ID: wpr-982665

ABSTRACT

OBJECTIVE@#To explore the clinical effect of Li-Dan-He-Ji in the treatment of infantile cholestatic hepatic fibrosis.@*METHODS@#Patients who met the diagnostic criteria of infantile cholestatic hepatic fibrosis in the department of integrated traditional Chinese and Western medicine and the department of gastroenterology of Wuhan Children's Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology from January to December 2021 were included in the study by prospective randomized controlled trial. They were divided into the conventional treatment group and Li-Dan-He-Ji group according to the random number table. The patients in the conventional treatment group were given conventional treatment according to the guidelines. In the Li-Dan-He-Ji group, the self-made Chinese medicinal compound Li-Dan-He-Ji (prescription: Herba Artemisiae Scopariae, Fructus Forsythiae, Radix et Rhizoma Rhei preparata, Radix Polygoni Multiflori Preparata, Radix Paeoniae Rubra, Ramulus Cinnamomi, Fructus Aurantii, Rhizoma Atractylodis Macrocephalae, Fructus Schisandrae Chinensis, Carapax Trionycis, and Radix Glycyrrhizae) was given on the basis of the routine treatment, by oral, enema or nasal feeding, 60 mL each day, divided into 2 or 3 times, for 28 days. Outpatient follow-up was maintained for 4 weeks. Before and after treatment, serum liver fibrosis 4 items [type IV collagen (IV-C), hyaluronidase (HA), type III procollagen (PC III), laminin (LN)], liver function and cholestasis-related markers [total bilirubin (TBil), direct bilirubin (DBil), total bile acid (TBA), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH)], liver stiffness measurement (LSM) detected by transient elastography (TE), aspartate aminotransferase-to-platelet ratio index (APRI), and liver and spleen retraction time were recorded in the two groups.@*RESULTS@#During the observation period, a total of 40 cases of cholestatic hepatic fibrosis were treated, including 21 cases in the conventional treatment group and 19 cases in the Li-Dan-He-Ji group. Before treatment, the differences in serum liver fibrosis 4 items, serum liver function and cholestasis-related markers, oxidative stress indexes, LSM and APRI of the two groups were not statistically significant. After treatment, the liver fibrosis 4 items, liver function and cholestasis-related markers, LSM, and APRI were all significantly decreased in both groups, and the indexes in the Li-Dan-He-Ji group were significantly lower than those in the conventional treatment group [HA (ng/L): 165.81±21.57 vs. 203.87±25.88, PC III (μg/L): 69.86±9.32 vs. 81.82±7.39, IV-C (μg/L): 204.14±38.97 vs. 239.08±24.93, LN (μg/L): 162.40±17.39 vs. 190.86±15.97, TBil (μmol/L): 37.58±27.63 vs. 53.06±45.09, DBil (μmol/L): 20.55±19.34 vs. 30.08±27.39, ALP (U/L): 436.50±217.58 vs. 469.60±291.69, γ-GGT (U/L): 66.78±35.84 vs. 87.00±32.82, ALT (U/L): 64.75±50.53 vs. 75.20±50.19, AST (U/L): 77.25±54.23 vs. 96.80±59.77, TBA (μmol/L): 74.35±44.44 vs. 85.45±39.50, LSM (kPa): 5.24±0.39 vs. 7.53±3.16, APRI: 0.52±0.39 vs. 0.98±0.29, all P < 0.05]. After treatment, MDA in the two groups were significantly lower than those before treatment, and SOD and GSH were significantly higher than those before treatment. The level of SOD in the Li-Dan-He-Ji group was significantly higher than that in the conventional treatment group (kU/L: 64.56±6.69 vs. 51.58±5.98, P < 0.05). In addition, the liver retraction time (day: 20.13±10.97 vs. 24.33±13.46) and spleen retraction time (day: 25.93±13.01 vs. 29.14±14.52) in the Li-Dan-He-Ji group were significantly shorter than those in the conventional treatment group (both P < 0.05).@*CONCLUSIONS@#The use of Li-Dan-He-Ji in the treatment of cholestatic hepatic fibrosis can effectively improve the indicators of cholestasis, hepatic fibrosis, oxidative stress and clinical symptoms in children.


Subject(s)
Child , Humans , Prospective Studies , Cholestasis/pathology , Liver , Liver Cirrhosis/drug therapy , Bilirubin/pharmacology , Oxidative Stress , Aspartate Aminotransferases/metabolism , Superoxide Dismutase/metabolism
9.
Chinese Critical Care Medicine ; (12): 598-603, 2023.
Article in Chinese | WPRIM | ID: wpr-982639

ABSTRACT

OBJECTIVE@#To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.@*METHODS@#A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.@*RESULTS@#Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].@*CONCLUSIONS@#SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.


Subject(s)
Animals , Male , Rats , Actins/metabolism , Chemical and Drug Induced Liver Injury, Chronic , Heme Oxygenase-1/metabolism , Interleukin-6 , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , RNA, Messenger , Sepsis/metabolism , Signal Transduction , Sirtuin 1/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Neuroscience Bulletin ; (6): 929-946, 2023.
Article in English | WPRIM | ID: wpr-982431

ABSTRACT

A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.


Subject(s)
Mice , Animals , Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase/metabolism , Mice, Transgenic , Spinal Cord/pathology , Mitochondria/physiology , Disease Models, Animal
11.
Chinese Journal of Cellular and Molecular Immunology ; (12): 423-428, 2023.
Article in Chinese | WPRIM | ID: wpr-981883

ABSTRACT

Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1β (IL-1β) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1β and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1β level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.


Subject(s)
Rats , Animals , Diabetic Retinopathy/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Interleukin-1beta/metabolism , Methylene Blue/pharmacology , Phosphorylation , Rats, Sprague-Dawley , MAP Kinase Signaling System , Diabetes Mellitus, Experimental/drug therapy , Superoxide Dismutase/metabolism
12.
Chinese Journal of Cellular and Molecular Immunology ; (12): 318-324, 2023.
Article in Chinese | WPRIM | ID: wpr-981871

ABSTRACT

Objective To study the effect and mechanism of blueberry on regulating the mitochondrial inner membrane protein mitofilin/Mic60 in an in vitro model of metabolic dysfunction-associated liver disease (MAFLD). Methods L02 human hepatocytes were induced by free fatty acids (FFA) to establish MAFLD cell model. A normal group, a model group, an 80 μg/mL blueberry treatment group, a Mic60 short hairpin RNA (Mic60 shRNA) transfection group, and Mic60 knockdown combined with an 80 μg/mL blueberry treatment group were established. The intracellular lipid deposition was observed by oil red O staining, and the effect of different concentrations of blueberry pulp on the survival rate of L02 cells treated with FFA was measured by MTT assay. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were measured by visible spectrophotometry. The expression of reactive oxygen species (ROS) in hepatocytes was observed by fluorescence microscopy, and the mRNA and protein expression of Mic60 were detected by real-time quantitative PCR and Western blot analysis, respectively. Results After 24 hours of FFA stimulation, a large number of red lipid droplets in the cytoplasm of L02 cells was observed, and the survival rate of L02 cells treated with 80 μg/mL blueberry was higher. The results of ALT, AST, TG, TC, MDA and the fluorescence intensity of ROS in blueberry treated group were lower than those in model group, while the levels of SOD, GSH, Mic60 mRNA and protein in blueberry treated group were higher than those in model group. Conclusion Blueberry promotes the expression of Mic60, increases the levels of SOD and GSH in hepatocytes, and reduces the production of ROS, thus alleviating the injury of MAFLD hepatocytes and regulating the disorder of lipid metabolism.


Subject(s)
Humans , Blueberry Plants/chemistry , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Plant Extracts/pharmacology
13.
China Journal of Chinese Materia Medica ; (24): 2178-2186, 2022.
Article in Chinese | WPRIM | ID: wpr-928158

ABSTRACT

The present study investigated the main components of fenugreek(Trigonella foenum-graecum L.) leaf flavonoids(FLFs) and their antioxidant activity. FLFs were prepared and enriched by solvent extraction, and the flavonoids were characterized by high-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS). The protective effect of FLFs against H_2O_2-induced stress damage to L02 hepatocytes was also investigated. Firstly, the cell viability was measured by MTT assay. The oxidative stress injury model was induced by H_2O_2 in L02 cells. The release of lactate dehydrogenase(LDH), the content of reduced glutathione(GSH) and malondialdehyde(MDA), and the activities of superoxide dismutase(SOD) and catalase(CAT) were measured by assay kits. Hoechst fluorescence staining was performed to observe the cell apoptosis. The expression levels of c-Jun N-terminal kinase(JNK), extracellular signal-regulated kinase 1/2(ERK1/2), nuclear factor erythroid-2 related factor 2(Nrf2), heme oxygenase 1(HO-1), and their phosphorylated proteins were detected by Western blot. Based on the MS fragment ion information and data in databases, FLFs contained eight flavonoids with quercetin and kaempferol as the main aglycons. The cell viabi-lity assay revealed that as compared with the conditions in the H_2O_2 treatment group, 3.125-25 μg·mL~(-1) FLFs could increase the viability of L02 cells, reduce LDH release and MDA content in a dose-dependent manner, potentiate the activities of SOD, CAT, and GSH, decrease the phosphorylation of JNK and ERK1/2 proteins, and up-regulate the expression of Nrf2 and HO-1. The results of fluorescence staining showed that the nucleus of the H_2O_2 treatment group showed concentrated and dense strong blue fluorescence, while the blue fluorescence intensity of the FLFs group decreased significantly. FLFs showed a protective effect against H_2O_2-induced oxidative damage in L02 cells, and the underlying mechanism is associated with the enhancement of cell capability in clearing oxygen free radicals and the inhibition of apoptosis by the activation of the MAPKs/Nrf2/HO-1 signaling pathway. The antioxidant effect of fenugreek leaf is related to its rich flavonoids.


Subject(s)
Antioxidants/pharmacology , Apoptosis , Flavonoids/pharmacology , Hepatocytes/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Tandem Mass Spectrometry , Trigonella/metabolism
14.
China Journal of Chinese Materia Medica ; (24): 2082-2089, 2022.
Article in Chinese | WPRIM | ID: wpr-928148

ABSTRACT

This study aims to investigate the mechanism of the Tibetan medicine Ershiwuwei Shanhu Pills(ESP) in improving scopolamine-induced learning and memory impairment in mice based on Keap1/Nrf2/HO-1 signaling pathway. ICR mice were randomized into blank group, model group, low-dose(200 mg·kg~(-1)), medium-dose(400 mg·kg~(-1)), and high-dose(800 mg·kg~(-1)) ESP groups, and donepezil hydrochloride group. The learning and memory impairment was induced in mice by intraperitoneal injection of scopola-mine. The learning and memory abilities of mice were detected by Morris water maze test, and the damage of hippocampal neurons and cortical neurons was detected based on Nissl staining. The expression of neuron specific nuclear protein(NeuN) in hippocampus and cortex of mice was determined by immunofluorescence assay, and the content of acetylcholine(Ach) and the activity of acetylcholines-terase(AchE) in hippocampus of mice by kits. Moreover, the content of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in serum of mice was detected. The content of Kelch-like ECH-associated protein 1(Keap1), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase 1(HO-1) in hippocampus was determined by Western blot. The results showed that there were significant differences in the trajectory map of mice among different groups in the behavioral experiment. Moreover, the latency of ESP groups decreased significantly compared with that in the model group. The hippocampal neurons in the high-dose ESP group were significantly more than those in the model group and the cortical neurons in the high-dose and medium-dose ESP groups were significantly more than those in the model group. The expression of NeuN in the model group was significantly decreased compared with that in the blank group, and the expression in the ESP groups was significantly higher than that in the model group. The AchE activity and MDA level were significantly decreased, and Ach content and levels of SOD, CAT, and T-AOC in the ESP groups were significantly increased in the ESP groups compared with those in the model group. The expression of Keap1 in the model group was significantly increased compared with that in the blank group, and the Keap1 expression increased insignificantly in ESP groups compared with that in the model group. The expression of Nrf2 and HO-1 was significantly lower in the model group than in the blank group, and the expression was significantly higher in the medium-dose ESP group than in the model group. In conclusion, ESP protected mice against the scopolamine-induced learning and memory impairment by regulating the Keap1/Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Medicine, Tibetan Traditional , Mice, Inbred ICR , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts , Scopolamine/adverse effects , Signal Transduction , Superoxide Dismutase/metabolism
15.
China Journal of Chinese Materia Medica ; (24): 2074-2081, 2022.
Article in Chinese | WPRIM | ID: wpr-928147

ABSTRACT

The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3β signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3β in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3β in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3β signaling pathway.


Subject(s)
Animals , Mice , Aluminum Chloride/adverse effects , Alzheimer Disease/drug therapy , Galactose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Mice, Inbred BALB C , Plant Extracts , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism , tau Proteins
16.
China Journal of Chinese Materia Medica ; (24): 2064-2073, 2022.
Article in Chinese | WPRIM | ID: wpr-928146

ABSTRACT

To study the protective effect of Ershiwuwei Zhenzhu Pills on ischemic stroke rats. Ninety 4-weeks-old SPF male SD rats were randomly divided into 6 groups(n=15):sham operation group, model group, nimodipine group(12 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills high-dose group(400 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills medium-dose group(200 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills low-dose group(100 mg·kg~(-1)).The permanent middle cerebral artery occlusion model(PMCAO) was established in the model group, nimodipine group, and Ershiwuwei Zhenzhu Pills groups by the improved thread plug method, while the sham operation group did not insert the thread plug.Nimodipine group and Ershiwuwei Zhenzhu Pills groups were given intragastric administration once a day for 24 days before the modeling operation, and once 1 hour before the modeling operation, while sham operation group and model group were given equal volumes of distilled water.The neuroethology of the surviving rats was measured; The volume of cerebral infarction in rats was measured by TTC method; The histopathology of rat brain was observed by HE method; The expression levels of tumor necrosis factor α(TNF-α),interleukin-1β(IL-1β),interleukin-6(IL-6),malondialdehyde(MDA),superoxide dismutase(SOD) and catalase(CAT) in serum were detected by ELISA;The mRNA expressions of Notch 1,Jagged 1,Hes 1 and Bcl-2 in rat brain were detected by RT-PCR;Western blot was used to detect the expression levels of caspase-3 protein in rat brain; the expression levels of vascular endothelial growth factor(VEGF) and CD34 positive cells in rat brain were detected by immunofluorescence.The low, medium and high dose groups of Ershiwuwei Zhenzhu Pills and nimodipine group could significantly reduce the neurobehavioral score and cerebral infarction volume of rats with permanent middle cerebral artery occlusion, reduce the morphological changes of nerve cells, decrease the expression of TNF-α,IL-1β and IL-6 in rat serum, increase the activity of SOD and CAT,and reduce the level of MDA.Furthermore, the expression levels of Notch l, Jagged l, Hes l and Bcl-2 mRNA were significantly increased, and the expression level of caspase-3 protein was decreased.Meanwhile, the number of VEGF and CD34 positive cells increased in the treatment group.The differences were statistically significant. Ershiwuwei Zhenzhu Pills has a protective effect on ischemic stroke rats, and its mechanism may be related to anti-inflammation, anti-oxidation, promotion of nerve cell proliferation, inhibition nerve cell apoptosis and promotion of angiogenesis.


Subject(s)
Animals , Male , Rats , Caspase 3/metabolism , Drugs, Chinese Herbal/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Interleukin-6/metabolism , Ischemic Stroke/drug therapy , Nimodipine/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
17.
China Journal of Chinese Materia Medica ; (24): 2049-2055, 2022.
Article in Chinese | WPRIM | ID: wpr-928144

ABSTRACT

The present study investigated the mechanism of the Tibetan medicine Ershiwuwei Songshi Pills(ESP) against the liver injury induced by acetaminophen(APAP) in mice based on the kelch-like ECH-associated protein 1(Keap1)/nuclear transcription factor E2 related factor 2(Nrf2) and Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) p65 signaling pathways. Kunming mice were randomly divided into a blank control group, a model group, an N-acetyl-L-cysteine(NAC) group, and high-(400 mg·kg~(-1)), medium-(200 mg·kg~(-1)), and low-dose(100 mg·kg~(-1)) ESP groups. After 14 days of continuous administration, except for those in the control group, the mice were intraperitoneally injected with 200 mg·kg~(-1) APAP. After 12 h, the serum and liver tissues of mice were collected. Hematoxylin-eosin(HE) staining was performed on pathological sections of the liver, and the levels of aspartate aminotransferase(AST) and alanine aminotransferase(ALT) in the serum and the levels of glutathione(GSH), malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), myeloperoxidase(MPO), and total antioxidant capacity(T-AOC) in liver tissue homogenate were detected to observe and analyze the protective effect of ESP on APAP-induced liver injury in mice. The serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1β), and interleukin-6(IL-6) were determined by enzyme-linked immunosorbent assay(ELISA). The protein expression of Nrf2, Keap1, TLR4, and NF-κB p65 in the liver was determined by Western blot. Quantitative real-time was used to determine the mRNA expression of glutamate-cysteine ligase catalytic subunit(GCLC), glutamate-cysteine ligase regulatory subunit(GCLM), heme oxygenase-1(HO-1), and NAD(P)H dehydrogenase quinone 1(NQO-1) in the liver to explore the mechanism of ESP in improving APAP-induced liver damage in mice. As revealed by results, compared with the model group, the ESP groups showed improved liver pathological damage, decreased ALT and AST levels in the serum and MDA and MPO content in the liver, increased GSH, SOD, CAT, and T-AOC in the liver, reduced TNF-α and IL-6 levels in the serum, down-regulated expression of Keap1 in the liver cytoplasm and NF-κB p65 in the liver nucleus, up-regulated expression of Nrf2 in the liver nucleus, insignificant change in TLR4 expression, and elevated relative mRNA expression levels of antioxidant genes GCLC, GCLM, HO-1, and NQO-1. ESP can reduce the oxidative damage and inflammation caused by APAP, and the mechanism may be related to the Keap1/Nrf2 signaling pathway and the signal transduction factors on the TLR4/NF-κB p65 pathway.


Subject(s)
Animals , Mice , Acetaminophen/toxicity , Antioxidants/pharmacology , Glutamate-Cysteine Ligase/pharmacology , Glutathione , Interleukin-6/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Medicine, Tibetan Traditional , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , RNA, Messenger/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
China Journal of Chinese Materia Medica ; (24): 2500-2508, 2022.
Article in Chinese | WPRIM | ID: wpr-928129

ABSTRACT

This study aimed to explore the effects of Gynostemma pentaphyllum saponins(GPs) on non-alcoholic fatty liver disease(NAFLD) induced by high-fat diet in rats and reveal the underlying mechanism. The NAFLD model rats were prepared with high-fat diet. Forty male Sprague Dawley(SD) rats were randomly assigned into the control group, model group, and low-, moderate-, and high-dose GPs(50, 100, and 150 mg·kg~(-1), respectively) groups. After intragastric administration for 8 continuous weeks, we determined the body weight, liver weight, the levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol(LDL-c), high-density lipoprotein cholesterol(HDL-c), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) in serum, and the levels of TC, TG, malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), and interleukin 6(IL-6) in the liver. Furthermore, we observed the pathological changes of liver tissue by oil red O staining and hematoxylin-eosin(HE) staining, sequenced the 16 S rRNA of the intestinal flora in rat feces, and determined the content of short-chain fatty acids in rat feces. The results showed that GPs inhibited the excessive weight gain of high-fat diet-induced NAFLD in rats, reduced the liver weight, lowered the TC, TG, LDL-c, AST, and ALT levels in serum(P<0.05), and rose the HDL-c level in serum(P<0.01). GPs relieved the liver damage caused by high-fat diet, mainly manifested by the lowered levels of TC, TG, MDA, and IL-6 in the liver(P<0.01) and elevated levels of CAT and SOD in the liver. Furthermore, GPs reversed the intestinal flora disorder caused by high-fat diet, restored the diversity of intestinal flora, increased the relative abundance of Bacteroides, and reduced the relative abundance of Firmicutes and the ratio of Firmicutes to Bacteroides. Moreover, GPs promoted the proliferation of beneficial bacteria such as Akkermansia, Bacteroides, and Parabacteroides, and inhibited the growth of harmful bacteria such as Desulfovibrio, Escherichia-Shigella, and Helicobacter. GPs increased the content of short-chain fatty acids(acetic acid, propionic acid, and butyric acid)(P<0.01). These findings indicate that GPs can alleviate the high-fat diet-induced NAFLD in rats via regulating the intestinal flora and short-chain fatty acid metabolism.


Subject(s)
Animals , Male , Rats , Alanine Transaminase/metabolism , Cholesterol, LDL/pharmacology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Gynostemma , Interleukin-6/metabolism , Liver , Non-alcoholic Fatty Liver Disease/metabolism , Rats, Sprague-Dawley , Saponins/pharmacology , Superoxide Dismutase/metabolism
19.
China Journal of Chinese Materia Medica ; (24): 2491-2499, 2022.
Article in Chinese | WPRIM | ID: wpr-928128

ABSTRACT

The present study investigated the therapeutic effect and mechanism of Di'ao Xinxuekang(DXXK) on non-alcoholic steatohepatitis(NASH) in mice. Sixty-five C57 BL/6 J mice were randomly divided into a normal group and an experimental group for model induction with the high-fat diet for 16 weeks. Then the mice in the experimental group were randomly divided into a model group, an atorvastatin group(4 mg·kg~(-1)·d~(-1)), and high-(200 mg·kg~(-1)·d~(-1)), medium-(60 mg·kg~(-1)·d~(-1)), and low-dose(20 mg·kg~(-1)·d~(-1)) DXXK groups, with 10 mice in each group. Drugs were administered by gavage for eight weeks. Serum lipid, liver lipid, serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione reductase(GSH-Px) were determined. Interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were measured by enzyme-linked immunosorbent assay(ELISA). The liver index was calculated. The liver pathological change and lipid accumulation were observed by HE and oil red O staining. The liver ultrastructure was observed by the transmission electron microscope. The mRNA and protein expression of nuclear factor-erythroid 2 related factor 2(Nrf2) and heme oxygenase-1(HO-1) was detected by real-time fluorescence-based quantitative PCR and Western blot, respectively. The results showed that compared with the normal group, the model group displayed serum lipid and liver lipid metabolism disorders, elevated transaminase, lipid deposition, steatosis, and inflammation, suggesting that the NASH model in mice was properly induced. Compared with the model group, the DXXK groups showed decreased serum lipid, liver lipid, ALT, AST, MDA, IL-1β, and TNF-α, increased SOD and GSH-Px, alleviated hepatic steatosis, ballooning, and inflammation, and up-regulated Nrf2 and HO-1 gene and protein expression. In conclusion, DXXK can significantly alleviate NASH in mice, which is related to the inhibition of oxidative stress and inflammatory damage by up-regulating the Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Mice , Drugs, Chinese Herbal , Inflammation/metabolism , Lipids , Liver , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Signal Transduction , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Journal of Central South University(Medical Sciences) ; (12): 202-210, 2022.
Article in English | WPRIM | ID: wpr-929023

ABSTRACT

OBJECTIVES@#The plateau environment is characterized by low oxygen partial pressure, leading to the reduction of oxygen carrying capacity in alveoli and the reduction of available oxygen in tissues, and thus causing tissue damage. Cilostazol is a phosphodiesterase III inhibitor that has been reported to increase the oxygen release of hemoglobin (Hb) in tissues. This study aims to explore the anti-hypoxic activity of cilostazol and its anti-hypoxic effect.@*METHODS@#A total of 40 male BALB/C mice were randomly divided into a low-dose cilostazol (6.5 mg/kg) group, a medium-dose (13 mg/kg) group, a high-dose (26 mg/kg) group, and a control group. The atmospheric airtight hypoxia experiment was used to investigate the anti-hypoxic activity of cilostazol and to screen the optimal dosage. Twenty-four male Wistar rats were randomly divided into a normoxia control group, a hypoxia model group, an acetazolamide (22.33 mg/kg) group, and a cilostazol (9 mg/kg) group. After 3 days of hypoxia in the 4 010 m high altitude, blood from the abdominal aorta was collected to determine blood gas indicators, the levels of IL-6 and TNF-α in plasma were determined by enzyme-linked immunosorbent assay, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutataione (GSH) were measured. The degree of pathological damage for rat tissues was observed with HE staining.@*RESULTS@#Compared with the control group, the survival time of mice in the low, medium, and high dose group of cilostazol was significantly prolonged, and the survival time of mice in the medium dose group was the longest, with an extension rate at 29.34%, so the medium dose was the best dose. Compared with the hypoxia model group, the P50 (oxygen partial pressure at Hb oxygen saturation of 50%) value of rats in the cilostazol group was significantly increased by 1.03%; Hb and Hct were significantly reduced by 8.46% and 8.43%, and the levels of IL-6 and TNF-α in plasma were reduced by 50.65% and 30.77%. The MDA contents in heart, brain, lung, liver, and kidney tissues were reduced by 37.12%, 29.55%, 25.00%, 39.34%, and 21.47%, respectively. The SOD activities were increased by 94.93%, 9.14%, 9.42%, 13.29%, and 20.80%, respectively. The GSH contents were increased by 95.24%, 28.62%, 28.57%, 20.80%, and 44.00%, respectively. The results of HE staining showed that compared with the hypoxia model group, cilostazol significantly improved the damage of heart, lung, and kidney tissues in rats after hypoxia.@*CONCLUSIONS@#Cilostazol can significantly improve the oxidative stress and inflammatory reaction caused by rapid altitude hypoxia, and it has a significant protective effect on tissue damage caused by hypoxia, suggesting that it has obvious anti-hypoxic activity.


Subject(s)
Animals , Male , Mice , Rats , Altitude Sickness , Cilostazol/therapeutic use , Hypoxia/drug therapy , Interleukin-6/pharmacology , Mice, Inbred BALB C , Oxidative Stress , Oxygen , Rats, Wistar , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL